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Abstract: Pure elastic damage models or pure elastic plastic constitutive laws are not totally
satisfactory to describe the behaviour of concrete. They indeed fail to reproduce the unloading
slopes during cyclic loading which define experimentally the value of the damage in the
material. When coupled effects are considered, in particular in hydro-mechanical problems,
the capability of numerical models to reproduce the unloading behaviour is essential, because
an accurate value of the damage, which controls the material permeability, is needed. In the
context of very large size calculations that are needed for 3D massive structures heavily
reinforced and pre-stressed (such as containment vessels), constitutive relations ought also to
be as simple as possible. Here an elastic plastic damage formulation is proposed to
circumvent the disadvantages of pure plastic and pure damage approaches. It is based on an
isotropic damage model combined with a hardening yield plastic surface in order to reach a
compromise as far as simplicity is concerned. Three elementary tests are first considered for
validation. A tension test, a cyclic compression test and triaxial tests illustrate the
improvements achieved by the coupled law compared to a simple damage model (plastic
strains, change of volumetric behaviour, decrease in the elastic slope under hydrostatic
pressures). Three structural applications are also considered: two bending beam tests on plain

and reinforced concrete, and a concrete column wrapped in a steel tube.

* corresponding author : Gilles.Pijaudier-Cabot@ec-nantes.fr



1. Introduction

The evaluation of the integrity of a concrete structure first supposes the knowledge of its
mechanical properties. When continuum mechanics is considered, elastic damage models or
elastic plastic constitutive laws are generally the standard approach to describe the behaviour
of concrete. In the first case, the mechanical effect of the progressive microcracking and strain
softening are represented by a set of internal state variables which act on the elastic behaviour
(decrease of the stiffness) at the macroscopic level (see e.g. Simo and Ju 1987, Mazars and
Pijaudier-Cabot 1989). In plasticity models, softening is directly included in the expression of
a plastic yield surface by means of a hardening — softening function generally (Grassl et al.
2002, Crouch and Tahar 2000, Menétrey and Willam 1995).

For some concrete structures in sensitive environments, such as confinement buildings of
nuclear power plants, durability is not only related to mechanical load bearing capacities but
also, for instance, to some transfer properties. In containment vessels which is the background
of this contribution, the leakage rate upon a growth of internal pressure is a key safety factor.
Therefore, the interaction between the mechanical properties and the permeability of concrete
must be captured as accurately as possible. Recent experimental results (Picandet et al. 2001)
have shown that the permeability of concrete to gas was mainly controlled by the degradation
of the unloading stiffness of the material (Fig. 1). This observation was made in the regime of
diffuse damage, prior to localisation and failure. In the localised cracking regime, it is not the
amount of damage that is the controlling parameter on the leakage rate, but rather the cracks
opening and roughness. For the industrial applications aimed at in this paper, it is the diffuse
micro cracking regime which is of practical interest since nuclear containment vessels are not
expected to contain major through cracks for obvious safety reasons. Design and
commissioning standards restrict the stresses applied on the material to the pre-peak regime,

with in fact as little as possible incursions in the non linear regime. A theoretical background



to the correlation between damage and permeability in the diffuse regime has been proposed
by Chatzigeorgiou et al. (2004). It is shown that the variation of the permeability of a
damaged sample (unloaded) is related to the variation of its elastic stiffness.

In this type of problem, it is therefore very important to capture the variations of the elastic
(unloading) stiffness of the material upon mechanical loading. Continuum damage is the right
theoretical framework for that. But continuum damage models cannot, alone, be implemented.
The material undergoes also some irreversible deformations during loading. As sketched in
Fig. 2, even if damage or plasticity models taken separately are capable of capturing the same
material response upon monotonic loading, both theories do not capture the evolution of
unloading stiffness accurately. At a given point on the stress-strain response, neglecting
plastic strains according to a pure damage approach would result in an artificial increase of
damage (secant unloading slope). Neglecting damage effects in a pure plastic model would
result in a permeability that does not evolve, or is not described objectively when it is a
function of the applied strains or stresses (Chatzigeorgiou et al., 2004). By objective, we mean
that for the same value of strain (or stress) invariant combinations, different values of
permeability are to be expected. Hence, coupled damage-plasticity models are a requisite in
hydro-mechanical problems dealing with concrete structures.

There are several possibilities for coupling plasticity and damage effects in a single
constitutive relation. Historically, damage has first been coupled to plasticity (see e.g.
Lemaitre and Chaboche, 1984) in the so-called ductile failure approaches for metal alloys.
The underlying assumption was that void nucleation is triggered by plastic strains.
Applications to concrete were proposed among others, by Oller et al. (1990), Meschke and
Lackner (1997), Kratzig and Polling (2004). In these models, damage growth is a function of
the plastic strains. There is a difficulty however: in uniaxial tension there is little plasticity

and quite a lot of damage while in uniaxial compression, the picture is reversed with little



damage and important plastic strains. Furthermore, it can be hardly explained how plastic
strain may develop in concrete prior to micro cracking. A common assumption is that
irreversible strains are due to micro crack sliding and internal friction. Such a process requires
the formation of internal surfaces (micro cracks) prior to occur and develop.

