Shock Wave Reduction via Wing-Strut Geometry Design

Runze LI, Wei NIU, Haixin CHEN

School of Aerospace Engineering
Tsinghua University
Beijing 100084, China

PADRI, Barcelona (Spain) 2017.11.29

SHORT VERSION

Shock Wave Reduction via Wing-Strut Geometry Design

Runze LI, Wei NIU, Haixin CHEN* Tsinghua University, Beijing, China

- Designing Approach

Fixed LE\&TE, larger LE radius, fixed max thickness For Wing \& Strut Step 1: 2D optimization (not technically accurate but illuminating)
Step 2: 3D manually design

- Pressure Distribution Oriented Multi-Objective Optimization Design
> CFD Solver: NSAWET
> Opt Algorithm: NSGAII / DE (\& Continuous Adjoint Method based on NSAWET)
> Modeling/ Deformation: CST (14 design var. for an airfoil), etc.
> Surrogate-Assisted Opt: Kriging / RBF
> Pressure Distribution Oriented:
- As objectives: accelerate performance opt / manipulate flow structure
- As constraints: robustness consideration, etc.
> Application in Industry (COMAC C919, etc.)
- Man-in-Loop: Introducing engineer's experience ,supervision and manipulation
- Low Accuracy for Turn-around Time: 2.75D (2D) design, coarse grid

Shock Wave Reduction via Wing-Strut Geometry Design

Runze LI, Wei NIU, Haixin CHEN* Tsinghua University, Beijing, China

- Designing Approach

Step 1: 2D optimization (GA Algorithm)
20 cores 2 hour (population size 32, 12 generations) to gain good enough results

Original 3D Slice

Original foil in 2D Calculation

2D Optimized foil in 3D

2D Optimized foil

Step 2: 3D manually design (6 airfoils)

- Final design has a total 9.8 count drag reduction (10mil cells)
- The span load is basically kept the same

	Lift Coefficient	Total Drag Coefficient
Original	0.406	0.02270
Design	0.406	0.02162

Cruise Point Results (Ma=0.72 AoA=1deg)

Most wave within the modification region ($\mathrm{Y}=15 \sim 17$) can be reduced

FULL VERSION

Shock Wave Reduction via Wing-Strut Geometry Design

Runze LI, Wei NIU, Haixin CHEN

School of Aerospace Engineering
Tsinghua University
Beijing 100084, China

PADRI, Barcelona (Spain) 2017.11.29

Outline

- Background
- Original Configuration
- Design Approach
- Design Result
- Conclusion

Background

- Objectives:

Minimize shock wave and interference drag in the strut-wing junction region in cruise condition
Using flow control technologies or optimization strategies

Iso-surface Definition:
shock_wave_flag $=\vec{M} \cdot \frac{\nabla p}{|\nabla p|}=1.1$

Cruise Condition

- Flight Coefficients

Ma	$=0.72$
AoA	$=1 \mathrm{deg}$
Re	$=7.1 \mathrm{E} 6 / \mathrm{m}$
Altitude	$=30000 \mathrm{ft}$
Pressure	$=30089.59 \mathrm{~Pa}$
Tempera	$=228.71 \mathrm{~K}$
$\mathrm{Cp}^{*}(\mathrm{M}=1)$	$=-0.88$

Original Configuration

- Foils of Wing/Strut in different sections are the same

Aspect Ratio = 24.3 (wing) / 38.4 (strut)
Root/Tip Ratio = 3.3 (wing) / 0.0 (strut)
Sweep Angle (0.5chord) $=13.3$ deg

- Cruise condition

Iso-surface Definition:
shock_wave_flag $=\vec{M} \cdot \frac{\nabla p}{|\nabla p|}=1.1$
Span load: Blue Line is the Elliptical distribution

Original Configuration

- Mach Contour

>Strut has influence on the wing lower surface even when the distance is relatively long. $(\mathrm{Y}=7$)
> When the wing and strut are near, they form a "nozzle", causing a strong shock wave. $(\mathrm{Y}=16)$

$Y=4$

$Y=16$

$Y=20$

Original Configuration

- Mach Contour

$>$ shock_wave_flag $=1.1$ roughly means Ma in front of wave $=1.2$
> Strong shock wave exists beyond modification region ($\mathrm{Y}<14.5$)
> Joint region has significant separation ($\mathrm{Y}=16.5$)

