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A Lagrangian-type panel method in the time domain is proposed for potential flows with a moving free
surface. After a spatial semi-discretization with a low-order scheme, the instantaneous velocity-
potential and normal displacement on the moving free surface are obtained by means of a time-
marching scheme. The kinematic and dynamic boundary conditions at the free surface are non-linear
restrictions over the related Ordinary Differential Equation (ODE) system and, in order to handle ther,
an alternative Steklov—Poincaré operator technique is proposed. The method is applied to sioshing like

flow problems.
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1. INTRODUCTION

Applications of inviscid free-surface flows include a wide
variety of phenomena such as, for example, wave-
resistance, seakeeping, wave-washing, drift and tidad
currents, storm surge, wave propagation and sloshing. The
engineering projects require several types of predictive
flow models, where the acceptance of a predictive
simulation is related to its price to performance ratio,
ie. the computational effort for a simulation run in
comparison with the physical relevance of its results and,
in general, this price increases with the level of its
sophistication. It is well known, the great variety of scales
involved in fluid dynamic phenomena playing a basic role
in the applications of scientific and industrial interest.
The panel (boundary element) method is a member of
the CFD family which can be used in preliminary design
stages, e.g. see Paltinsen (1998). It is based on the
discretization of boundary integral equations, which are
closely related with the Green function theory, e.g. see
Brebbia (1984). As it is well known, this method assumes
a potential flow model and it is a practical tool for
predicting the pressure field over rather complicated
geometries, e.g. see Mueller and Kinnas (1999), or when a
parametric study involves an extensive set of numerical
test cases, as the transfer functions plots (Response
~ Amplitude Operators RAQ), e.g. see Lloyd {1989). Then,
it is also possible to shift to another fluid dynamics
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description Ie\?el, e.g. Euler and Navier--Stokes solvers, or
use mixed strategies, as the viscous—inviscid interaction
techniques, e.g. see Williams (1983).

The case of transient free-surface flow problems
remains as challenging, as is remarked by Khayat ef al.
(2001). Typically, a boundary-value problem of moving
type involves geometrical non-linearities. In contrast to
CFD conventional problems, the computational flow
domain is partially bounded by a free surface, which is not
known a priori, since its shape itself must be computed as
part of the solution. In steady-flow, the free surface is
obtained by an iterative process, but the problem is more
difficult when the free surface evolves with time,
generating large distortions in the computational flow
domain.

Several numerical techniques have been developed for
the solution of free-surface flows as initial value problems.
These techniques are roughly classified by Shy ez al.
(1996) as Eulerian, Lagrangian and mixed Eulerian-
Lagrangian. In Eulerian-like (volume-tracking)
approaches, see Fig. 1, the mesh remains stationary or
moves in predetermined manner, the free surface is not
explicitly tracked, so it is reconstructed from other ficld
properties, such as the fluid fractions, and the fluid moves
infout of the computational flow domain. It can handle
large displacements without loss of accuracy, but is rather
difficult to impose the free boundary conditions, since a
lack of a sharp definition, e.g. see Nickell ez al. (1974),
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EFIGURE 1 A 2D-flow domain with a free surface discretized by domain-like schemes. Euler-type (left) and Lagrangian-type {right) methods.

Siliman and Scriven (1980), Ruschak (1980) and
Kawahara and Miwa (1984). In Lagrangian-like (surface-
tracking) approaches, the mesh is configured to conform
the shape of the free surface and, thus, it adapts
continually to it. The free surface is a discontinuity and
explicitly we track its evolution, as an (r — 1) dimensional
entity in an n-dimensional space. No modeling is
necessary to define the free surface or its effects on the
flow field. The grid points move with the local fluid
particles, so the free surface is sharply defined but,
however, mesh refinement or remeshing usually is
necessary for large deformations, e.g. see Bach and
Hassager (1985) and Ramaswamy and Kawahara (1987).
Tn mixed Eulerian Lagrangian-like approaches, the
advantages of both methods are taken into account, e.g.
see Chiapada et al. (1996). Also, another mixed
approaches are proposed. For example, the “Emplicit”
method uses an explicit—implicit time integration oriented
to seakeeping ship motions, e.g. see Huang and
Sclavounos (1998), while the “Material Point” method
uses unconnected Lagrangian points and a background
Euledan mesh for solving fluid—membrane interaction,
e.g. see York et al. (2000). ' :