The second approach, that is more suited to both tension and compression responses, uses the
effective stress. The plastic yield function is no longer written in term of the applied stress.
Rather, it is a function of the effective stress, that is the stress in the undamaged material in
between the micro cracks (see e.g. Simo and Ju (1987a) and the discussion by Ju (1989)).
Among others Simo and Ju (1987b), Hansen and Schreyer (1992), Yazdani and Schreyer
(1990), Fichant et al. (1999), Mazars and Pijaudier-Cabot (1989), Salari et al. (2004), Lee and
Fenves (1998), Faria et al. (1998), and Jefferson (2003) applied this approach to isotropic and
anisotropic damage coupled to elasto-plasticity. It has been extended to other sources of
damage, for instance to thermal damage by Nechnech et al. (2002).

A last possibility is what could be called the strong coupled approach. As opposed to the
above where the plastic yield function is written in term of the effective stress, the applied
stress appears in the plastic process, which becomes coupled to damage. Luccioni and co-
workers (1996) and Armero and Oller (2000) provided the thermodynamic consistent grounds
and discussed the algorithmic aspects of such a model. It has been also used by Gatuingt and
Pijaudier-Cabot (2002) for modelling the transient response of concrete.

We are aiming at a constitutive model that will be used for the computations of nuclear
vessels. These are massive, heavily reinforced 3D pre-stressed concrete structures on which
coupled hydro-mechanical computations should be performed in the future. Here, we will deal
only with the mechanical material response, but in the development of the constitutive
equations, this final aim ought to be kept in mind. Hence, we look for a sufficiently simple

constitutive model and we will choose the isotropic damage approach.



The major criteria that the model should satisfy are:

- agood description of the tensile material response from which cracking is expected. Such
a load may occur when the vessel is pressurised,

- a good description of the material response for unconfined and confined compression as
these are the major service loads,

- a good description of the compactant - dilatant volumetric response of concrete, e.g. in
uniaxial compression.

This last issue is important because the dilatant material response induces transverse positive

strains that may control damage growth (according to a strain driven process). Surprisingly, it

is not very often investigated in studies on elasto-plastic damage or damage models. In fact

very few of the above mentioned papers display the stress-volumetric strain curves and as we

will see, the isotropic damage approach does not, alone, capture the volumetric material

response correctly.

We have chosen here the effective stress approach because it provides a simple way to

separate the damage and plastic processes. Plastic effects, driven by the effective stresses, can

be described independently from damage ones and vice versa. One of the main interest is to

ease the numerical implementation which is implicit/explicit. The plastic part is implicit, as

usually, and the damage part is explicit, same as in classical continuum damage computations.

As a consequence, existing robust algorithms for integrating the constitutive relations can be

implemented. The calibration of the material parameters is also easier to handle as a

consequence of the separation of damage and plasticity processes.

In this contribution, the damage process is (elastic) strain controlled. We will use here the

classical isotropic model due to Mazars (1984) which incorporates strain-softening. The

plastic process shall be described with the help of a yield function inspired from Etse and

Willam (1994) and modified by Crouch and Tahar (2000). It is a hardening process in the



present model. Softening is controlled by damage, while plasticity controls hardening, in
compression especially. The model is discussed in section 2. Section 3 deals with its
algorithmic aspects. Elements of validation are presented in section 4. The constitutive law is
applied to three elementary loading cases: simple tension, cyclic compression and triaxial
compression. Then, structural problems are considered: the failure modes of two bending
beams made of plain and reinforced concrete are first studied. Finally, the axial capacity of a
circular concrete-filled tube column, generally designed for seismic purposes, is investigated.
Applications to structures that are representative of a nuclear vessel have been presented in
(Jason et al. 2004a, 2004b). They are left, with the hydro-mechanical computations, for a

future contribution.

2. Model Formulation

In the following, we will restrict considerations to infinitesimal strains. The total strain tensor
is denoted as ¢, the effective stress is o' and a standard, additive, elastic-plastic strain
decomposition (&° and &” respectively) is used. The isotropic damage variable is denoted as

D and the applied stress tensor is o . The effective stress is classically defined as:

c=(01-D).c' (1)

2.1. Plasticity
Plasticity is governed by the following classical set of equations in which the effective stress

has been substituted to the applied stress:

eE=6°+¢°

o'=Eg°

‘ ) @)
&" = im(c” k)

k = Ah(c", k)



where E is the elastic stiffness tensor, m is the flow vector, k is the set of internal variables

and h is the plastic modulus. The dot denotes time derivatives. The plastic multiplier A is

given by the loading — unloading criterion (Kuhn-Tucker form):
F(o'x)<0, 120, F(o'x)i=0 (3)

where F is the plastic yield function defined in the effective stress space. Note that we will

use standard associated plasticity. It means in particular that:

_F

m=
oo’

