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Abstract: In order to improve the efficiency of transportation networks, it is critical to forecast traffic
congestion. Large-scale traffic congestion data have become available and accessible, yet they need
to be properly represented in order to avoid overfitting, reduce the requirements of computational
resources, and be utilized effectively by various methodologies and models. Inspired by pooling
operations in deep learning, we propose a representation framework for traffic congestion data in
urban road traffic networks. This framework consists of grid-based partition of urban road traffic
networks and a pooling operation to reduce multiple values into an aggregated one. We also propose
using a pooling operation to calculate the maximum value in each grid (MAV). Raw snapshots of traffic
congestion maps are transformed and represented as a series of matrices which are used as inputs to a
spatiotemporal congestion prediction network (STCN) to evaluate the effectiveness of representation
when predicting traffic congestion. STCN combines convolutional neural networks (CNNs) and long
short-term memory neural network (LSTMs) for their spatiotemporal capability. CNNs can extract spatial
features and dependencies of traffic congestion between roads, and LSTMs can learn their temporal
evolution patterns and correlations. An empirical experiment on an urban road traffic network shows
that when incorporated into our proposed representation framework, MAV outperforms other pooling
operations in the effectiveness of the representation of traffic congestion data for traffic congestion
prediction, and that the framework is cost-efficient in terms of computational resources.

Keywords: road network; traffic congestion; representation method; data compression; short-term traffic
prediction; deep learning

1. Introduction

Cars have become the preferred means of transportation for more and more people due to the rapid
development of urbanization and improvement of people’s living standards. The huge number of cars
has become very challenging in terms of the efficient operation of urban road traffic networks and causes
traffic congestion. Road traffic congestion in many cities around the world is very serious, especially in
metropolitan cities [1]. There have been a lot of research on the prediction of urban road traffic congestion
and traffic management [2–5]. Understanding the congestion patterns of an entire road network rather
than a single road or several roads in an area is important. Prediction of traffic congestion helps people
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choose better routes and helps traffic administration departments manage and operate road networks
more effectively and more efficiently [6,7].

With the development and improvement of intelligent transportation systems, traffic data has become
more and more accessible due to factors such as the deployment of road sensors and probes, free availability
of online map services, and widespread popularization of GPS services and equipment such as smart
phones. Similar to other industries, the field of transportation has entered the era of big data. One of the
challenges proposed by the large amount of traffic-related data is how to represent large-scale traffic data
and apply various models to utilize these data.

In recent years, researchers have utilized various types of urban traffic flow data as inputs to different
kinds of models for the prediction of traffic flow variables such as speed, volume, density and demand [8].
Two methods dominate the research of traffic prediction: parametric and nonparametric methods [5,9].
Parametric methods require a model’s structure and parameters to be determined in advance according to
theoretical or physical assumptions [9]. Auto regressive integrated moving average (ARIMA) is a typical
parametric method. This method builds a model based on historical time series data to predict future
values. ARIMA and other ARIMA-based models, such as seasonal ARIMA (SARIMA) models [10–12],
KARIMA models [13], ARIMAX models [14], and CTM-SARIMA models [15], have been used to predict
traffic flow variables such as congestion and volumes [13,16].

Compared with parametric methods, nonparametric methods are flexible because their structure and
parameters are not fixed. The support vector machine (SVM) approach is based on statistical learning
theory and is very popular when making prediction because it can transform low-dimensional nonlinear
data to high-dimensional space through a kernel function [17]. SVMs together with their variants, such
as SVR, seasonal SVM, PSO-SVM, and online-SVM, have been utilized for traffic flow prediction [18–21].
Another typical nonparametric method is neural networks. Neural networks are widely used in almost
all fields including traffic flow prediction. Neural networks can model complex nonlinear relationships
and have an excellent performance in processing multidimensional data [22]. In recent years, deep neural
networks have been involved in traffic flow prediction, such as deep belief networks (DBN) [23] and
deep neural networks [24]. Although these neural network-based methods are suitable for small traffic
networks or networks with a small number of roads, they cannot take advantage of spatial correlations
among different roads and temporal dependencies of traffic flow variables.

