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1 ABSTRACT

This report documents the potential capabilities of adaptive inviscid flow calculations
on unstructured meshes in three dimensions using the finite element method. The finite
clement formulation of the compressible Euler and Navier-Stokes equations is based on
a two-step explicit Taylor-Galerkin scheme. Adaptive remeshing is applied to enhance
the numerical solution in the vicinity of shocks. -Particular emphasis is put on the
generation of unstructured tetrahedral meshes as well as in the discussion of estimating
the error in the numerical solution. Finally, an application to a well known 3D high
speed flow problem is shown where adaptive remeshing techniques become essential to
keep the computational cost within reasonable limits. Its results are compared to some
seemingly best reference solutions using other algorithms.

2 INTRODUCTION

The Taylor-Galerkin approach has proved to be an efficient numerical procedure which
is capable of simulating inviscid and laminar viscous high speed flows around complex
geometries in two and three dimensions. The spatial discretization is typically based
on the use of linear triangular finite elements (2D) or linear tetrahedral elements (3D).
The time discretization involves two steps of a Taylor expansion of second order. The
advantage of the use of a two-step algorithm with a lumped mass matrix formulation
is a reduction of stored memory [1] resulting in a lean explicit algorithm. Artificial
dissipation of Lapidus [2] or Jameson [3] is typically added to account for discontinuities
such as shocks or boundary layers. To accelerate the convergence to steady state local
time stepping may be used.

3 BASIC THEORY

3.1 Euler and Navier-Stokes equations



The Euler and Navier-Stokes set of equations for a compressible fluid in conservative
form for laminar flux within a three dimensional domain without source terms read:
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where the nodal unknowns u, the advective fluxes f; and the viscous fluxes g; are:
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Assuming a bulk viscosity of (3A\+2p) = 0, the law of Navier-Poisson for a Newtonian
fluid leads to the components of the viscous stress tensor:

_ Ou; Ou; 2 Ouy
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In above: p is the density, p is the pressure, T is the temperature, u; Cartesian
components of the velocity, € the total energy per unit mass, §;; the Kronecker delta, k
is the material heat conductivity, and p = p(T') is the dynamic coefficient of viscosity
which is calculated from Sutherland’s equation.

The pressure is obtained from the equation of state for a perfect gas:

p = (y—1)p(e — 0.5u5u;)

where v = Cp/Cy is the ratio of specific heats . In the present computations we have
taken v = 1.4 which comes closest to air. In case of inviscid calculations, the viscous
fluxes g; are set to zero to obtain the Euler equations.

3.2 Taylor-Galerkin algorithm

The scheme chosen here is the well known Taylor-Galerkin method, successfully
developed and used by different authors [1,4].

Non structured meshes of linear triangular finite elements are used [1].

Outline of the algorithm

The solution vector u is expanded in Taylor series as:

ou™ At? 9*u™
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where the superscript n indicates solution at time nlt, etc. Hence using equation (1)
and neglecting the O(At3) term the expansion reads:
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where A; = Of;/0u and G; = 0Og;/0u are matrices of vector gradients, and where
derivatives or products of order higher than two have been neglected.

Equation (5) can be now discretized using C, finite elements [4]:

u" = ZN,-&? = Na" (6)
%

Where N; is the interpolation (linear) function of node i and af the nodal values of the
unknown u at time n.

The integral form of the discretized equation, where standard Galerkin weighting
functions are used, may be written as:
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Where Au = u™*! — u™. At this point it should be noted that A; and G; are matrices
of vector gradients that have to be computed and stored (time and memory consuming

task).

Integration by parts using Greens theorem in equation (7) gives:
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Subscript n indicates normal projections. Superscript n means values at time n. The
finite element interpolation leads to a system of algebraic equations:

M Au" = RHS" (9)

where M;; = | N;N;dQ 10
J Q J

To preserve the explicitness of the algorithm when a steady state solution is to be
obtained, equation (9) can be solved using a lumped mass matrix. In other cases, a
Jacobi-type iteration procedure may be performed to recover the properties of the full
mass matrix [1].

Two-step algorithm

To avoid the computation and storage of A; and G, an alternative algorithm has been
developed. In the first step, a Taylor expansion at time n+1/2 is performed (neglecting
at this stage the viscous terms):

At ou™ At Of"
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From this step u™+1/2 is obtained. For the second step, again the use of Taylor expansion

for f;‘“/ ? and equation (1) neglecting second order derivatives, provides the tools to
replace A; and G; by values of fluxes at time 7 + 1/2 [1]. Replacing in equation (8) A;
and G; by the values obtained and integrating by parts 0f;/0z;, we have:
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Subscript 7 and j indicate mean nodal values and elemental values respectively. Recall
that subscript n refers to boundary normal values.

