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ABSTRACT

A problem of feedback stabilization is addressed for a class of uncertain nonlinear
mechanical systems with n degrees of freedom and n < n control inputs. Each system
of the class has the structure of two coupled subsystems with n. and n, degrees of
freedom, respectively: a prototype being an uncertain base isolated building structure
with n degrees of freedom actively controlled via actuators applying forces to specific
degrees of freedom of the base movement, ne < n in number. A nonlinear adaptive
feedback strategy is described, which, under appropriate assumptions on the system
uncertainties, guarantees a form of practical stability of the zero state. Numerical
simulations are also presented to illustrate the application of the control strategy to
a base isolated building.

1 INTRODUCTION

The problem of actively controlling structures has been extensively studied in the
last two decades. Whilst in many cases controllers have been designed under the
assumption of having a perfectly known structural model, there has also been consi-
derable interest in questions of robustness. Among the approaches proposed in the
literature for the control of uncertain systems, there is one in which the systems are
described by differential equations, the uncertainties are modelled deterministically
and Lyapunov techniques are used constructively to design feedback controllers to
render the system “practically stable” (see [1] for an overview and extensive bibliog-
raphy). This approach has been adopted for active control of structures in previous
work [2—4].
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Although much of the literature has dealt with fixed-parameter controllers, the de-
sign of adaptive control laws has also been considered [5,6]. In this context, the word
adaptive means that the control law is parameterized by a variable gain whose value
is autotuned according to some appropriately designed law. The present paper essen-
tially falls into this category and focusses on the construction of adaptive controllers
for a class of uncertain nonlinear coupled mechanical systems that can be decomposed
into two subsystems with feedback control acting on one of them. Although the con-
trol law is developed in the context of this general class of systems, the problem of
actively controlling a base—-isolated building structure is our prototype.

2 THE CLASS OF SYSTEMS

We consider a class of uncertain mechanical systems ¥ with n degrees of freedom
and n, < n control inputs. Each system of the class has the structure of two coupled
subsystems, 3¢ and X, with nc and n, degrees of freedom, respectively, n = n¢ + nr,
and described by equations of motion of the following form.

S0 M(q,0)§#) +9,(g,(), 4, ) = hla.(1), (1)),
(4, (1), 4, () = (q,,)

Sor M(q(0)d.() + 9.t 0, (), (£), 4.(8), 4,(1)) = u(?),
(42t e (t)) = (4;,,)-

Here, g () € R, ¢,(t) € R" are vectors of generalized coordinates and u(t) € R"e is
the vector of control forces; the matrix-valued functions M; and M, represent inertias,
and the (nonlinear) functions gy, h, gc model damping, stiffness, coupling and Coriolis
effects, as well as extraneous inputs and disturbances acting on the overall system.
Assumptions 1 to 6 below complete the description of the system class X.

(1)

Assumption Al.  The function My is continuous with uniformly bounded inverse:
that is, for some (unknown) positive scalar i, |M;1(g,)|| < 7 for all g, € R™.

Assumption A2. The function M. is continuous and such that, for some (un-

known) positive scalars ™, m and known continuous function p, the following hold
for all ¢, € R (3) | M ()| < Mu(q,), and (i) M;1(q,) > mI (in the sense that

(v, M7 (g, )v) > m“vll2 for all v €< prie,
Assumption A3. The function g, is continuous.
Assumption A4. The function h is continuous, with h(0,0) = 0.

Assumption A5. With h = 0, the subsystem X, is quadratically asymptotically
stable, in the sense that there exists an (unknown) positive definite quadratic form v,



on R™ such that, for some (unknown) positive scalar c

%K(Qr(t)’dr () < =<V, (4, (1), 4. (1))

Assumption AG6. The function gc is of Carathéodory class and such that, for
some known continuous function v, the following holds for some (unknown) scalar a:

"gc(t’qr’vr’qc’vc)” S a7(qr’vr’qc’vc)
for almost all t € R and all (q,,v,,q,,vc) € R,

Thus, the only a priori system information available to the controller is the pair of
continuous functions v and p: in particular, we stress that the uncertainty bounding
parameters m, m, ™ and a are unknown.

The question to be addressed can be posed as follows:

Does there exist an adaptive feedback strategy, parameterized by A > 0, which, for
every system (unknown to the controller) of class X, every solution of the feedback-
controlled initial-value problem (1) is asymptotic to a ball centred at zero in R" of
radius p()), where p(\) — 0 as A — 0 ? In Section 3, we answer this question
affirmatively by explicit construction of one such feedback strategy.

2.1 Example: active control of base-isolated structures

In the field of civil engineering structures there exist a great interest in reducing the
structural response produced by seismic ground motions. In recent years, as one of
the possibilities to achieve this objective, hybrid control systems have been proposed,
which combine base isolators with active control systems.

Base isolators attempt to uncouple the structure from the seismic ground motion
by means of replaceable devices, placed between the building and the foundation, ca-
pable of absorbing part of the energy induced by earthquakes [7]. The base isolation
component can reduce by itself both the inter—story drift and the absolute acceler-
ations of the structure. Thus the structure tends to behave like a rigid body, the
price paid being a significant displacement of the base. Another drawback of such
systems is the dependence of their effectiveness on the frequency of the excitation.
Moreover, they cannot be applied in the case of tall or heavy structures, due to the
size of the dynamic forces involved and to the risk of endangering the global stability
of the structure. The objective of the active control component is to reduce the base
displacement by means of forces applied on the base. From a practical point of view,
this hybrid scheme is appealing since it is possible to achieve the above mentioned
objective by means of a single force which, moreover, does not exceed some acceptable
limits due to the high flexibility of the base isolators. Moreover, the active control
action essentially does not depend on the frequency content of the dynamic excitation.
From a theoretical point of view, the development of a control law to calculate the



active force involves difficulties associated with the nonlinear behaviour of the base
isolators and to the uncertainties in the models describing the structure-base isolator
system and in the seismic excitation.