(4)

The yield function has been chosen according to two main objectives: (1) a correct volumetric
behaviour is expected in uniaxial compression with a change from a contractant to a dilatant
response; (2) an appropriate response in triaxial tests with confinement has to be obtained,
with the apparition of plasticity for high levels of hydrostatic pressures especially. This
supposes a closed function along the first invariant and eliminates Drucker — Prager equations

(Drucker and Prager, 1952). The plastic yield surface depends on the three normalised

effective stress invariant (7),2,0) and one internal variable kg:

= tr(c) _ A/s'is 1 .3 s's's'
- = 0 ==arcsin(—————-), 5
\/grc P r, 3 ( 2 (S-:S-)s/z) (5)

where s’ is the deviatoric effective stress tensor, and r is a parameter of the model. It is

defined by means of three functions k, 5, and r :

=2 KE k), (B)
F=p (.0) (6)

The hardening function K, quantifies the growth of the loading surface with respect to the

inelastic deformation. It is given by :
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with p, A and ko three parameters of the model. The deviatoric invariant p, is defined as

p. = (%)7\/2(—n+\/n2 —12/3n& +36) (8)
where
2
—f7 _
3t g -L (9)
f+2f7 ¢

and » r; and rc are three constants. Finally, r is the deviatoric shape function given by
(Bhowmik and Long, 1990), and it corresponds to a specific form of the elliptic surface

developed in (Willam and Warnke, 1974):

. = (10)
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where « is a model parameter. Following the definition by Etse et Willam (1994), the internal

variable is a function of confinement too:
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k, =0 if k, =1
where ¢ depends on the first normalised invariant :
=—A +A*-BE+C, if <0
C=-A+JA =B +C, If ¢ )

C=-A +A’+C, if £>0

and Ay, Br and Cy, are three model parameters.

Note that Eq. (12) assumes that k, ranges between 0 and 1. When k, =1, the yield surface

becomes a limit surface with no hardening in a pure elasto-plastic model. Overall, the plastic
part of the constitutive relation relies on 10 model parameters. This is quite reasonable
compared to some cap models which contain more than parameters (e.g. 15 in the MRS
model (Perez-Foguet et al. 2000)).

Combining equations (12) and (2) yields the following expression for the plastic modulus h:

2 0F  oF
30c' Oc' .
=290 90 ik <1, (14)
£(o) "
h=0 if k, =1

Figure 3a illustrates the evolution of the yield surface with the internal variable. Figure 3b

shows the plastic surface as a function of the third normalised invariant, the Lode angle &
ranging from —%(uniaxial tension) to % (uniaxial compression) for k, = 0. The plastic

behaviour is not symmetric: depending on the value of 6, the plastic threshold is not the same.
Finally, figure 3c represents the failure surfaces for two Lode angles, once the internal

variable has reached the limited value of 1 and hardening is not allowed any more.



2.2. Damage model
The evolution of damage is defined according to the isotropic model developed by Mazars
initially (1984). It is slightly modified here in order to account for plastic strains. These

strains do not appear in the damage growth relationships. An equivalent strain &q is computed

from the elastic strain tensor &°:
& =E"c' (15)

where E™ is the inverse of the elastic tensor. This strain measure (or “equivalent strain”),

3
NN (16)
i=1

is used to control the damage evolution, and <& >, represents the ith positive principal

value of the elastic strain tensor. The loading surface g is defined as:
g(e°,D)=d(e*)-D (17)

where damage D is also the history variable. It takes the maximum value reached by d during

the history of loading:

D = Max,,(d,0), (18)

and d is defined by an evolution law which distinguishes the mechanical responses of the
material in tension and in compression with the help of two pairs of scalars, one for tension

(a1, Dy) and one for compression (ac, Dc). Namely,
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if &, > ¢,

d(e*) = &, (6°)D, () + ¢, (67) D, (&)

t
Eeq exp[Bt (geq _‘9D0)]
3.6 <& >
o, =(z i 2| +J
i=1 geq
else d(e®)=0

The parameters D, and « are determined by two expressions similar to those of D; and «; &no
represents the initial threshold from which damage grows. D; and D, are the tensile and
compressive parts of the damage. A, A, B, B¢ are four constants. The weights o and o are
computed from the elastic strain tensor. They are defined as functions of the principal values
of the strains &' and &°due to positive and negative effective stresses respectively (see
Mazars, 1984). In uniaxial tension, oz = 1 and « = 0. In uniaxial compression, a;=0 and o =
1.

2.3. Model calibration

The complete elasto-plastic damage model contains 17 parameters, including the elastic ones.
Parametric studies have been performed in order to check their sensitivity and to devise a
calibration procedure. Following Crouch et Tahar (2000), and from the sensitivity analysis, 4
parameters remain at a fixed value: = 0.5, y=0.99, A, =7 10 and ko= 0.1.