On the other hand, for neural network models, especially deep neural network models, oversized
input data make models use too many computing resources, such as GPU memory, and also cause
overfitting [25]. Additionally, such input data increase the training and prediction time of models, which
restricts the application of neural network models. In order to alleviate such problems, there are methods
in the existing literature which are used to represent traffic flow data about road networks. These methods
aim to reduce the sizes of traffic flow data and lower the demand of computation resources while at the
same time preserving the spatial structures of traffic networks as much as possible.

At present, in the related literature regarding the prediction of traffic flow variables of urban road
traffic networks, one commonly used method to represent traffic flow data for an urban road traffic
network is to first segment that network into consecutive equally sized grids, and then apply a certain
pooling operation, such as addition or arithmetic mean, to values of traffic flow variables in each grid.
For example, Hu et al. segmented a road network of Beijing into 256× 256 grids when predicting traffic
speed using floating car data from taxis, and then they calculated the average speed for these grids [26].
When predicting the traffic flow of Beijing and New York City, Zhang et al. divided each city into grids
in longitude and latitude directions, and counted the number of vehicles entering and leaving each grid
within a certain time interval [27]. Yu et al. segmented a local road network in Beijing when predicting
speed in that area, and used the average speed of all road segments covered by each grid as that grid’s
speed [5]. Xu et al. divided the urban area of Beijing into grids when predicting speed on roads in that area,
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and calculated each grid’s average speed in the same way as Yu et al. for every 30 min [28]. Duan et al.
segmented an urban area of Xi’an into 16 × 16 grids and summed the number of trips from a certain
origin to a certain destination when predicting the number of such trips [29]. Zhang et al. divided a
metropolitan freeway transportation network in Seattle into grids and calculated the average congestion
level for each grid when predicting traffic congestion in that area [30]. However, these operations are
often selected without further consideration, and specifically, there has rarely been an evaluation of their
impacts regarding the prediction of traffic flow variables.

Although this existing scheme has facilitated the prediction of traffic flow variables such as traffic
volume, speed, congestion, and demand, until recently there has been little in-depth research on how to
properly represent traffic congestion data for an urban road network in order to retain its spatial structure
as much as possible and to predict traffic congestion on its road segments. Compared with the prediction
of other traffic flow variables, prediction of traffic congestion in an urban traffic network is much more
intuitive for and practically significant to both travelers and traffic management departments. For travelers,
traffic congestion prediction helps one to choose better travel routes and reduce pollution associated with
emissions from vehicles. For traffic management, it can improve operational efficiency by controlling and
coordinating urban road traffic networks. Therefore, we propose a representation framework for traffic
congestion data in urban road networks. This framework aims to reduce the size of large-scale traffic
congestion data in order to lower the requirements of computing resources for deep learning models.
Moreover, it does not damage the performance of models used to predict traffic congestion.

The contributions of the paper can be summarized as follows:

• We develop an effective and cost-efficient representation framework for traffic congestion data of
urban road networks. This framework combines grid-based partition of urban road traffic networks
and a pooling function to reduce the size of traffic congestion data, while at the same time still
retaining the spatial structure of road networks on a courser scale;

• We construct a model based on convolutional neural networks and long short-term memory neural
networks to learn both spatiotemporal correlations and dependencies of traffic congestion between
road segments and predict traffic congestion in road networks;

• The effectiveness and efficiency of our proposed representation framework is demonstrated by
extensive experiments on a typical urban road traffic network.

The remainder of this paper is organized as follows. Section 2 presents a detailed account of our
proposed framework and pooling operation. Section 3 describes extensive experiments on a dataset of
traffic congestion for an urban road traffic network, which verify the effectiveness, efficiency, and feasibility
of the proposed approach. Finally, Section 4 provides some conclusions.

2. The Proposed Approach

In this section we first propose our framework for the representation of traffic congestion data of a
road network. Our proposed representation framework consists of two steps. The first step segments
original traffic congestion matrices into equally sized grids. The second step reduces all values in each grid
using a pooling operation into a single value which will replace all values in that grid, and thus, the size of
original traffic congestion matrices is reduced in a way similar to image down-sampling [31]. These two
steps are described in Sections 2.1 and 2.2. Then, we construct a deep learning model based on CNNs and
LSTMs to evaluate the effectiveness of the proposed representation framework.