$\mathrm{Ma}=0.72 \mathrm{AoA}=1.0 \mathrm{deg}$

Tsinghua University

Off-Design Cp of the Original Config

- $\mathrm{Ma}=0.72 \mathrm{AoA}=1.0 \mathrm{deg}$ (Cruise Point)
- $\mathrm{Ma}=0.72 \mathrm{AoA}=3.0 \mathrm{deg}$
- $\mathrm{Ma}=0.72 \mathrm{AoA}=5.0 \mathrm{deg}$
- $\mathrm{Ma}=0.68 \mathrm{AoA}=1.0 \mathrm{deg}$
- $\mathrm{Ma}=0.68 \mathrm{AoA}=3.0 \mathrm{deg}$
- $\mathrm{Ma}=0.68 \mathrm{AoA}=5.0 \mathrm{deg}$

$\mathrm{Ma}=0.72 \mathrm{AoA}=1.0 \mathrm{deg}$

Junction Region

$\mathrm{Ma}=0.72 \mathrm{AoA}=3.0 \mathrm{deg}$

Junction Region

$\mathrm{Ma}=0.72 \mathrm{AoA}=5.0 \mathrm{deg}$

Junction Region

$\mathrm{Ma}=0.68 \mathrm{AoA}=1.0 \mathrm{deg}$

Junction Region

$\mathrm{Ma}=0.68 \mathrm{AoA}=3.0 \mathrm{deg}$

Junction Region

$\mathrm{Ma}=0.68 \mathrm{AoA}=5.0 \mathrm{deg}$

Junction Region

Off-Design Cp of the Original Config

- For different AoA (CL), shock wave between wing lower surface and strut upper surface are basically unchanged => Strong Wave

Off-Design Cp of the Original Config

- For lower Mach, strong wave between wing \& strut still exists

Summary

- Strong wave exists in design and off design conditions
- Flow between wing lower surface \& strut upper surface seems insensitive to the flight condition, and it looks like the flow phenomenon of a nozzle
- Due to the small sweep angle, 3D effect caused by cross flow should not be strong
- Therefore,
- A geometry modification to the stream-wise area distribution to avoid a "nozzle" is the first idea
- 2 D simulation may not be accurate, but may be illuminating

Design approach

Constraints

- angle of attack of the airplane can be modified, so that the final solution matches the lift of the initial reference configuration
- strut attachment location cannot be modified (both chord and spanwise attachment location)
- strut thickness can not be reduced
- the length of the vertical portion of the strut which is attached to the wing cannot be extended, but its shape (tow angle, airfoil profile, etc) are free

Constraints

- upper wing surface cannot be modified
- wing twist angle cannot be modified (fixed leading edge and trailing edge)
- lower surface of the wing can be modified only between the planes
- $y=14.5 \mathrm{~m}$
- $y=17.5 \mathrm{~m}$
- wing thickness cannot be reduced from the reference geometry. Reference lower wing surface cannot be penetrated by the final geometry

Constraints

- ALLOWED GEOMETRY MODIFICATION
- any region of the strut and lower wing surface that have not been constrained in the previous two sections and between the following two planes
- $y=14.5 \mathrm{~m}$
- $y=17.5 \mathrm{~m}$
- ALLOWED REGIONS FOR FLOW CONTROL INSTALLATIONS
- anywhere between the following two planes
- $\mathrm{y}=14.5 \mathrm{~m}$
- $y=17.5 \mathrm{~m}$

Case Definition

- Allowed Region ($\mathrm{Y}=14.5 \mathrm{~m} \sim 17.5 \mathrm{~m}$)

For smoothness consideration, actual geometry modification is limited within $Y=15 \mathrm{~m} \sim 17 \mathrm{~m}$

- Constraints

Basically being limited to airfoil design with thickness constraint
Wing upper surface can not be modified

- Flight Condition

Fixed lift design
$\mathrm{Ma}=0.72$
$\mathrm{Re}=7.1 \mathrm{E} 6 / \mathrm{m}$
$C L=0.203$

Optimization Design

- 2D trial optimization
- Section Y=15 (Slice from 3D result)