Stability

The stability of the algorithm is preserved if the time step meets the following criteria,
for the viscous case:



Che
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for the inviscid case:
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where ¢ the local speed of sound, C is the Courant number, p is the dynamic viscosity,
Pmin is the minimum element density, v is the velocity vector, and he is a mesh spacing
value taken to be the minimum of the element. The Courant number is chosen to be
less than 1 to ensure the stability of the explicit Taylor-Galerkin algorithm.

In order to enhance the performance of the program and to accelerate the solution
towards steady state, local time stepping can be used.
Artificial dissipation

To account for discontinuities in the solution of fluid flow using a high order scheme (e.g.
Taylor expansion) a certain kind of artificial viscosity or diffusion must be introduced.
First an algorithm of the Lapidus kind [2] and then an approach similar to Jameson [3]
are described.

a) Lapidus Algorithm

It can be shown that for the ith node of an unidimensional solution, a second derivative
of the unknown can be obtained as:

o |25, = o - Mg, (15)

M, is the diagonalized or lumped mass matrix, M is the consistent mass matrix, C' is
a constant, and ¢ is the unknowns variable.

An extension of this idea to a multidimensional problem gives:

n+1
Aug = ult? — u"tt = At % (k*?(—va—l—)-) (16)

k* is variable to determine the amount of viscosity necessary, 1 is the normalized vector of
velocity gradients, Aug are incremental smoothed values, u?*? is the smoothed solution
at time n+1, and v is the vector of velocity.

E* and vector 1 are obtained as follows:
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b) 2nd and 4th order artificial dissipation

k* — Ck(hel)z

Instead of the artificial viscosity of Lapidus, an artificial dissipation of a blend of second
and fourth order can be chosen [3]. This formulation is better suited if stronger shocks
and shocks of different strength appear.

The general expression for the added dissipation flux fj, in a formulation using mass
matrices, is as follows:

Mf; = o@D (M, - Mu — oM - MM (Me — Mp)u (19)

This is the additional term to be added to all the equations with the modification of
the energy equation where the enthalpy is constant at steady state. Hence, the last
component of u, pe, is replaced by the expression pH.

The two coefficients, o(2) and a(4), are obtained from the expressions

a® = A(|v| +c)Se (20)

o = max [0, ) — c(z)Se] (21)

and a pressure switched diffusion coefficient for each node which is calculated according
to the following term:

|(Mc - Ml) Pi|
Se = 22

The terms ¢(2) and ¢(4) are user defined constants that can be tuned according to the
desired amount of diffusion to be added.

3.3 Adaptive Solution

Error estimator



Due to the features of the high speed flow to be solved, strong variations may appear in
very localized regions of the domain, whereas the rest of the solution remains smooth. To
increase the efficiency of the method a remeshing based on a posteriori error estimator
is performed [5].

The element mean quadratic error for unidimensional elliptic problems is:

Eel = C(hel)z

92
5‘2 el (23)

kel is the 1D element length, ¢ is the variable chosen, and C is a constant(C = 1/11 for
linear elements).

If the criterion of equidistribution of the error among the elements is adopted, then:

ety | v
(h7) Oz?
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For 2D and 3D problems, equation (23) may be extended as follows (in a heuristic
approach):

(6,-)2|/\,-| = constant ¢=1,3 (25)

2
where )\; are the eigenvalues of the Hessian matrix Cj; = %%‘;L and §; is the
W0w;

corresponding element size.

This has the advantage of providing directionality to the error estimator. It is a desirable
property, since some discontinuities like shocks present a strong variation in one direction
and smooth behavior in the direction normal to the first. It is then useful, to take
advantage of this to produce meshes with stretched elements in the mentioned regions.

Due to the vector character of u, the variable u is not well suited for the error estimation.
A scalar variable should be chosen. In the test cases presented in this study the Mach
number, has been used as the error variable. The new element sizes §; and 67 in the
principal directions are defined according to:

(61)" Ml = (82)" A2l = 6r Amax (26)

M and )y being the eigenvalues of matrix C, §r is a user specified constant (size) and
Amaz is the maximum eigenvalue over the whole mesh.