We use raw snapshots, as shown in Figure 1a, of traffic congestion maps captured from online map
service providers as a raw data source for traffic congestion data. As can be seen in Figure 1a, roads are
marked with different colors for different congestion levels which provide useful traffic congestion data,
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yet there are also background and other nonroad elements which are not needed and thus need to be
removed. In order to keep only roads marked with congestion information, an image mask is derived
from a special kind of raw snapshots of traffic congestion maps for the same area. Such special raw
snapshots are special in that all roads in them are marked with the color for being smooth, which is green,
as used by almost all online map service providers. They are widely available late at night when there are
few vehicles running on roads. As an example, Figure 2a shows such a special raw snapshot captured
at 02:54, 30 March 2019. With help of image processing algorithms, green pixels for smooth roads are
converted to 1 while all other pixels were converted to 0. Thus, an image mask was obtained as shown
in Figure 2b. After background removal using image masks for road networks, these raw snapshots are
transformed into images like Figure 1b, which only keep a road network whose road segments are marked
with congestion levels using different colors, for example green, yellow, red, and dark red. Then, each of
these network-only images is converted into a matrix, with each pixel inside turned into a normalized
value in [0.0, 1.0] according to color of that pixel’s congestion level. Although the derived properties of
traffic flow, such as the congestion intensity [32] and congestion index [33], in the existing literature are
defined on wider ranges of values, such value ranges are inappropriate as direct inputs to deep learning
models for the prediction of traffic congestion, because without being normalized they cause a problem
known as internal covariate shift [34]. Such matrices form a set of original traffic congestion matrices.
As discussed in Section 1, these original traffic congestion matrices need to be reduced because of the often
limited availability of computing resources and to prevent overfitting.

(a) (b)

(c)

(d)

Figure 1. Congestion maps of an urban area traffic network in Guiyang, Guizhou, China. (a) A raw
snapshot of the traffic network’s congestion map. (b) Only the road network marked with congestion
levels is retrained after removing the background and other elements. (c) An original congestion matrix
visualized as a network-only image is partitioned into grids. (d) A down-sampled traffic congestion matrix
rendered as a map.
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(a) (b)
Figure 2. Transformation from a special raw snapshot to a derived image mask based on it. (a) A special
raw snapshot captured at late night. (b) A derived image mask.

2.1. Grid-Based Partition of Congestion Data

Let Pt be an original traffic congestion matrix with M rows and N columns representing traffic
congestion levels for a road network at time t as shown below:

Pt =


pt,1,1 pt,1,2 · · · pt,1,N
pt,2,1 pt,2,2 · · · pt,2,N

...
...

. . .
...

pt,M,1 pt,M,2 · · · pt,M,N


where each element of Pt is a numerical value representing one traffic congestion level for a corresponding
pixel of a raw traffic congestion map snapshot captured at time t.

After grid-based partition of Pt using a grid size of g × g, Pt now is divided into R × C grids. As an
intuitive visual illustration, Figure 1c shows this segmentation process applied to a network-only image
corresponding to Pt. For a grid located at (i, j) where 1 ≤ i ≤ R, and 1 ≤ j ≤ C, { pk

t,i,j |1 ≤ k ≤ g2 }
denotes the set of values for congestion levels as represented by all pixels in that grid at time t.

2.2. Reduction of Grid Values

Each of these grids of Pt are reduced into a single value through a pooling operation, so that Pt is
converted into a compressed traffic congestion matrix Ct with R rows and C columns, as shown below:

Ct =


ct

1,1 ct
1,2 · · · ct

1,C
ct

2,1 ct
2,2 · · · ct

2,C
...

...
. . .

...
ct

R,1 ct
R,2 · · · ct

R,C


where an element Ct

i,j of Ct will be calculated by a pooling function applied upon a set { pk
t,i,j |1 ≤ k ≤ g2 }

which contains all values in a grid index by (i, j) of Pt.



Algorithms 2020, 13, 84 6 of 18

Through this process of grid-based partition and reduction, each element of Ct is a derived value
representing one corresponding grid of Pt.Thus, Pt is now down-sampled and compressed into Ct by a
ratio of 1/g2, yet the relative spatial relationships between roads are mostly kept, as shown in Figure 1d.

