Shock Wave Reduction via Wing-Strut Geometry Design

Runze LI, Wei NIU, Haixin CHEN

School of Aerospace Engineering
Tsinghua University
Beijing 100084, China

PADRI, Barcelona (Spain) 2017.11.29
Register for free at https://www.scipedia.com to download the version without the watermark

SHORT VERSION
Shock Wave Reduction via Wing-Strut Geometry Design

Runze LI, Wei NIU, Haixin CHEN* Tsinghua University, Beijing, China

- Designing Approach
 Fixed LE&TE, larger LE radius, fixed max thickness For Wing & Strut
 Step 1: 2D optimization (not technically accurate but illuminating)
 Step 2: 3D manually design

- Pressure Distribution Oriented Multi-Objective Optimization Design
 - CFD Solver: NSAWET
 - Opt Algorithm: NSGAII / DE (& Continuous Adjoint Method based on NSAWET)
 - Modeling/ Deformation: CST (14 design var. for an airfoil), etc.
 - Surrogate-Assisted Opt: Kriging / RBF

- Pressure Distribution Oriented:
 - As objectives: accelerate performance opt / manipulate flow structure
 - As constraints: robustness consideration, etc.

- Application in Industry (COMAC C919, etc.)
 - Man-in-Loop: Introducing engineer’s experience, supervision and manipulation
 - Low Accuracy for Turn-around Time: 2.75D (2D) design, coarse grid

Register for free at https://www.scipedia.com to download the version without the watermark

chenhaixin@tsinghua.edu.cn lirz16@mails.tsinghua.edu.cn
Shock Wave Reduction via Wing-Strut Geometry Design

Runze Li, Wei Niu, Haixin Chen* Tsinghua University, Beijing, China

- Designing Approach
 - Step 1: 2D optimization (GA Algorithm)
 - 20 cores 2 hour (population size 32, 12 generations) to gain good enough results
 - Step 2: 3D manually design (6 airfoils)
 - Final design has a total 9.8 count drag reduction (10mil cells)
 - The span load is basically kept the same

<table>
<thead>
<tr>
<th></th>
<th>Lift Coefficient</th>
<th>Total Drag Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>0.406</td>
<td>0.02270</td>
</tr>
<tr>
<td>Design</td>
<td>0.406</td>
<td>0.02162</td>
</tr>
</tbody>
</table>

Register for free at https://www.scipedia.com to download the version without the watermark
Cruise Point Results (Ma=0.72 AoA=1deg)
Most wave within the modification region (Y=15~17) can be reduced
Separation can be significantly reduced once the shock wave disappears
Register for free at https://www.scipedia.com to download the version without the watermark

FULL VERSION
Shock Wave Reduction via Wing-Strut Geometry Design

Runze Li, Wei Niu, Haixin Chen

School of Aerospace Engineering
Tsinghua University
Beijing 100084, China

PADRI, Barcelona (Spain) 2017.11.29
Outline

- Background
- Original Configuration
- Design Approach
- Design Result
- Conclusion

Register for free at https://www.scipedia.com to download the version without the watermark
Background

Objectives:
Minimize shock wave and interference drag in the strut-wing junction region in cruise condition

Using flow control technologies or optimization strategies

The challenge:
Flow control applied to reduce interference and wave drag in cruise condition.

Iso-surface Definition:
\[shock_wave_flag = \vec{M} \cdot \frac{\nabla p}{|\nabla p|} = 1.1 \]
Cruise Condition

- Flight Coefficients
 \- \(Ma = 0.72 \)
 \- \(\text{AoA} = 1 \text{ deg} \)
 \- \(Re = 7.1E6/m \)
 \- \(\text{Altitude} = 30000\text{ft} \)
 \- \(\text{Pressure} = 30089.59\text{Pa} \)
 \- \(\text{Tempera} = 228.71\text{K} \)
 \- \(\text{Cp}^* (M=1) = -0.88 \)
Original Configuration