&0, Ay, Br and ry are calibrated from a tensile test. ey controls the peak stress (see Mazars,
1984), B; and A controls the shape of the softening regime. r; controls the amount of plastic
strains and the residual stress for large strains. Cyclic compression provides A, B, p, r. and
By. From the plot of the effective stress versus the plastic longitudinal strain (one point is
extracted for each unloading cycle), the coefficients in the plastic model are obtained (p, r,
Br). The damage part is obtained from the plot of the equivalent strain versus damage. Finally,

A and C; are obtained from a confined cyclic compression test. A is computed from the
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threshold of plastic strain growth, and Cy is calibrated from the kinetics of plastic strain

growth (same as in uniaxial compression).

3. Algorithmic aspects

3.1. Plastic process

As opposed to the damage constitutive equations which are explicit once the elastic strains are
given, Egs. (2) in the plastic part of the model are path dependent and require an iterative
process to be solved. These relations are integrated with the backward Euler scheme (between
loading steps t,+1 and t,) according to a closest point projection. It yields the non linear system
of equations (Simo and Hughes, 1998) in the effective stress space:

"o+ AEM("o !, "k, ) = E("e - "gP)

"k, —Ah("™a’, k) = "k, (20)
F("™o', "k )=0

where "g®, "k. and the total strains "¢ are known at steps n and n+1 respectively. The

n+l __»

unknowns of the local problem are "o’ , "k, and the incremental multiplier denoted as

A in this section. An iterative Newton Raphson method is used to solve this non linear system

of equations. The jacobian J of the residual can be written as:

iy +AE T 2ETM B
oo’ ok,
3=l o (21)
oo’ ok,
oF
m' —) 0
(ak)

where superscript T denotes for the transpose operator. The derivatives of the flow vectors are
computed according to a numerical differentiation technique described in (Perez-Foguet et al.,
2000). Note that the following initial values are prescribed for the three unknowns (elastic

predictor):
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n+1

o'="0"+E("e-"e)
n+1lkh = nkh (22)
A=0

3.2 Plastic-damage process
The full integration of the constitutive law is done in two main steps as depicted in figure 4.

The state at step n ("¢, "o ) and the total strain "¢ at step (n+1) and global iteration k are
known. An effective stress "'c' is then computed as sketched above. The elastic — plastic
strain decomposition "'e®, "'eP follows and damage is evaluated (see section 2.2.) from the

elastic strain explicitly. Finally, the total stress "'c- is computed from the value of damage

and of the effective stress, see Eq. (1).
For the global equilibrium, solved according to a Newton Raphson algorithm, a consistent
tangent operator is computed. It derives from the elasto-plastic operator obtained from Eqg.

(1):

do _ (1- D) do —@o-
o€ o O¢

(23)
where the elasto-plastic tangent operator appears in the first term on the right hand side of this

. . . . oD :
equation. Since damage depends on the elastic strain only, Se can be written as :
&

D D o5
oe 0&° O¢

(24)

The derivatives of the elastic strain with respect to the total strain are thus computed using Eqg.
(2):

98 _galo (25)
o€ o€

For the derivatives of the effective stress with respect to the strains, Egs. (2) are linearized

following (Perez-Foguet et al, 2000). After simplifications, we have:
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{n(aa,) n(akh)} A

do' IR I 1 de
[dk }= AR {— h} oF . oF m [0] .
“ “ [n(.) A)}A‘{“}J

oo ok,

n

with

om om
E*+A(— A(—
- (80") (Gkh)
A= oh oh (27)
—A(— 1-A(—
] (80") (akh)

aal is then computed by extracting the first 6x6 block of the matrix in Eq. (26).
&

In order to calculate the derivatives of the damage with respect to the elastic strains, a radial

loading is assumed, same as in (Mazars, 1984) :

de, =dea, =0 (28)
then

e e a
@ — (at 8Dt (8 ) + ac aDC (8 )). geq ( 29)
o€* 0y, Og,, =~ O&°

From (Ladeveze, 1993), a simplified expression of the derivative of the damage with respect

to the elastic strains can be given :

gDO(l_A)+ AB,

at( 2

D Eaq exp(B, (€, — o) & A (30)
- P
o0& +Olc(8DO (12_AC) + AB, be
geq exp(Bc (8eq _8D0)

where &£°° is the positive elastic stain (spectral decomposition) and g, =2*(1-6,,) with &,

the Kronecker symbol.
Combining Egs (23)-(26) and (30), we obtain a consistent tangent operator for the elastic

plastic damage formulation.
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4. Model validation

The constitutive law is examined first using three “elementary” test cases: simple tension,
cyclic compression and triaxial loading with confinement. Next, the performance of the model
is evaluated in several structural model problems. Note that the model parameters will be
adjusted to each formulation of concrete as the different tests have not been performed on the

same material.

4.1. Uniaxial tension test

The numerical response of the elastic plastic damage law is first compared with experiments
from (Gopalaratnam and Shah, 1985). The parameters chosen for this simulation are shown in
table 1. Figure 5a gives the axial stress — strain curve.