Pooling operations used by the reduction process above are requisite to our proposed approach
because the effectiveness of grid-based representation of road network traffic congestion data is determined
by such operations, which act as a kind of feature extraction filter. We propose a pooling function which
retrieves the maximum of all values (MAV) in a grid of Pt, which is rarely used when representing traffic
congestion data. MAV is described by Equation (1):

ct
i,j = max(

{
pk

t,i,j| k = 1, 2, . . . , g2
}
) (1)

2.3. Prediction Model

Convolutional neural networks (CNNs) use convolution filters to extract local and global features
through sliding windows, and can learn spatial correlations of traffic flow variables nearby or in entire
cities [22,27,35–37]. Long short-term memory neural networks (LSTM) were proposed by Hochreiter and
Schmidhuber in 1997 [38]. They can learn temporal relationships and dependencies from time series data
and have been applied to short-term traffic prediction [5,39–41]. Deep learning models combining CNNs
and LSTMs are widely used in the literature regarding traffic flow prediction and can capture both the
spatial correlations and temporal dependencies of traffic flow variables on road networks [5,36,42–44].

On the basis of the popularity and performance of models combining CNNs and LSTMs in the
existing literature, we propose a spatiotemporal traffic congestion network (STCN) based on CNNs and
LSTMs to evaluate the effectiveness of our proposed representation framework for traffic congestion data.
An overview of STCN’s architecture is shown in Figure 3. STCN contains three main components. The
first component consists of four CNNs and is used to learn spatial features and their correlations to traffic
congestion between roads in a road network. The second consists of two LSTMs and is used to mine
temporal dependencies across a series of historical traffic congestion data. Finally, the third has a full
connection layer and a reshape operation to construct predicted traffic congestion in that road network.

The first component takes a sequence of matrices in the form of Ct ordered chronologically as its input.
The spatial features and correlations extracted by the first component are used as inputs to the second
component. The output by the second component is processed by the third to predict traffic congestion
levels and construct a traffic congestion map as output.

Additionally, a max-pooling layer is used after each convolution layer to select representative features,
and a batch-normalization layer to overcome internal covariate shift. A dropout layer is inserted before
the full connection layer to prevent overfitting.



Algorithms 2020, 13, 84 7 of 18

Dense

Reshape

𝐶𝑡+ℎ

Inputs
Spatial 
correlation 
learning

Temporal 
dependency 
learning

Prediction 
construction

Output

𝐶𝑡 LSTM LSTMCNN

𝐶𝑡−1 LSTM LSTMCNN

… LSTM LSTMCNN

𝐶𝑡−𝑛+1 LSTM LSTMCNN

𝐶𝑡−𝑛 LSTM LSTMCNN

𝐶𝑡−2 LSTM LSTMCNN

Figure 3. Architecture of the prediction model.

3. Experiments

3.1. Dataset

Originating from various traffic detectors [45] or powered by online map services such as Google
Maps [46], real-time traffic condition maps of transportation networks are regularly archived in the form
of snapshots by transportation administration departments 24 h a day, 7 days a week, and are provided
online [47,48]. In order to build a dataset of traffic congestion data, we first create an initial data source
in this work by complying with procedures used by these transportation administration departments.
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Figure 1a is an example of a raw snapshot of a traffic congestion map for an urban area in Guiyang,
Guizhou province, China, which was one of top 10 most congested major cities in China in 2019 [49]. Each
raw snapshot for this area is 256 pixels wide and 256 pixels high and mainly covers urban arterial roads.
Such snapshots are retrieved at a scale of 1:50,000 every 10 min during morning rush hours between 07:00
and 10:00 from 1 January 2019 to 30 September 2019 through a free API provided by an online map service
provider AutoNavi [50]. Requests to that API sometimes fail and cause missing data, which are left blank
as is in this paper. These snapshots form an initial data source of traffic congestion data.

After their background and other nonroad elements have been removed as described in Section 2,
raw snapshots from our initial data source are transformed into network-only images. Then, we use these
network-only images containing road segments marked with congestion levels to build a dataset for traffic
congestion research. The congestion level given by the color of each pixel inside images like Figure 1b is
linearly converted to a normalized value based on its color (transparent, green, yellow, red, or dark red) to
form an original traffic congestion matrix Pt [30]. Specifically, transparent pixels are converted to 0.0, green
ones to 0.25, yellow ones to 0.5, red ones to 0.75, and dark red one to 1.0, because traffic congestion levels are
categorized by the online service provider based on the calculated linear travel time index. Gray pixels in
a network-only image such as Figure 1b indicate road segments inaccessible or with missing data and are
treated as transparent ones. After conversion, the size of original traffic congestion matrices is 256× 256.