- Foils of Wing/Strut in different sections are the same
 - Aspect Ratio = 24.3 (wing) / 38.4 (strut)
 - Root/Tip Ratio = 3.3 (wing) / 0.0 (strut)
 - Sweep Angle (0.5chord) = 13.3 deg

- Cruise condition
 - CL = 0.203 Cd=0.01135 Cm=0.757

Iso-surface Definition:

\[\text{shock_wave_flag} = \vec{M} \cdot \frac{\nabla p}{|\nabla p|} = 1.1 \]

Span load: Blue Line is the Elliptical distribution
Original Configuration

- **Mach Contour**
 - Strut has influence on the wing lower surface even when the distance is relatively long. (Y=7)
 - When the wing and strut are near, they form a “nozzle”, causing a strong shock wave. (Y=16)
Original Configuration

- **Mach Contour**
 - `shock_wave_flag = 1.1` roughly means `Ma` in front of wave = 1.2
 - Strong shock wave exists beyond modification region (`Y<14.5`)
 - Joint region has significant separation (`Y=16.5`)
Ma=0.72 AoA=1.0deg
Off-Design Cp of the Original Config

- Ma=0.72 AoA=1.0deg (Cruise Point)
- Ma=0.72 AoA=3.0deg
- Ma=0.72 AoA=5.0deg
- Ma=0.68 AoA=1.0deg
- Ma=0.68 AoA=3.0deg
- Ma=0.68 AoA=5.0deg
Ma=0.72 AoA=1.0deg

Junction Region
Ma=0.72 AoA=3.0deg

Junction Region
Ma=0.72 AoA=5.0deg

Junction Region

![Graphs showing pressure distribution across different sections (Y=13, Y=15, Y=16, Z=1.00, Z=0.85).]
Ma=0.68 AoA=1.0deg

Junction Region
Ma=0.68 AoA=3.0deg

Junction Region

Tsinghua University
Ma=0.68 AoA=5.0deg

Junction Region
Off-Design Cp of the Original Config

- For different AoA (CL), shock wave between wing lower surface and strut upper surface are basically unchanged => Strong Wave

Ma=0.72 AoA=1.0deg

Ma=0.72 AoA=3.0deg

Ma=0.72 AoA=5.0deg
Off-Design Cp of the Original Config

- For lower Mach, strong wave between wing & strut still exists

Ma=0.72 AoA=1.0deg

Ma=0.68 AoA=1.0deg
Summary

- Strong wave exists in design and off design conditions
- Flow between wing lower surface & strut upper surface seems insensitive to the flight condition, and it looks like the flow phenomenon of a nozzle
- Due to the small sweep angle, 3D effect caused by cross flow should not be strong

Therefore,

- A geometry modification to the stream-wise area distribution to avoid a “nozzle” is the first idea
- 2D simulation may not be accurate, but may be illuminating
Design approach
Constraints

- angle of attack of the airplane can be modified, so that the final solution matches the lift of the initial reference configuration
- strut attachment location cannot be modified (both chord and spanwise attachment location)
- strut thickness can not be reduced
- the length of the vertical portion of the strut which is attached to the wing cannot be extended, but its shape (tow angle, airfoil profile, etc) are free
Constraints

- upper wing surface cannot be modified
- wing twist angle cannot be modified (fixed leading edge and trailing edge)
- lower surface of the wing can be modified only between the planes
- $y = 14.5$ m
- $y = 17.5$ m
- wing thickness cannot be reduced from the reference geometry. Reference lower wing surface cannot be penetrated by the final geometry
Constraints

- ALLOWED GEOMETRY MODIFICATION
 - any region of the strut and lower wing surface that have not been constrained in the previous two sections and between the following two planes
 - \(y = 14.5 \text{ m} \)
 - \(y = 17.5 \text{ m} \)

- ALLOWED REGIONS FOR FLOW CONTROL INSTALLATIONS
 - anywhere between the following two planes
 - \(y = 14.5 \text{ m} \)
 - \(y = 17.5 \text{ m} \)
Case Definition