For the sake of comparisons, a damage model is also considered (Fig. 5b). In this case, plastic

strains are equal to zero; thus the elastic strain is equal to the total strain (&=¢&%). The
response coincides with the original damage model developed in (Mazars, 1984). The
coefficients used for this problem are reported in table 2. The two sets of parameters in the
damage and plastic damage models are not the same because one has to take into account the
plasticity effect in the second.

When the development of damage is predominant, both models are able to reproduce the
monotonic experiment. Nevertheless, with the elastic plastic damage formulation, a constant
stress value is obtained for a certain strain (& ~0.00036). At this loading level, the plastic
limit surface has been reached. The effective response is perfectly plastic and no further
damage can evolve due to a constant elastic strain. Even if this constant stress value is not
dramatic for this example, it represents one limit of the proposed formulation. One
improvement could be to propose another evolution law for the hardening variable, without a

limit surface (or assuming that the limit surface is reached upon an infinite strain). It would
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enable the plastic loading surface to expand indefinitely, and therefore the elastic strain to

increase under monotonically increasing applied strain.

4.2. Cyclic uniaxial compression

Cyclic compression is the second elementary test used to highlight the interest of the model.
Experimental results are taken from (Sinha et al., 1964). Figure 6a illustrates the numerical
response with the pure damage law (without plasticity). The coefficients chosen for this
simulation are reported in table 3. They are different from those in section 4.1 because the
concrete is different too. With this type of relation, a zero stress corresponds to a zero strain.
No irreversible effect is simulated.

The response of the elastic plastic damage model is given in figure 7a, and the coefficients are
listed in table 4. r¢, p and By, are the most influent constants for this test. They quantify the
evolution of the plastic strains, especially at the unloading points. With this model, damage
induces the global softening behaviour while plasticity reproduces quantitatively the evolution
of the irreversible strains. Experimental and numerical unloading slopes are now similar,
contrary to the standard damage formulation response. This difference is essential when an
accurate value of the damage needs to be estimated. The elastic damage model overestimates
D whereas the full constitutive law provides more realistic results.

Figures 6b and 7b illustrate the differences between both the damage and the plastic damage
models in terms of volumetric responses. Notice that the isotropic damage law induces a
contractant response (negative volumetric strains). The introduction of plasticity generates a
change in the volumetric response from contractant to dilatant, a phenomenon which is
experimentally observed (see Sfer et al., 2002 for example).

Plasticity combined with the evolution of isotropic damage plays thus a key role in the
numerical simulation of a cyclic compression test. The development of irreversible strains

during loading is quantitatively reproduced and the softening behaviour fits well. Moreover,
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the volumetric response, that was completely misevaluated by the damage model, is correctly
simulated by the full formulation. This misevaluation is also due to the fact that damage is
assumed to be isotropic. It constrains the Poisson ratio to remain constant. A more accurate
volumetric response could be achieved with anisotropic damage approaches, nevertheless
irreversible strains would have to be captured with some sort of plastic based mechanism. The
resulting constitutive relations would be much more complex (coupled anisotropic damage

and plasticity).

4.3. Triaxial test with confinement

The experimental results from (Sfer et al., 2002) are used to evaluate the ability of the
constitutive law to reproduce triaxial tests after hydrostatic loading. A vertical displacement is
applied on a concrete cylinder (150x300 mm specimens) after an initial confinement.
Numerical results are compared with experiments for different levels of hydrostatic pressures
(P=0,15,4.5,9, 30 and 60 MPa).

Figure 8a gives the axial response (the confinement phase is not represented) for the first four
pressures with the full formulation, using the coefficients of table 5. Again some parameters
are different from those listed in sections 4.1 or 4.2 because the concrete properties are not
similar. The peaks are quantitatively well reproduced (except for 1.5 MPa). The global
evolutions are also correct: the maximum axial stress increases with the pressure and
softening is less and less significant. When the initial confinement takes higher values,
damage plays a minor role and plasticity becomes predominant.

Figure 8b presents the axial curves for 30 and 60 MPa for the same model parameters.
Experimental results and simulations are in agreement. The decrease of the initial stiffness
upon confinement is reproduced by the constitutive law especially. For 30 MPa for instance,

non linearity has already been initiated in the hydrostatic load regime, before the application
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of the vertical displacement begins. The introduction of plasticity and the characteristic shape
of the yield surface (closed function along the volumetric invariant) provide a good
description of these experiments.

Figure 9a shows a comparison between the elastic plastic damage formulation and the damage
model for the high confinement pressures. The standard damage law fails to reproduce the
decrease of the initial stiffness. Note that as soon as the pressure takes important values (30
MPa or 60 MPa in the figure), the damage model clearly overestimates the experimental
behaviour. In fact, this is due to the definition of the equivalent strain &q (16) that
characterises the material extension during loading in the damage model. When the
hydrostatic pressure is applied, the sample is not subjected to tensile strains, the equivalent
strain keeps a zero value and the material response is elastic, if no plastic effects are taken
into account. This is acceptable for low confinement pressures; but it is no longer reasonable
when higher levels are considered. Figure 9b shows the two responses, according to the
damage and plastic damage models, during the application of the hydrostatic pressure. As
expected, the response is linear with the damage model. Figure 10 shows the evolution of the
computed transverse strains for low confinement pressures with the full plastic damage
formulation and a comparison with experiment. Even though the transverse strains are
underestimated at the beginning of the loading, the comparison with experiments is globally
correct.