3.2. Comparative Methods and Metric

Pooling operations applied to values in each grid of an original traffic congestion matrix determine
the effectiveness of our proposed representation framework, as discussed in Section 2.1. We compare our
proposed MAV pooling operation with three others used in the existing literature:

• The nearest neighbor value (NNV), as defined by Equation (2), is based on a common image
resampling algorithm [51]. In our experiment, this operation returns the value in the upper left
corner of a grid [52];

• The average of the maximum and minimum values (AMM) which is inspired by weighted median
filter [53,54]. In our experiment, this operation returns the mean of the maximum value and minimum
value in a grid, as defined by Equation (3);

• The nonzero average (ANZ) of the values in each grid used in the existing literature for the prediction
of traffic flow variables such as speed or congestion [5,28], as defined by Equation (4).

ct
i,j = p0

t,i,j (2)

ct
i,j =

max(
{

pk
t,i,j| k = 1, 2, . . . , g2

}
) + min(

{
pk

t,i,j| k = 1, 2, . . . , g2
}
)

2
(3)

ct
i,j =

∑
g2

k=1 pk
t,i,j

∑
g2

k=1

[
pk

t,i,j > 0
] (4)

in which pk
t,i,j is a certain element in a grid indexed by i and j of Pt before this grid is transformed.

3.3. Experiment Settings

Detailed descriptions of the architecture and parameter configuration of our STCN are shown in
Table 1. It was implemented based on an open-source deep learning framework—Keras [55]. Experiments
were run on a workstation with Ubuntu 18.04 installed. This experimental device had only one Nvidia
GeForce RTX 2080 Ti graphics card which had 11,019 megabytes of GPU memory. The model was trained
based on the optimizer RMSprop [56]. The learning rate was set to 0.001 and the decay parameter
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was set to 0.9. The batch size was dynamic because this model was trained and tested by day using
back-testing, and thus missing data introduce different numbers of samples each day. The loss function
was a customized weighted mean squared error (wMSE) defined in Equation (5), where wt

ij stands for the
penalty weight applied to different congestion levels because different congestion levels have different
priorities. In addition, early stopping was used to prevent overfitting.

Table 1. Architecture and parameter settings of CNN-LSTM.

Layer Name Channels Size

1 Inputs 1 (128, 128)

2 Convolution 64 (3, 3)
Max-Pooling 64 (2, 2)
Activation (Relu) - -
Batch-Normalization - -

3 Convolution 32 (3, 3)
Max-Pooling 32 (2, 2)
Activation (Relu) - -
Batch-Normalization - -

4 Convolution 16 (3, 3)
Max-Pooling 16 (2, 2)
Activation (Relu) - -
Batch-Normalization - -

5 Convolution 8 (3, 3)
Max-Pooling 8 (2, 2)
Activation (Relu) - -
Batch-Normalization - -

6 Flatten - -

7 LSTM1 - (12, 800)
Activation (tanh) - -

8 LSTM2 - 800
Activation (tanh) - -

9 Dropout(0.1) - -

10 Fully Connected - 16,384

11 Output 1 (128, 128)

wMSE =
1

R× C

R

∑
i=1

C

∑
j=1

wt
ij ×

(
ct

ij − ĉt
ij

)2
(5)

STCN discussed in Section 2.3 was used to compare the accuracy of our proposed pooling method and
the other three described above, which are essential to our proposed framework for the representation of
road network traffic congestion data in a down-sampled and compressed way to predict traffic congestion.