Sometimes, Lagrangian-like approaches can become
difficult to implement for three dimensional (3D) flow
problems, when domain-based discretizations (as finite

FIGURE?2 Schematic dizgram of a sloshing-like problem: flow domain

elements) are used, while with boundary-based ones (as
boundary elements) could be more easy to formulate,
together with a more easy adaptive surface remeshing. For
potential flows, a typical panel strategy relates the
velocity-potential and its normal derivative on points
over the boundary surface, so it could be an ideal method
for moving-boundary flow problems, where the position
and velocity of the free surface is 2 prime interest quantity.

On the other hand, the “sioshing” flow problems, e.g.
see Morand and Ohayon (1995), describe the motion of a
liquid enclosed in a rigid and partly filled vessel. There is
an interface between the liquid and the gas that fills up the
rest of the vessel, see Fig. 2. This interface is a free surface
and represents a moving boundary of the enclosed liquid,
and has a strong influence on the liquid motion. As it is
known, a body enclosing a cavity completely filled with an
inviscid, irrotational and incompressible flow, is dynarmi-
cally equivalent to some other solid body, and whose
solution can be found using the Stokes-—Jukowski
potentials. But, when the liquid has a free surface, there

‘is not such equivalent solid body, since the free surface

introduces new degrees of freedom. Nevertheless, for a
stable equilibrium position is sufficient that exist other
equivalent solid bodies whose equilibrium positions
should be also stable. As all enclosed moving system,
the liquid motion has discrete natural frequencies and
oscillation modes, see Fig. 3, depending upon of the shape
and size of the vessel and amount of the enclosed liquid.
When the vessel is subjected to a forced oscillation at a
frequency close to a natural “slosh” frequency resonance,

FIGURE 3 A sloshing oscillation mode, on the free surface of liquid

£, rigid surface I” and free surface Fp. enclosed in a rigid and partly-filled vessel.
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we have large displacements of the free surface, for
example, holds of crude-oil carrying tankers, jarge water
reservoirs excited by seismic activity or fuel tanks of
rocket engines with liquid-propeller. A review of the
classical theory is given by Moiseev (1964). For a survey
of the related eigenvalue problem, application of the Ritz
method and semi-numerical methods, e.g. see Moiseev
and Petrov (1966), where eigenfunction expansions for
some simple geometries (as parallepiped, circular and
annular cylinders) are alsoc given.

Wall pressure estimation for a structural design, has
been often based in the Housner (1957) method, where the
hydrodynamic pressure is decomposed as the sum of two
parts: an impulsive pressure of the liquid moving together
with the rigid tank, and a convected pressure of the liquid

‘under sloshing motion at the fundamental sloshing

frequency. For the fuel motion for air-plane dynamics by
an equivalent spring-mass system, e.g. see Graham and
Rodriguez (1952). In liquid-propeller rocket engines,
radially compartmented cylindrical fuel tanks are often
used, in order to increase the first natural sloshing
frequency and reduces the related sloshing Iiquid mass,
e.g. see Bauer (1963). For experimental tests of free and

. forced vibrations on partially filled spherical tanks, e.g.

see Abramson er al. (1963). For the dynamic of flexible
liguid storage tanks by finite elements, e.g. see Balendra
et al. (1982) and Haroun (1983), and by boundary
elements, e.g. see Dutta and Laha (2000) and Hwang and
Ting (1987), while Kob et al (1998) show a coupled
FEM-BEM code for a 3D rectangular liquid storage with
flexible, walls. In the Dutta and Laha work, a linearized
analysis in the frequency domain for a rigid container of
arbitrary shape is done, and it is solved with a low-order
boundary element method, where the oscillation ampli-
tude is assumed to be small enough to allow linearization
of the boundary condition at the free surface.