A better response might be achieved using a non associated flow rule probably. Nevertheless,
this improvement would require an increasing number of parameters, a more complex
numerical implementation and has not been considered to be necessary : the associated plastic
model seems indeed sufficient in our case to reproduce the volumetric behaviour globally and
especially the change from a contractant to a dilatant evolution (see section 4.2). It appears

that the overall response is not too dilatant, as opposed to classical results in standard

18



associated plasticity (at least for the experiments investigated in this paper). This may be due

to the combination of damage with plasticity, which seems to avoid excessive dilatancy.

4.4. Notched bending beam made of plain concrete

In this part, the differences between damage and elastic plastic damage approaches are
considered in terms of structural tests. Due to strain and damage localisation it is well
established that simulated responses are expected to be mesh dependent (see for instance
Pijaudier-Cabot and Bazant 1987 or Jason et al., 2004a) and that is why no experimental
comparison will be provided. Regularisation techniques should indeed be included in the
formulation to avoid numerical problems (Pijaudier-Cabot and Bazant, 1987, Peerlings et al.,
1996, Rodriguez-Ferran et al., 2004, Addessi et al. 2002) but this improvement has been left
for future work. The study will be thus solely focused on a numerical comparison between the
two constitutive laws.

Let us consider a notched bending beam whose geometry and boundary conditions are
depicted in figure 11. Half of the beam is meshed with 99 eight node cubic elements for a
three dimensional analysis. The comparison between the elastic plastic damage model and the
elastic damage law is shown in Fig. 12. The vertical force F is plotted as a function of the
applied displacement. The parameters used for the two simulations are given in tables 6 and 7.
Figure 13 illustrates the distributions of the damage D and plastic internal variable ky in the
half beam with the full plastic damage formulation.

Both models give similar results. The introduction of plasticity does not affect the global
behaviour of the beam compared to the standard damage model. The distribution of damage
follows the classical failure mode of three point bending beams made of plain concrete (i.e.
from the notch to the point where the force is applied). Same as in the tension test, plasticity
only develops when D has reached a significant value. It enables the formation of a full

damage band with D equal to one along the axis of symmetry.
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Snapbacks (in both constitutive approaches) are due to the mesh dependent response, which
should be viewed as a qualitative piece of information on the global behaviour of the beam
only. In fact, each snapback occurs when the failure zone progresses from one element to
another along the vertical axis of symmetry. Nevertheless, one can conclude that the
introduction of plasticity does not change the failure mode of the structure compared to usual
results with a simple damage model. The plastic damage model has the same modelling
capabilities as the damage model in a type of structural analysis where it is well known that

the second performs very well.

4.5. Bending beam made of reinforced concrete

The next structural application, extracted from benchmarks proposed by EDF (Ghavamian,
1999), is a 3D computation of a reinforced concrete beam. The geometry, the load system and
the steel distribution are presented in figure 14. Figure 15 provides the numerical load —
deflection curve obtained with the elastic plastic damage formulation. The parameters chosen
for the simulation are given in table 8. The steel bars are modelled with a Von Mises plasticity
law (linear hardening) using the following coefficients : E = 200 GPa, v =0, oz = 400 MPa
(yield stress) and E; = 3245 MPa (plastic tangent stiffness). The steel — concrete interface is
assumed to be perfect. One fourth of the beam is meshed with 1150 eight node cubic
elements.

Figure 16 illustrates the damage and internal variable distributions in the beam for different
loading steps. The observations are similar to those discussed in section 4.1 for the plain
concrete beam. The local simulation exhibits some snapbacks corresponding to the
development of new damage bands in the structure. A more interesting information concerns
the failure mode. A major damage band appears in the damage distribution in the middle of

the beam, followed by some secondary bands that characterise the presence of steel in
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concrete. This “discrete” damage distribution illustrates well the formation of cracks in a R.C.
beam and is in qualitative agreement with experimental results. Again, more quantitative

comparisons would require a regularised approach.

4.6. Circular concrete-filled tube column

Composite structures are widely used in building and other civil engineering structures, in
seismic zones especially. Among them, concrete filled steel tubes (CFT) present some
interesting resisting characteristics such as high ductility and improved strength. They have
additional advantages compared to pure steel or simple concrete members : concrete increases
the stability of the column while the steel tube subjects the core concrete to a triaxial state of
stress and induces passive confinement (Lu and Chen, 2002). Various experimental and
numerical studies have been recently carried out on such structures (Giakoumelis and Lam,
2003, Kwon and Spacone, 2002 for example).