- **Allowed Region (Y=14.5m~17.5m)**

 For smoothness consideration, actual geometry modification is limited within **Y=15m~17m**

- **Constraints**

 Basically being limited to airfoil design with thickness constraint

 Wing upper surface can not be modified

- **Flight Condition**

 Fixed lift design

 Ma = 0.72

 Re = 7.1E6/m

 CL = 0.203
Optimization Design

- 2D trial optimization
- Section Y=15 (Slice from 3D result)

Original 3D
Ma=0.72 AoA=1.0 Re=7.1mil
Section CL=0.42

Original foil in 2D Calculation
Ma=0.7 AoA=1.03 Re=7.1mil
CL=0.532 Cd=0.02920
Optimization Design

- 2D trial optimization
- Section Y=15 (Slice from 3D result)

- 2D calculation can give some idea of the “nozzle” phenomenon: the “nozzles” are similar between 3D and 2D, and the Cp of wing upper surface & strut lower surface differ
- We focus on the “nozzle”,
- get a 2D optimized foil design (fixed AoA)
2D trial optimization => Install to 3D configuration
Section Y=15 (Slice from 3D result)

Ma=0.7 AoA=1.03 Re=7.1mil
CL=0.3709 Cd=0.01438
Optimization Design

- 2D optimized foil in 3D
- Section Y=15 (Slice from 3D result)
- Wave still exists, i.e. 2D ≠ 3D in the junction region
- However, when far away from the junction, 2D ~ 3D (Y=11)
Optimization Design

- After the 2D trail optimization giving us some idea how to reduce shock wave, a series of manually designing progresses are engaged.
- The key is to avoid stream-wise convergent-divergent flow (flow acceleration), however the modification is limited due to the unchanged wing upper surface and thickness constraint.
- Some additional constraints are also applied for robustness consideration, like minimum leading edge radius, etc.
RESULT
Design V.S. Original
Design Result

- Final design has a total 5 count drag reduction

<table>
<thead>
<tr>
<th></th>
<th>Lift Coefficient</th>
<th>Total Drag Coefficient</th>
<th>Moment Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>0.406</td>
<td>0.02270</td>
<td>1.514</td>
</tr>
<tr>
<td>Design</td>
<td>0.406</td>
<td>0.02162</td>
<td>1.488</td>
</tr>
</tbody>
</table>

- The span load is basically kept the same
Separation Bubble

- junction region has separation
- The final design has remaining wave in the joint region, along with the wall interference, causes the separation not significantly reduced
- Iso-surface (gray) is defined by $Ma=0.2$
Foil Unchanged

Wing

Strut
Wing

Strut

Y=15.5
Off-Design Performance

- Design at $Ma=0.68$ can eliminate all strong wave (original still has)
- Separation can be significantly reduced

$Ma=0.68$ $AoA=1.0\text{deg}$
Cruise Point

Ma=0.72
AoA=1deg

Slice Contour: Mach
Surface Contour: Cp
Iso-surface: wave_flag=1.1
Low Mach

Ma=0.68
AoA=1deg

Slice Contour: Mach
Surface Contour: Cp
Iso-surface: wave_flag=1.1
Further Modification

- Expand the modification region to $Y=11$ to 17
- The remaining wave and separation can be further reduced
- (Previously $Y=15$ to 17)

Figure 4 Shock Wave of a Further Design (Design Region: $Y=11$ to $Y=17$)
Conclusion

- The interference between wing and strut
 Not negligible even when they are relatively far away (Y=4)
 Junction region acting like a nozzle, causes strong wave
 Separation exists

- Geometry modification
 Basic idea is modifying the “nozzle” streamwise area distribution
 Avoid flow acceleration between wing lower surface and strut upper surface
Conclusion

- Geometry modification can reduce wave

 Most wave within the modification region ($Y=15\sim17$) can be reduced

 A total 5 count drag reduction is achieved

 Expand the region, remaining wave can be further reduced

 And the separation can be also reduced
Thank You

Tsinghua University, Beijing, CHINA
Runze Li
2017.11.29