The strategy in this work is to solve the sloshing flow
problem, with an adaptive Lagrangian-like panel method
in the time.domain. After a spatial semi-discretization,
with a low-order scheme, the instantaneous veélocity-
potential and normal displacement on the moving free
surface, are obtained by means of a time-marching
scheme. The boundary conditions at the free surface, are
non-lineal restrictions over the related Ordinary Differen-
tial Equation (ODE) system so that, for handle them, an
alternative Steklov—Poincaré operator technique is devel-
oped. The position of the moving free surface is updated at
each time-step, but only small distortions are permitted, so
remeshing is not considered in this work.

2. MATHEMATICAL FORMULATION

2.1. The Sloshing Flow Problem

We consider a free surface performing small oscillations
around its hydrostatic equilibrium position, on the free
surface of a potential incompressible flow, as sketched in

Fig. 2. An hydrodynamic standard analysis in space X =
(x,v,z) and time ¢ domains gives: the Laplace equation for
the velocity-potential ¢(x, ¢) in the instantanecus flow
domain [2(z), no-slip boundary condition at the rigid
boundary I's{t), and the kinematic and dynamic boundary
conditions, on the instantaneous free surface I'x(r), for the
wave-height n(x, 1) and flux ¢, = o(x, ), that is,

Vp =0 indr);
¢, =0 atlp;

+n, - nz_lo' =0 atlr();
1
$s+ 51Vl +on =0 atlp; M

where n is the unit normal of the free surface, n, is its
projection on the z-axis, positive upwards, and g is the
gravity acceleration.

2.2 Spatial Semi-discretization by a panel Method

For a numerical solution in the time-domain ¢, we choose a
low-order panel method. First, a serni-discretization in the
spatial variable x is done for an instantaneous geometry,
which has a free surface, some fixed surfaces (e.g. the
bottom in a ship-like case or the vessel in a sloshing-like
one). In this way, we arrive to a system of ODEs for the time
t. Neglecting the gradient term in Eqg. (1), the implicit form

Hmsu; + Gnsyuz =0;
—Msy + n_{.,—l og=0;
bs; +gms= 0;

is obtained, where ngg = diaggs(n;) is a diagonal matrix with
the z-component of the panel normals, and v, W are the
mixed vectors

. by o U’B., 3
uy = 0'5; u; = ¢S; (3)

while the influence matrices H,G are obtained by means of a
standard panel discretization for the Laplace equation with
Neumann and Dirichlet boundary conditions, the Morino
mixed formulation, e.g. see Maitre (1988), Morino (1935)
and Kuo and Morino (1974), which leads the sub-matrices

Hpz Hszs G Gps Gas 4
HSB HSS » - I3 ( )

Gz Gss
where the sub-indices B, S denote free and body surface,
respectively, and also refer the involved matrix dimensions,
that is, B panels on the body and § panels on the free surface.
This systern, in this form, has 2 drawback that it is not reaily
an ODE’ system, but a Differential and Algebraic Equation
(DAE) one, in the sense that we have 28 + B equations with

H =
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the unknowns T, ®s, and ¢, that is, of the type
X, !
A y =fx,¥,0; )]

where A has a N X N size, and the vectors, X, ¥ have the NV,
N, lengths, respectively, with N = N;+N,. Then, the
vector y of the last N, equations can be elumnated and
replaced on the first N, equations, and an ODE system In X,
could be obtained, but we have developed another strategy
based on a Steklov—Poincaré like operator technique in
conjunction with a Crank—Nicholson like scheme.

2.3. The Steklov—Poincaré Operator for the Laplace
Equation '

The Steklov—Poincaré operator technique frequently is
used, for example, in DtN absorbing boundary conditions,
e.g. see Givoli and Keller (1990) and Huan and Thompson
(2000), and domain decomposition techniques, e.g. see
Quarteroni (1995). For instance, for the Laplace equation
in a domain 2, under Dirichlet boundary conditions as its
boundary I

Agp =0 inf}
¢ =0 atly: )
b = (f; atl},;

where I'= Iy U I's. In the most simple fashion, a one-
valued relation between the Dirichlet data q’) (over the
boundary I') and the solution ¢ (in the domain ) is
postulated. A similar assumption is postulated for the flux
(normal derivative to the boundary surface) ¢ ,, so these
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FIGURE 4 Left; a vertical U-tube of mean radius rn, = (r +72)/2 and aspect relation p = rny /d, and partially filled with a liquid, with a small
sloshing motion. Right: vertical xz-view of a 3D panel mesh, with r, = 3 and g = 4.