Mesh generation



A finite element mesh of linear triangles of three nodes or linear tetrehedral elements
of four nodes is generated using the advancing front technique [1,4] or the Delaunay
triangulation. The element sizes are decided in accordance with the sizes specified by
a background grid. The initial background grid may be a very simple mesh, and the
subsequent grids are those used for the latest or seemingly best computation, where the
sizes are decided as specified in the previous paragraph. However in three dimensions,
the specifications of the background grid should be limited to about 5000 nodes, to limit
the memory needs of the related data structure created by the mesh generation routine.
Hence, some routines have been written to reduce redundant information stored at
neighboring nodes. One of them is to remove all those points whose patches surrounding
that node contain either minimum or maximum spacing information. Another is to
geometrically limit the distance between neighboring nodes to a user defined minimum.

4 RESULTS

The particular objective of this study was to analyze the capabilities of Euler
calculations on three dimensional unstructured meshes using adaptive remeshing
techniques and compare them to other known solutions used by other authors employing
different techniques. A well known test case was chosen for comparison, Test case 6.1.7
of the I. Workshop on Hypersonic Flows for Reentry Problems. The two seemingly
good computations from ONERA (Guillen, Borrel) [6] and DLR (Radespiel, Herrmann,
Longa) [7] presented at the workshop were chosen for comparison. ONERA uses a
MUSCL type finite volume method on structured grids, whereas DLR uses a Jameson
type Runge-Kutta finite volume method on structured grids, both of which are proven
methods in the CFD industry.

Test case

The example corresponds to the hypersonic inviscid flow past a double ellipsoid under
the following conditions: Moo = 8.15, o = 30°. All the calculations were obtained on a
Silicon Graphics R4000 workstation, with the exception of the largest mesh which was
run on a CRAY-YMP.

Mesh and Results

The sequence of the initial meshes and refinement evolution can be seen in Figure 1. A
total of four different meshes have been generated. The first coarse mesh contains 38734
nodes and 175872 elements. From this a second mesh was generated containing 22940
nodes. After a third refinement process two meshes were obtained, a coarse mesh of
35808 nodes and a fine mesh of 75006 nodes. Note at this stage the remeshing process
has produced many small elements in the vicinity of the two shocks, which appear from
this calculation. At this stage stretching of the elements has not been introduced yet,
because of our fear of distorting the overall quality of the mesh. This feature could
reduce to some amount the necessary amounts of points and elements.



Figure 2 shows Mach number contours for the fine and coarse mesh respectively, where
you can see a clear improvement of the resolution of the shock. Observe in Fig. 3
density contours for the fine mesh. For a more detailed analysis the Mach contour lines
are shown in Fig. 4 in the symmetry plane only. Note that the canopy shock has been
captured much more precisely using the finer grid, also the principal shock shows a
crisper pattern than the coarse mesh. Figure 5 compares the pressure coefficient (cp)
of the last two meshes for the plane of symmetry, whereas Fig. 6 compares the cp of
the fine mesh to different authors. The pressure peak is much better resolved using the
more refined mesh and compares very well to other codes using structured meshes.

The final figures document the evolution of residuals and forces of the finest grid.
The convergence was of 5 orders of magnitude (Fig. 7), although minor oscillations
are present at some stage of the calculation. However, this did not affect the overall
convergence to steady state, which is documented by the history of the non dimensional
forces Fx and Fy, represented in Figure 8.

The cpu-time of the final calculation was about 7,6 hours on a Cray YMP.

5 CONCLUSIONS

An effective solution algorithm of the Euler equations for unstructured three dimensional
meshes has been presented. Given the necessary computational resources, this algorithm
is capable of solving inviscid flows around complex geometries. Especially when adaptive
remeshing techniques become essential for the feasibility of the computations, this
explicit scheme remains effective in practical applications.

The next step will be to show similar capabilities of this method for the viscous
case, solving the laminar Navier-Stokes equation or even adding turbulence modeling.
However, this will again be demanding on the mesh generation capabilities, which must
be able to effectively place nodes close to the boundary.
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Figure 4: Comparison of Mach number lines for the fine and coarse mesh. Note the
higher resolution of the shock for the fine mesh.
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10 Convergence history for L2-norm of the density (M=8.15, alpha=30,Euler)
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Figure 7: Convergence history of the density residuals.
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Figure 8: Convergence of the pressure forces.