To highlight the interest of our constitutive law, the behaviour of a circular CFT is going to be
simulated. The dimensions of the sample and the mechanical properties experimentally
reported in (Susantha et al., 2001) and measured on non wrapped specimens, are listed in
table 9. The steel — concrete interface is assumed to be perfect. For the considered
compressive strength f’c, Giakoumelis and Lam (2003) demonstrate, with greased and non
greased cylinders, that the steel-concrete interface has little influence on the global behaviour.
A vertical displacement (yielding uniaxial compression) is applied on both steel and concrete
cross sections at the same time. Two simulations are proposed. One using the standard elastic
plastic damage formulation (table 10) and another one employing the elastic damage
constitutive law (table 11). The steel tube is modelled with a Von Mises plasticity model with
the yield stress o, = 279.9 MPa and the tangent hardening modulus E; = 2500 MPa. One

fourth of the cylinder is meshed with 99 eight node cubic elements.
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Figures 17a and 17b provide a comparison between the simulations with the two models and
with the experiment (here localisation of damage is not expected and comparisons with the
experiment are more relevant). With the elastic plastic damage relation, numerical and
experimental axial forces are in agreement for a given axial strain. The “confinement” effect
is highlighted with an increase of the maximal strength. On the contrary, the damage model
underestimates the global response of the column. A softening branch appears, which is not
observed during experiments. Note that the overall elastic stiffness does not fit exactly, same
as for the simulations performed in (Susantha et al., 2001). This is probably due to
experimental differences between the elastic mechanical properties measured on wrapped and
non wrapped samples due to incomplete hydration of concrete for example, see Kwon and
Spacone (2002) for details.

Experimentally, no confinement effect is noticed at the beginning of the loading. The
transverse strain in concrete is lower than in steel due to differences in the Poisson ratio (0.2
and 0.3 respectively). According to the computation, concrete is thus under lateral tension
because the steel concrete bond is perfect, but this regime seems to have little influence on the
structural response. As the axial load increases, plasticity is responsible for the change of the
apparent Poisson ratio. Lateral expansion in concrete becomes gradually higher than in the
steel tube. A radial pressure develops at the interface and passive confinement appears. The
evolution of the radial stress at the interface as a function of the axial strain is provided in
figure 18a using the full formulation. Figure 18b illustrates the evolution of the transverse
strains & and & in concrete and in steel respectively. As observed experimentally, concrete is
first subjected to lateral extension then to lateral compression. The change of sign occurs
immediately when & becomes higher than &. On the contrary, with the simple elastic damage
constitutive law, as & is always lower than & concrete is only subjected to lateral extension

(Fig. 19). No passive confinement is observed and that is why the peak in the axial load is so
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small and inadequate compared with experiment. The study of the volumetric behaviour
yields the same conclusions (figure 20). The change from a contractant to a dilatant response
obtained with the introduction of plasticity is a direct consequence of the increase of the
concrete transverse strains. With the elastic damage relation, the volumetric response is
always contractant.

For concrete filled steel tubes subjected to axial compressive loading, a correct description of
the volumetric response is required in order to capture the change of apparent Poisson ratio of
concrete that induces passive confinement. The elastic plastic damage constitutive law may
also be required for pre-stressed structures where the material is subjected to biaxial

confinement for instance.

5. Conclusions

An elastic plastic damage constitutive law has been presented and validated on different types
of simple loadings and structural test cases. In this model, isotropic damage is responsible for
the softening response and the decrease in the elastic stiffness, while hardening plasticity
accounts for the development of irreversible strains and volumetric compressive behaviour.
For tension dominant applications, the model has shown good quantitative and / or qualitative
results. The failure modes of the structures have been reproduced for plain and reinforced
beams. Thus, plasticity has not hindered the well-known advantages of standard damage
models for tension failure. Regularisation techniques are required. They may be applied on
the damage part of the model to provide more “mesh-objective” simulations.

In compressive tests, improvements compared with the standard elastic isotropic damage
relation have been achieved. In uniaxial compression, irreversible strains and the volumetric
response have been quantitatively well reproduced. The contractant-dilatant volumetric

response is due to plasticity. With a scalar isotropic damage model, it cannot be captured. In
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triaxial tests, the decrease of the initial slope and brittle-ductile transition have been
reproduced. Finally, the example of a concrete filled steel tube has highlighted the importance
of the volumetric response of concrete in order to capture the appropriate structural response
with passive confinement.