are written as

b= He
bn= 7

where 2, & remark that are non-local operators. For all
harmonic functions V*(...) = 0 in the domain {2, it can
been shown that this Steklov—Poincaré operator is linear,
symmetric, and positive definite. In effect,

w,%)ﬁj ¢y¢dF=J ¢¢,,.dr=J WV @ndl
I".,, Iy Ts

~ J ViV + 724 d0 = J VgV oo,
2 2
(8)

Repeating again Eq. (8) but interchanging the functions,
and taking into account 72y = 0 in the domain 2.

@.#9= THTs0=(8, 7 (mmeicr O
£
and when, in particular, ¥ = ¢, we have
(b, F ) = J IVliZd >0 (positive definite); (10)
o
where we have been assumed that [Vei is squared
integrable. Also, itis bijective. In effect, if we suppose that
we have ¢, = Py and ¢ = 1 — ¢, then F'¢ =0
and (¢/, ¥ ¢) = 0, so that, from Eq. (10),
0=,7¢)=[ Wera - ap
0

but, in such case, ¢/ = cost and then it is sufficient that
there are some portion of the boundary with Dirichlet

Y i
z
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condition for arrive to ¢ =0. A standard FEM-like
discretization for this operator gives a (full} symmetric
and positive defined system matrix H, obtaining ¢ = H(f)
but, on the other hand, 2 standard BEM-like one gives a
near (full) symmetric and positive defined one. In the
context of domain decomposition techniques, H is often
called the Schur complement, e.g. see Cottle (1994),
whose functional counterpart is, indeed, the Steklov—
Poincaré operator, e.g. see Quarteroni (1995) and Serén
and Sabadell (2000).

An engineering application of the Steklov—Poincaré
operator, is the time-domain evolution of a potential
flow with a moving free surface by a Lagrangian-type
panel method. In such case, it is immediate to show that
such problem always will give a wave-like equation.
In effect, the system (1) on the free surface, at first

‘order, is

;-0 8¢, =0 atlp;
b, +en=0 atI",;; | (12)
while Eq. (1)
V=0 ind;
=0 atly; 13)

are working as “restrictions” for the dynamics of the
‘moving free surface. Eliminating the wave-height 7, we
obtain the (reduced) second order differential equation

(b,:r - ﬂ;18¢,n =0 atlF; (14)

introducing the Steklov—Poincaré operator for the normal
derivative ¢, = S¢, we have

b+ MP=0; atlf; (15)

- where 2 =n; lg 9’, which have wave-like solutions

¢ =Ae*_ For a linearized boundary problem, a
standard Fourier ‘analysis can be done and gives an
Helmholtz-like equation, whose numerical solution has a
rather expensive computational cost. For this reason, we
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FIGURE 5 Computed sloshing nawral periods for a U-tube from the plots of the wave-height n.{f), nelt), at : .
the first 15 periods (at the Aght). Numerical dissipative effects aze not perceived.

respectively, as a function of time £ the first period (at the left);

discard second-order approaches and work with a first-
order system, for a time-marching scheme of the moving
free-surface.

2.4. Numerical Implementation

A standard discretization of Eq. (2) by finite differences
between the times n, n + 1, present and next, respectively,
we have

Btach B oRS + BRY 7
Fyr oRFT + ARy
ot | +h tngs {0t — ) — a0t — Boit!
per || BT (BF — 9F) + e + i
0
0
-1l (16)
0

i

where h is the temporal step, o and f=1— « are the
weights of the integration scheme, e.g. @ = 1 for
backward-Euler and a = 0 for Crank—Nicholson. The
residues, on the body Rg and on the free surface Rs, are

given by
Ry = Hgpds + Hasos — Gz — Gasds:
Rs = Hgpdp + Hssos — Gszop — Gssbs; (A7)
We see that Eq. (16) represents a non-lineal equation
like

Frotl = F(U7, UMD = 0; (18)
with the state vector U = (b3, s, Ms, 0°s). In the spirt
of the semi-implicit schemes, we perform a Taylor

expansion of Eq. (18), near the point (G”, U™+, that
is,

F(Un+1’ Un) = F(U", Un) + JﬂA‘UfI == O; (19)