Previous work determined an optimized time lag of 120 min for traffic prediction [57]. Therefore,
for all pooling operations, 12 compressed traffic congestion matrices with an interval of 10 min during the
past 12× 10 = 120 min arranged in chronological order were used as input to the STCN model. These
input matrices were obtained after grid-based partition of the original traffic congestion matrices using
a grid size of 2× 2 and the separate application of each of these four pooling operations. The reason
for using a grid size of 2× 2 in our work is twofold. Firstly, it is inspired by its popular utilization in
convolutional neural networks [25,58–62] and as a default pool size of pooling layers in deep learning
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frameworks such as Keras [55] and TensorFlow [63]. Secondly and more importantly, it can strike a
balance between demand of computational resources and loss of traffic congestion information due to
down-sampling [64,65]. The output of this model is a compressed congestion matrix at one of six short
terms including typical prediction horizons of 10, 30, and 60 min as used in [5,30], and also 20, 40, and
50 min used in this paper. For all four pooling operations, the ground-truth matrices for the predicted
output matrices were obtained after grid-based partition of corresponding original traffic congestion
matrices using a grid size of 2× 2 and application of the NNV operation defined by Equation (2).

Instead of dividing the dataset into a training set and a test set by a certain fixed time point or
using cross-validation, we used back-testing by day to compare the accuracy of each of the four pooling
operations when incorporated into our proposed traffic congestion representation framework for traffic
congestion prediction [30]. Traffic congestion levels in the morning rush hours between 07:00 and 10:00 on
each of the 20 working days from 3 September 2019 to 30 September 2019 were tested. Traffic congestion
data from the past 133 consecutive working days before each tested working day were used as training data.

We used mean absolute error (MAE), mean squared error (MSE), and roads-only mean absolute
percentage error (roMAPE) defined respectively by Equations (6)–(8) as the accuracy metrics to evaluate
the performance of the traffic congestion prediction when using different pooling operations inside our
proposed representation framework in this paper. Because nonroad areas including background and other
elements were converted to 0 in the original traffic congestion matrices, roMAPE only considers errors for
ct

ij which corresponds to an original traffic congestion matrix’s grid containing road segments marked with

congestion levels. In these three equations, ct
ij and ĉt

ij respectively denote a ground-truth traffic congestion
level and a predicted traffic congestion level at time t for an element indexed by (i, j) in a compressed
traffic congestion matrix Ct. In Equation (8), [P] is the Iverson bracket which converts a logical proposition
P to either 1 or 0 according to whether P is true or false.

MAE =
1

R× C

R

∑
i=1

C

∑
j=1

∣∣∣ct
ij − ĉt

ij

∣∣∣ (6)

MSE =
1

R× C

R

∑
i=1

C

∑
j=1

(
ct

ij − ĉt
ij

)2
(7)

roMAPE = 100× 1

∑R
i=1 ∑C

j=1[c
t
i,j > 0]

R

∑
i=1

C

∑
j=1

 [ct
i,j > 0]×

∣∣∣ct
ij − ĉt

ij

∣∣∣
[ct

i,j > 0]× ct
i,j + 1− [ct

i,j > 0]

 (8)

3.4. Results

Table 2 and Figure 4 show the results of the accuracy metrics of our proposed representation
framework incorporating each pooling operation, as evaluated by STCN. The metric values in Table 2
were rounded to four places and minimum values were marked with a bold typeface according to their
original values before they were rounded.

It can be seen that in terms of MSE, MAV achieved minimum average daily errors with 0.0050 for
30 min, 0.0052 for 40 min, and 0.0052 for 60 min. As for MAE, MAV performed better than the other
three with 0.0189 for 10 min, 0.0211 for 30 min, 0.0219 for 40 min, 0.0219 for 60 min. With regard to
roMAPE, MAV produced three minimum average daily errors with 5.6986 for 20 min, 5.8901 for 40 min,
and 5.8229 for 50 min. Considering MSE, MAE, and roMAPE, in more than half of these six prediction
horizons, MAV produced minimum errors when predicting traffic congestion levels. Additionally, Figure 2
illustrates the trends of MAE and MSE according to the four pooling operations along the prediction
horizon. It can be observed that the prediction errors generally go upward, which might be caused by more
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uncertainties as the prediction horizon moves further into the future. However, MAV produces optimal
overall prediction errors with a more stable trend than the others. Hence, it can be inferred that when used
as a pooling operation, MAV together with our proposed framework can properly and effectively represent
traffic congestion data for short-term traffic congestion prediction. The reason for MAV’s overall optimal
performance might be twofold. Firstly, MAV always chooses the most serious congestion level in each
grid, which is foremostly representative for real-world regions corresponding to these grids. Secondly,
serious traffic congestion in one region is more likely to propagate to other ones. As for the other three
pooling operations, NNV misses the most congested level in 75% cases, while the other two reduce the
significance and representativeness of the most congested level through averaging.