The next step is the durability analysis of containment vessels and the implementation of this
constitutive relation in representative model structures. This has been performed in Jason et
al. (2004b). The hydro-mechanical problem, from which the leakage rate upon damage for

such structures can be computed, is currently being investigated.
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Tables

E (Pa) v Ac At Bc Bt &D0
3.12510" 0.2 2.75 1.1 2470 13000 1,110"
I I p Bn Ch A
12010° | 1110°] 04 | 210° | 310° -1
Table 1: Damage and plastic parameters for simple tension test with the elastic plastic damage model
E (Pa) v Ac At Bc Bt &D0
3.12510" 0.2 2.75 0.88 2470 8000 0.610"
Table 2: Damage parameters for simple tension test with the elastic damage model
E (Pa) v Ac At Bc Bt £Do
3.210" 0.2 1.15 1. 1391 10000  [0.937510™
Table 3: Damage parameters for cyclic compression test with the elastic damage model
E (Pa) 1% Ac At Bc Bt £D0
3.12510" 0.2 2.75 1.1 2470 15000 110*
re It p Bn Ch A
12010° | 1010°[ 04 | 210” [ 310° -1

Table 4: Damage and plastic parameters for cyclic compression test with the elastic plastic damage model

E (Pa) 1% Ac At Bc Bt £D0
2.7310% 0.2 2.75 1.1 2600 15000 110*
re I p By Ch A
8510° | 910° | 04 | 310° | 310° | -05

Table 5: Damage and plastic parameters for triaxial confinement test with the elastic plastic damage model

E (Pa) % Ac At Bc Bt £D0
3.8510% 0.2 2.75 1. 2700 14000 0.710*
Table 6: Damage parameters for the notched bending beam with the elastic damage model
E (Pa) 1% Ac At Bc Bt £D0
3.8510% 0.2 2.75 1.1 2470 18000 0.710*
re It p Bh Ch A
12010° [ 1010°| 0.4 | 210° | 310° -1

Table 7: Damage and plastic parameters for the notched bending beam with the elastic plastic damage model
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Ac

At

Bc

Bt

E (Pa) 1% &Do
210" 0.2 2.75 1 2470 13000 1.10"
re I p Bh Ch A
12010° [ 1110°| 0.4 | 2107 | 310° -1

Table 8: Damage and plastic parameters for the notched bending beam with the elastic plastic damage model

Geometry (mm) Steel Properties | Concrete Properties
L D e L Es(Pa) | oc(MPa) | E(Pa) | f.(MPa)
150 4 | 450 | 2110 279.9 | 2.18 10" 22
<—><_>
D e
Table 9 : Geometry and mechanical properties of the circular CFT as experimentally reported in (Susantha et al.,
2001)
E (Pa) v Ac At Bc Bt &D0
2.1810" 0.2 2.3 1.1 2700 15000 0.9510™
I I p Bn Ch A
8510° | 910° | 0.3 | 510° | 310° | -05
Table 10: Damage and plastic parameters for the CFT.
E (Pa) v Ac At Bc Bt &D0
2.1810" 0.2 1.15 0.8 1391 10000 0.9510™

Table 11: Damage parameters for the CFT
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Figure 1 : Experimental relation between damage and permeability. kyo and k, are the intrinsic permeabilities of
the initial and damaged material respectively (Picandet et al., 2001). OC = ordinary concrete, HPC = high
performance concrete, HPFC = high performance fibber reinforced concrete.
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Figure 2: Unloading response of elastic damage (a), elastic plastic (b) and elastic plastic damage (c) models.
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Figure 5 : Simulation of a uniaxial tension test (Gopalaratnam and Shah, 1985)
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Figure 8: Triaxial test with increasing confinement

a. Axial stress strain curves for low hydrostatic pressures. Straight lines (black markers) correspond to
simulation, dotted lines (white markers) to experiment
(1) 0 MPa, (2) 1.5 MPa, (3) 4.5 MPa, (4) 9 MPa

b. Axial stress strain curves for high hydrostatic pressures
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Figure 9 : Comparison between elastic damage and elastic plastic damage constitutive laws:

9.a. Triaxial tests with increasing confinement. Axial stress strain curves for high hydrostatic pressures;
Comparison between the elastic damage model (dam) and the elastic plastic damage formualtion (plas)

9.b. Hydrostatic confinement. Comparison between elastic damage model (pl dam) and elastic damage
constitutive law (dam)
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Figure 11: Notched bending beam. Geometry and boundary conditions.
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Figure 15 : Load — deflection curve for the three point bending beam of reinforced concrete
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Figure 16 : Distribution of the state variables in the half beam of reinforced concrete
a. Damage (black zones correspond to D =1, grey one to 0<D<1 and white one to D = 0)
b. Internal plastic variable (black zones correspond to k, =1, grey one to 0<k,<1 and white one to k, = 0)
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Figure 17 : Simulation of a CFT

17.a. : Evolution of the axial force as a function of the axial strain. Comparison between the elastic plastic
damage formulation and the experiment

17.b. : Comparison between the elastic plastic damage and the elastic damage models
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Figure 18 : Transverse behaviour using the elastic plastic damage model

18.a. : Evolution of the concrete transverse stress as a function of the axial strain

18.b. : Evolution of the transverse concrete and steel transverse strains as a function of the axial strain
18.c. : Zoom on the first part of the curve.
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Figure 19 : Transverse behaviour using the elastic damage model
19.a. : Evolution of the transverse stress as a function of the axial strain
19.b. : Evolution of the concrete and steel transverse strains as function of the axial strain
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Figure 20 : Evolution of the volumetric strain as a function of the axial load for both approaches.
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