7
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TABLEI Natural sloshing periods on an U-tube: minimum T\, mean T,
and maximum 7» ones (computed with the internal », mean r,, and
external ro radii, respectively), compared with those obtained from a
panel computation

Computation with Sloshing natural period 7T (s)

‘The internal radius r; 18.07
240 panels 17.09
832 panels 18.48
1408 panels 18.87
The mean radius rp, 19.87
The external radius r» 2047
where
oF
J'= on ; 20
U g o
is the Jacobian and AU” = U"*! —U”. Then
J' AU = —F(U", U, , 21)

is a system whose solution will give the increments
for the wave-height and the (perturbation) velocity-
potential. A straightforward computation gives the
lineal system (omitting the supra-index n):

Hzz —Ggs Xgs Hpz 7 [Ads
HSB —GSS XSS HSB A(bS
0 0 "h-lnss "(IISS A’!}S
0 "h_lg_llss algss 0 Acs
~F,
—F,
- : 22
=l @
—F,
0.0015
0.0010¢
0.0005
0
-0.0005
-0.0010
-0.0015

where
Xpp = 0F; /9ms;

Xps = aF2/dms; (23)

I;s is the identity matrix, and F == [F,F 2FsF4 T is a
source vector with the components

¥1=eRp;
F, = eRg;
F3y = —vyog
Fy=+yas; (24)

and its the first term in the Taylor expansion (19), y =
a+ B, with & = /e if a # 0, and & = | otherwise. The
Xyp and Xgg matrices are related with the derivatives of
the ipfluence matrices and, in this work, these are
neglected, so only small distortions on the moving free
surface are allowed. Equation (22) has 2(B + §) equations
and, from a computational cost view-point, we do a
partial reduction in the number of unknowns. From the
sub-system (22) we obtain

Ams = —hngg (~Fs + ados);
Ads = +hg(—F4 — abdns); (25)
opening parenthesis in Eq. (25), we have
Ans = -}-hn;SlF 3= ahn;{; Aog;

Ads = —ah’gnyg Fs — hgFq + a’higngg Aos;  (26)

nm]
‘__\1
.
r{m]
0.2 0.4 0.6 08 1

FIGURE 6 Left: sketch for annular sloshing waves on the free surface of a depth circular cylinder. Right: sloshing mode 7(r.t) as a function of the
radius r and the time 1, in the first natural sloshing mode, computed by the present method. The analytic ones are proportionals to the Bessel function of

the first kind and zero-order Jo(Kr).







LAGRANGIAN PANEL METHOD FOR FREE-SURFACE FLOW 269

1 0 e

== |
> X

e
R
] = e

14 0.5 0 05 1 54 0.5 0 0.5 1

FIGURE 7 Views of a 3D panel mesh for computing sloshing flow in a circular cylinder.

and replacing in Eq. (22), results the reduced system Introducing the auxiliary vectors
Hzz Hps][Ads -B, @7 0z 03
Hyy Hgs||Aos| |—B2| ny = [MSSFS]; uy = |iLssF4:|; €13}

with the source vectors
the block diagonal matrices,

b = —F; + Gs(aMgsFs — LssF4) — XpsNssFi;

by = ~Fa + Gss(aMgsF3 — LssFa) — XgsNgsF; Us =diag{0s @*Mss];
(28) Us = diag[0sz aNss] (32

and the modified sub-matrices and the intermediary vectors

Hps = Hps — o’ GpsMss — aXasNss; i
. \ Ads 0z
Hgs = Hgs — a”"GgsMgs — aXssNgs; (29) s =1, cov = :
L1 a3
where -
- [ 03 OE
Mss = h’gngg'; vy = i V3= ; (33)
bs NgsF ;
3 Ngs = hng; )
Ly = hglss. (30) = we can re-write the reduced system (27)—(29) in a more
1
0.0004 0.0004
1 [m] N ppsen b i
o \\ / ak 0.0002 \ A A\ A A
02002 - oos LN /RN DR O
0.0001 / ' [T} / ] sl
: 0
o I N AN )
-0.0001 — ——bem.-a ' \/ L \
-0.0002 J \WV \ /
-0.0002— \ 4 i [S] -0.0003 <
] |
& -O’OOOSO 1 2 3 4 5 -0'00040 2 4 6 8 10 12 14 16 18 20 ‘
%g‘ FIGURE § Natural sloshing periods from the plot of the wave-height n(r) on a circular cylinder: left: the first period; right: the first four ones.
%% Numerical dissipative effects are not perceived.
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FIGURE 9 Sketch for a vertical annular cylinder partially filled with a liquid.