Original 3D
$\mathrm{Ma}=0.72 \mathrm{AoA}=1.0 \mathrm{Re}=7.1 \mathrm{mil}$ Section CL=0.42

Original foil in 2D Calculation $\mathrm{Ma}=0.7 \mathrm{AoA}=1.03 \mathrm{Re}=7.1 \mathrm{mil}$ $C L=0.532 C d=0.02920$

Optimization Design

- 2D trial optimization
- Section Y=15 (Slice from 3D result)

- 2D calculation can give some idea of the "nozzle" phenomenon: the "nozzles" are similar between 3D and 2D, and the Cp of wing upper surface \& strut lower surface differ
- We focus on the "nozzle",
- get a 2D optimized foil design (fixed AoA),

Optimization Design

- 2D trial optimization => Install to 3D configuration
- Section Y=15 (Slice from 3D result)

2D Optimized foil in 3D

Original foil in 2D Calculation $\mathrm{Ma}=0.7 \mathrm{AoA}=1.03 \mathrm{Re}=7.1 \mathrm{mil}$ $C L=0.3709 \mathrm{Cd}=0.01438$

Optimization Design

- 2D optimized foil in 3D
- Section Y=15 (Slice from 3D result)
- Wave still exists, i.e. 2D $=3 \mathrm{D}$ in the junction region
- However, when far away from the junction, 2D ~ 3D (Y=11)

Original 3D Slice

Original foil in 2D Calculation

2D Optimized foil in 3D

Optimization Design

- After the 2D trail optimization giving us some idea how to reduce shock wave, a series of manually designing progresses are engaged.
- The key is to avoid stream-wise convergent-divergent flow (flow acceleration), however the modification is limited due to the unchanged wing upper surface and thickness constraint.
- Some additional constraints are also applied for robustness consideration, like minimum leading edge radius, etc.

RESULT

Design V.S. Original

Design Result

- Final design has a total 5 count drag reduction

	Coefift		
Coefficient	TotalDrag		
Coefficient	Moment Coefficient		
Original	0.406	0.02270	1.514
Design	0.406	0.02162	1.488

- The span load is basically kept the same

Mach Number
-1.3
-1.2
-1.1
-1
-0.9
-0.8
-0.7
0.6
-0.5
-0.4
0.3
0.2
0.1

$Y=16.5$

Separation Bubble

- junction region has separation
- The final design has remaining wave in the joint region, along with the wall interference, causes the separation not significantly reduced
- Iso-surface (gray) is defined by $\mathrm{Ma}=0.2$

Original Design $\mathrm{Y}=14.5$

Foil Unchanged

Wing

Strut

Original Design

Tsinghua University
Strut

Off-Design Performance

- Design at $\mathrm{Ma}=0.68$ can eliminate all strong wave (original still has)
- Separation can be significantly reduced

Original

$\mathrm{Ma}=0.72$
 AoA=1deg

Original

$\mathrm{Ma}=0.68$
 AoA=1deg

Low Mach

Slice Contour: Mach Surface Contour: Cp Iso-surface: wave_flag=1.1

Original

$\mathrm{Ma}=0.68$
 AoA=1deg

Design

Surface Contour: Cp Iso-surface: Mach=0.2

Further Modification

Original

- Expand the modification region to $\mathrm{Y}=11 \sim 17$
- The remaining wave and separation can be further reduced
- (Previously Y=15~17)

(1) Shock Wave

(2) Separation

Figure 4 Shock Wave of a Further Design (Design Region: $\mathrm{Y}=11$ to $\mathrm{Y}=17$)

Conclusion

- The interference between wing and strut

Not negligible even when they are relatively far away ($\mathrm{Y}=4$) Junction region acting like a nozzle, causes strong wave Separation exists

- Geometry modification

Basic idea is modifying the "nozzle" streamwise area distribution Avoid flow acceleration between wing lower surface and strut upper surface

Mach Number
-1.3
-1.2
-1.1
-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
0.2
0.1

Conclusion

- Geometry modification can reduce wave

Most wave within the modification region ($\mathrm{Y}=15 \sim 17$) can be reduced
A total 5 count drag reduction is achieved
Expand the region, remaining wave can be further reduced
And the separation can be also reduced

Thank You

Tsinghua University, Beijing, CHINA

Runze LI
2017.11.29

AERO lab