0.0185

0.0190

0.0195

0.0200

0.0205

0.0210

0.0215

0.0220

0.0225

0.0230

10 minutes 20 minutes 30 minutes 40 minutes 50 minutes 60 minutes

M
A

E

Prediction horizons
AMM ANZ MAV NNV

(a)

0.0040

0.0042

0.0044

0.0046

0.0048

0.0050

0.0052

0.0054

0.0056

10 minutes 20 minutes 30 minutes 40 minutes 50 minutes 60 minutes

M
S

E

Prediction horizons
AMM ANZ MAV NNV

(b)
Figure 4. Prediction errors for prediction horizons of 10, 20, 30, 40, 50, and 60 min. (a) Mean absolute error
(MAE). (b) Mean squared error (MSE).
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Table 2. Comparison of overall prediction metrics by different methods during 20 days with a prediction
horizon of 10, 20, 30, 40, 50, and 60 min. Minimum metric values are marked with a bold typeface.

10 min 20 min

AMM ANZ MAV NNV AMM ANZ MAV NNV
Averaged daily metrics

MSE 0.0043 0.0044 0.0043 0.0042 0.0047 0.0047 0.0047 0.0047
MAE 0.0190 0.0195 0.0189 0.0193 0.0204 0.0206 0.0208 0.0205

roMAPE 5.0817 4.9862 5.0566 5.0022 5.3700 5.5199 5.5353 5.6462

30 min 40 min

AMM ANZ MAV NNV AMM ANZ MAV NNV
Averaged daily metrics

MSE 0.0052 0.0051 0.0050 0.0051 0.0054 0.0054 0.0052 0.0054
MAE 0.0217 0.0215 0.0211 0.0216 0.0222 0.0222 0.0219 0.0222

roMAPE 5.7817 5.8474 5.6986 5.8093 6.0554 5.9054 5.8901 5.9548

50 min 60 min

AMM ANZ MAV NNV AMM ANZ MAV NNV
Averaged daily metrics

MSE 0.0054 0.0055 0.0054 0.0055 0.0053 0.0052 0.0052 0.0053
MAE 0.0222 0.0225 0.0224 0.0227 0.0224 0.0221 0.0219 0.0223

roMAEP 5.8380 5.9921 5.8229 5.8546 5.8230 5.7164 5.7862 5.9178

As an example of the prediction errors by day, details about the daily prediction performance in terms
of MAE and MSE with a horizon of 40 min are shown in Figure 5. It can be seen that MAV has a smaller
variation than ANZ, AMM, and NNV, which is confirmed by the standard deviation values shown in
Table 3.

Table 3. Standard variations corresponding to Figure 5.

AMM ANZ MAV NNV

Standard variation of MAE 5.43353 × 10−6 5.87416 × 10−6 4.21447 × 10−6 5.75157 × 10−6

Standard variation of MSE 8.73426 × 10−7 7.32658 × 10−7 6.45158 × 10−7 8.28743 × 10−7

To evaluate requirement of computational resources, Table 4 lists the usage of GPU time and memory
both by the original matrices and compressed ones derived using our proposed framework with MAV as
the pooling reduction operation. When original traffic congestion matrices are used as input, STCN and
these input data could not fit onto the one graphics card of our experiment device. Therefore, it had to be
evaluated on another workstation with the same configuration as our experimental device, the difference
being that it had two graphics cards of the same type described in Section 3.3. In addition, it was run with
the help of a distributed deep learning framework—Horovod [66]. Metric values are reported as recorded
on each experimental device. It can been seen the compressed matrices derived using our proposed
representation framework combined with MAV save more than 73% GPU time and use only a little more
than 55% of GPU memory when compared to the original matrices. Using a grid size of 2× 2, original
matrices are reduced by 75% in size and thus our proposed representation framework is cost-efficient in
terms of GPU time and memory.
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Figure 5. Comparison of the daily prediction metrics with a prediction horizon of 40 min during 20 days,
evaluated with back-testing. (a) Daily MAE. (b) Daily MSE.