-7

7z =-H +T

FIGURE 10 Sketch for an azimuthal sloshing mode in a vertical annular cylinder partially filled with a liquid.

compact fashion as

(H~ GUs + XUg)s = —Hu; + Gy — us — u4) + X,,.
(34)
So, first we computate Egs. (24), (31)-(33), then we

solve the system (34) and finally, advance to next time,
that is,

5= b+ AdY;

57 = 95+ A

5T = m§ + Ax. 39
3. NUMERICAL EXAMPLES

The position of the moving free surfaces in the following
numerical examples are updated at each time-step but only
small distortions are permitted, so remeshing is not
necessary.-The infinity depth case will be assumed for the
dispersion relation in all cases, that is, K = w?/g, where X
is the wave-number, w is the angular frequency and g is
the gravity acceleration.

3.1. Vertical Sloshing in a U-tube

A rigid U-tube partially filled with a liquid is considered.
On its free surface, a small perturbation in its hydrostatic
equilibrium height is introduced, in such way that vertical
oscillations will develop. As the dissipation effects are
neglected, this natural mode state remains in time without
attenuation. For a geometrical description, we choose a
vertical semi-toroidal domain, with internal and external
radius ry, rp, respectively, where the (circular) flow section
S has a diameter 4 = rz —ry, see Fig. 4 (left). The mean
radius’ and aspect relation are rp, = (r1 + r)/2 and p =
¥m/d, respectively. At the initial time ¢ = 0 we impose 2
vertical displacement on each freé surface, smail enough,
and in opposite phase, that is, m; = -+&z at the left free
surface, and mg = —ez at the right one, where 0 < ¢ < 1,
and z is the vertical, see Fig. 4 (left). The natural sloshing
wave-number and pericd ¢an be estimated as K; = 2/L;

and T, =2m(gK,)"Y?, where L,=ar, is a mean

perimeter from some radius r,, between r; and #,.

We choose a mean radius r,, = 3, an aspect relation
p=4 and a gravity acceleration g=1. We have
considered three meshes of 240, 832 and 1408 panels, see
Fig. 4 (right), for a vertical xz-view. In Fig. 5 (left), we
shown a period of the wave-height 7(¢) plot in the middle
sector of each free surface and obtained with the three
meshes. In Fig. 5 (right), 15 periods are plotted, where
numerical dissipative effects are not percetved. The natural
sloshing periods: minimum 7; mean 7, and maximum 7,
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FIGURE 11 Sketch for a radial sloshing mode in a vertical annular cylinder partially filled with a liguid.

ones {computed with the internal ry, mean r,, and external
ro radii, respectively), and those obtained from a panel
computation are compared in Table I where, except for the
first mesh, the panel estimations are between the minimum
and mean periocds.

3.2. Annular Sloshing in a circular Cylinder

A circular cylinder of radius R and depth H enough for
peglecting the bottom effects, is considered, see Fig. 6
(left). The cylinder is assumed to be rigid and it is partially
filled. When a perturbation is introduced at the center of

0.0015

0.0010

0.0005

-0.0005

-0.0010

-0.0015
-200 -150 -100 -50 0 50 100

its free surface, annular surface waves are generated.
Exciting one natural sloshing mode, a standing wave
will be obtained. The initial boundary condition
imposed at =0 is a natral sloshing mode with radial
symmetry. This is a 3D case, which can be solved by
a standard variable separation. An analytic calculation,
e.z. see Appendix for a re-derivation, leads the eigen-

functions
Pulr, §,2,2) = ATo(Kar)efie; forz=0;  (36)

where Jo(Kr) is the Bessel function of first kind and zero
order, A is the amplitude of the oscillation, x = Kr is the
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FIGURE 12 Azimuthal natural sloshing mode in a vertical annular cylinder when, as initial displacement 7, the natural first azi_muthai sloshing mode
is imposed: velocity-potential ¢{r,,,8), flux o{r,,8) and wave-height 1(r...0) at the moving free surface as a function of the azimuthal angle & at the

mean radius r,, = (r; +r2)/2.
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FIGURE 13 Radial natural sloshing mode in a vertical annual cylinder when, as initial displacement mp, the natural first radial sloshing mode is
imposed: velocity-potential ¢{r.8,). flux a{(r,f) and wave-height 1(r,6; at the moving free surface as a function of the radius r at a fixed azimuthal

angle 8.

non-dimensional radial coordinate, x, are the zeros of

- the Bessel function of first kind and first order Jy(x),

for imstance, xo = {3.832,7.016,10.173,13.324,...}.
The natural sloshing wave-numbers and frequencies are
given by Ka = xa/R and w, = /g%a/R, respectively.
Simple annular sloshing waves with null radial velocity at
r=R and —H = 7 =0 are obtained, when the wall is
localized at the zeros of Ji(x), so there is not necessary to
use a superposition principle. A radius R = I and a depth
H =5 are adopted here.

In Fig. 7 we show an horizontal xy and vertical xz-views
of a typical panel mesh. The first sloshing mode 7(r.z), as
a function of the radius r and the time ¢, and obtained with
the proposed method, is shown in Fig. 6 (right}, which are
well-compared with the analytical ones. In Fig. 8, I and 4
periods of the wave-height #(¢), in the middle zone of the
free surface, are included. The natural sloshing period
estimated by the panel code is Tpeym = 4.2943 5, while the
analytic one is T,; = 4.5394 s, with a relative error of
er = —5%. :

3.3. Azimuthal and Radial Sloshing in An Amnuiar
Cylinder '

It is well known, in linear elasticity, that an elastic
membrane fixed on its boundaries and perturbed with an

initial displacement at time ¢ = 0, small enough, it will
oscillate for ¢+ > 0 on some of its natural azimuthal and
radial modes. An equivalent description can be done for a
vertical annular cylinder partially filled, see Fig. 9, when
its free surface is perturbed on one of its natural sloshing
modes. For t < 0 the hydrostatic free surface is an
horizontal plane and at r =0 we impose, as an initial
displacement, some natural sloshing-mode. Then, after a
transition state, the moving free surface will oscillate in a
stationary way. A quasi-2D description can be obtained
when we consider a thin radial fete, of mean thickness rdf
small enough, and Ar/r <€ 1, where r is the mean radius of
the cylinder and Ar is the radial dimension of the
“swimming pool”, which has two natural typical sloshing
modes: the azimuthals, see Fig. 10, and the radials, see
Fig. 11. The azimuthal-sloshing modes case is interesting
due to its simplicity, since it is a stationary wave along the
circumferential perimeter, there is not discontinuities in its
propagation path, so there is not necessary to implement
special tricks for mesh border effects, e.g. “artificial-
beaches™ or some kind of absorbing boundary conditions.
In Fig. 12 we show the time evolution of the first
azimuthal-sloshing mode obtained with the proposed
method for the velocity-potential, flux and wave-height
on the moving free surface. The radial-sloshing mode is a
bit more complicated due the effects caused by
the swimming pool walls at r= rpip and at r = ry.y.

i
5
q
3
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If the initial displacement is one of the stationary
radial sloshing modes, with null radial-velocity at the
swimming-pool walls, then, there is not necessary to
impose radiation-like boundary conditions, see. In
Fig. 13 we show the results obtained with the proposed
method.