Table 4. Comparison of the required computing resources on original traffic congestion matrices and
down-sampled ones using maximum of all values (MAV).

Original Matrices (Using Horovod) Down-Sampled Using MAV

Average training time per epoch (seconds) 32 + 32 17
GPU memory usage (megabytes) 9627 + 9627 10,613

To compare the effectiveness of the original traffic congestion matrices (ORIGINAL) and the
compressed ones derived using our proposed approach, Table 5 lists the average metric values of MAE
and MSE across six prediction horizons. The metric values in Table 5 were rounded to four places and
minimum values were marked with a bold typeface according to their original values before they were
rounded. In terms of MSE, MAV commits smaller errors of 0.0047, 0.0050, 0.0052, respectively, for the
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prediction horizons of 20, 30, and 60 min. As for MAE, MAV performs better with error values of 0.0208,
0.0211, 0.0224, and 0.0219, respectively, for 20, 30, 50, 60 min into the future. It can be inferred that the
compressed traffic congestion matrices derived using our proposed approach are at least as effective as the
original ones, while at the same time are more efficient. This might be because the maximum value of a
grid is characteristic of that gird. Particularly, when only a grid size of 2× 2 is used in our experiment, it is
possible for the maximum value to well represent its grid with no loss of information.

Table 5. Comparison of the effectiveness of original traffic congestion metrics and compressed ones derived
using our proposed approach.

10 min 20 min 30 min

MAV ORIGINAL MAV ORIGINAL MAV ORIGINAL
Averaged metrics

MSE 0.0044 0.0041 0.0047 0.0048 0.0050 0.0053
MAE 0.0191 0.0190 0.0208 0.0209 0.0211 0.0220

40 min 50 min 60 in

MAV ORIGINAL MAV ORIGINAL MAV ORIGINAL
Averaged metrics

MSE 0.0052 0.0051 0.0054 0.0054 0.0052 0.0054
MAE 0.0219 0.0217 0.0224 0.0224 0.0219 0.0226

As an example of the prediction of traffic congestion levels using MAV as the pooling operation of
our proposed representation framework and using STCN, Figure 6 shows several examples of both the
ground truth congestion levels and the predicted ones on 25 September 2017, with a prediction horizon of
10 min. It can be seen that the predicted congestion maps are visually intuitive and recover congestion
levels for most road segments in the network.

2019-09-25 08:00:00
Ground truth

2019-09-25 08:20:00
Ground truth

2019-09-25 08:40:00
Ground truth

2019-09-25 09:00:00
Ground truth

Predicted Predicted Predicted Predicted

Figure 6. Examples of ground-truth congestion maps (above) and predicted congestion maps (below) on
25 September 2019 with a prediction horizon of 10 min using MAV.
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4. Conclusions

In this work, in order to reduce the usage of computational resources while at the same achieve
optimal performance, we first propose a framework to represent urban road traffic network congestion
levels. This was used to utilize historical records of traffic congestion data with a large size to predict
future short-term traffic congestion levels. We captured raw snapshots of congestion maps for an urban
road traffic network in Guiyang, Guizhou province, China. These snapshots were preprocessed and
transformed into a dataset consisting of matrices representing traffic congestion levels at different times.
To evaluate the effectiveness and cost-efficiency of our proposed MAV pooling operation, we compared
its prediction performance with that of three other existing methods within our proposed representation
framework. We also propose a deep learning neural network STCN for traffic congestion prediction,
using it with the back-testing method. The results as regards our aforementioned dataset show that MAV
achieves optimal overall performance and can effectively and cost-efficiently represent congestion levels
in an urban road traffic network for short-term traffic congestion forecasting.

On the other hand, this study only focuses on the evaluation of the representation performance of
traffic congestion levels using raw snapshots of a single urban area traffic network. In addition, MAV
has a limited compression ratio because it depends on the grid-based partition of urban road traffic
networks, restricting its scope in terms of applicable road networks. In future work, we will try to
experiment with snapshots of congestion maps for different scales of road networks and look for other
representation schemes to improve the compression ratio of urban road traffic networks, as to make it
feasible to investigate congestion of traffic networks with larger scales.
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