4. CONCLUSIONS

This paper has shown a Steklov—Poincaré technique for
solving a Lagrangian-type panel method, for potential
flows with a moving free surface. As a special case, the
“sloshing” flow problem has been considered. It has been
found good agreement with analytic solutions for the
natural sloshing frequencies and shape modes. Next stages
in the development should include: radiation boundary
conditions, for seakeeping-like flow problems, and a
remeshing strategy for large distortions on the evolving
free surface of non-steady flows.
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APPENDIX

Annular Surface Waves

Choosing cylindrical coordinates (r.6,z), the linearized
boundary value problem for the velocity-potential
function @ = @(r, 0,z,¢) is written as

VP=0 inf2

3, &+ g0, D=0 arz=0;
3. &=0 atr=R;

z_1.1131m©=0 infinite depth; (37
where g is the gravity acceleration, n is the normal to the
vertical wall of the circular basis, and {2 is the fluid
domain. Performing, as Koshlyakov et al (1964), a
standard variable separation ®(r,8,z,7) = ¢(r, 0, 2)e',
where w is the angular frequency, we have the spatial
problem

Vé=0 ind}
d;p— Kb=0 atz=0;

3,4=0

atr = R;

Jimg=0 infinite depth; (38)

where K = w?/g is the wave-number. Employing
cylindrical operators in Eq. (38, a—b) we have

13/ a 18% 82
e (r—-—qé) -+ ¢+ 4
raor ar

e =0 indZ;
8 _kp=0 az=0;

r236% " az?
az

but for annular waves dgp = @. Then, doing a variable
separation ¢{(r,z) = (r)x(z) in Eq. (39, a,b), we have

2 2

Y \dr?  rdr xdz?
uj;(fl-)-—(-—Kx) =0 atz= (40)
dz
Eq. (40,3) is satjéfy when

d‘zlﬁ 1dyr 2

Tty TYE=0
d2
Ez-’zf — iy =0; (41)

(39

where -y is the separation constant but, from the free
surface boundary condition, (40,h), is ¥y = K, s0

2

d*x

dz?
with solutions y = Ae™%%, but due the boundary condition
(38,d), we retain

Kix=0; (42)

X2y = Ae™;  forz < 0. 43)
But Eq. (41,a) is a Bessel one
d d
R I T (44)
dr dr
doing the variable change x = Kr, we have
d*y  dy
2 2. _ 0
X g»{-x—&-;+(x O)lfl—o, (45)

Its solution is ¥{x) = CyJo(x) + Co¥p(x), where Jg, Yy
are the Bessel functions of zero order, of first and second
kind, respectively. The only finite solution at the origin is
dlry = AJo(I) so, the spatial solution is

M(r, 8,7) = ATg(Kr)e™; forz = 0. (46)
The allowed wave-numbers K are found from the
Neumann boundary condition at the vertical wall, Eq.

(38,c), which imposes

d¢ _ dJo _ — p

E;_demo,_ at r=R; 47
but dJg/dx = —J;(x) and then

Jixl)=0; a=12,..; (48)

where x, = {3.832,7.016,10.173,13.324,16.471. ..} are
the zeros of Ji(x), that is, for radial sloshing modes with
null radial velocity at the vertical wall, the radius of the

‘circular cylinder must be located at one of the zeros of the

Bessel function Ji(x), of first order and first kind and,
then, the sloshing modes (eigen-solutions) are given by
Eg. (36).

Variational Formulation

The Lagrangian for a sloshiﬁg flow problem, where the
external forces are conservatives, can be written, e.g. see
Moiseev (1964),
i
L= J (T — V)dr; {49)
0

where

T=£J vzd.QandV=BJ gl2dlh (50)
2)p 2)r.
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are the kinetic and potential energies, in the flow
domain {2 and the free surface Iy, respectively, v = V¢
is the velocity and ¢ is the velocity-potential. The
Hamilton principle for the actual meotion is that an
isochronous variation & L is null. Using the condition of
irrotationality

5L = er {J VoV (5d) d — J g§8§dl"} dr = 0.
JolJn Ir

629

On the other hand, the normal velocity o, at the fixed
surface Ig is null and A¢ = 0 in the flow domain (2, so

J V¢V(6¢>69=J @.GBHdAk (52
ke Ir

and taking into account the kinematic free surface
boundary conditon &,(8¢) = 8L, results

P L L (68, —gl30 dldr = 0: (53)

integrating by parts and using the isochronism of the
variations

—prj J (b, + g0SL AT ds = 0; (54)
0.4lp

from this ¢, +gf= 0. Lastly, the Lagrangian can be
rewritten as

L= gJ;{L(qu)z an - Lifi dF} . (55