A robust control law for linear systems has been proposed in a previous work [2].
Also for linear systems, the application of predictive control has been considered [8]
as well as a form of bang—bang control [9]. The nonlinearity of the isolators has been
considered in reference [10], assuming no uncertainties in the structure-base model.
Some experimental works with small-scale hybrid systems have been recently reported
[11,12].

The hybrid control problem we are dealing with can be cast within the framework
of the class of systems defined by equations (1). In the remaining of this section the
equations of motion governing this problem will be presented.

The dynamic behaviour of the structure with the hybrid control system can be
described by means of a model composed of two coupled systems : X (the building)
and X, (the base). It is assumed that the structure has a linear behaviour due to the
effect of the base isolation. The behaviour of the isolator may be nonlinear. The vector
g, represents the horizontal displacements of the n degrees of freedom respect to an
inertial frame, while the displacement of the structural base is described by a single
degree of freedom with horizontal displacement g, relative to the above-mentioned
frame. The dynamic excitation is produced by a horizontal seismic ground motion,
characterized by a displacement d(t) and its velocity v(t). A single horizontal control
force u(t) acts upon the structural base. Thus, the equations of motion are

2 Mg +Cq. + Kq, =CJg, + KJq,

r

B 3 myd, +[c, + I CIlg. + [k, + I KJg, (2)
_JTci - I Kq, — ¢yv — kyd + £(q,, 4., dyv) = u

where M, C and K are the mass, damping and stiffness matrices of the structure,
respectively. The vector J expresses the rigid body motion according to the degrees
of freedom of the model (in this case it is an unit vector). my, ¢ and kj are the mass,
damping and stiffness of the base. The last two parameters correspond to the elastic
and damping forces which appear on the base due to the linear effects of the isolator;
f is an additional horizontal force produced on the structural base by nonlinearities
in the isolator.

Assumptions A1-A5 hold as M is invertible, mp > 0 and C and K are positive
definite. Assumption A6 holds under the following conditions:

lle,o(t) + k,d(B)l| < v (3)

I1£(40rderds )| < &'v'(g554,) (4)

for almost all ¢ and all (¢,,q,) € %2, v and o/ being unknown scalars and 7' a known
continuous function.



3 THE ADAPTIVE STRATEGY

Throughout this section, we assume A > 0. We first introduce some notation. Let
d) denote the function defined (on R"c, R"r, R2nc or R2% as context dictates) by

: loll = A, |l = A
d,\.vr—){ 0, o]l < A

Let s) denote the function defined on ®"¢ by

=1
55 Y { ||vﬂl v, d,(v)>0
A v, dy(v)=0

The proposed adaptive strategy, parameterized by A > 0, is given by
Pe(t) = 4:(t) +n9.(?) 5)
k(t) = K,\(qr(t)’ q.r (t)’ qr (t)’pr (t))
k(t,) = k'

where 7 > 0 (a design parameter) is open to choice, and the functions U) and K, are
defined as follows

U, : (45,19, 05) = Pe +7,(2,,9,, 95 P.)3,(P;)
I(/\ : (qr’vr’pc) = dA(pc) [”pc“ + ’Yp(qr?vr’ qc’pc)] (6)
Y, : (4,9, 9,,0.) = 1(4:)7(4r5 0, 2 P~ 4c)

3.1 Stability analysis

The overall controlled system representation on ®Y, N = 2(n, + n¢) + 1 now
becomes

M,(q,(t))d, () + 9,(¢,(1),4, () = h(g.(), po(t) — ¢.(t))

4,(t) = —ng,(t) + p.(t)

p.(t) = Py(t,4,(t),4,(t),q.(t), p.(t), k(2)) (7)
k(t) = K,\(qr(t)’dr(t)aqc(t)’pc(t))

(4, (to)r . (B0 € (to)s Pulto)s K(to)) = (0 vpr s P k) =i € R

where the function P) is given by
-1
PA(t’ qr,vr7qc,pc’ k) = pc - nqc - MC (qc)[gc(t’ qr,vr’ qc’pc - nqc)

+kUA(qr’ vr y qc’pc)]



Equivalently, writing z(t) = (g, (%), 4-(t), 4.(2), p.(2), k(2)),
i(t) = F(ta(t), a(ty) =z (8)

where
FA . r = (q,.,v,.,qc,pcak) =

=1
(vr’ Mr [h(qc’pc - nqc) - gr(qr7vr)]’ /L' P +pc’ PA(t’x)’ K,\(x)) .

This system satisfies the classical Carathéodory conditions and so, for every (%, 20) €

R x RN, the above initial-value problem has a solution and every solution can be

extended into a maximal solution.
On [0, 00), define

ho: X e sup{||h(q,, p, — ng.)ll | dy(¢.) = 0 = d,(p,)},
which, by virtue of Assumption A4, is continuous with E(A) —>0as A — 0.
Theorem 1.
Let A > 0 and (t,,2°) € R x RV,

For every mazimal solution z(-) = (q,,4r, 4., P k)(*) : [ty,w) — RN of the initial-
value problem (7) (equivalently (8)),

(i) w = oo;
(%) im0 k(t) ezists and is finite;
(ii1) dx(4.()), dr(p.(t)) — 0 ast —> oo;
(iv) for some positive scalar c, dciz(,\)(qr (t),dr(t)) — 0 as t — oo.
Proof. Let V denote the C! function
12
V:ip,— §d,\(pc)'

Then, for almost all ¢ € ® and all z = (q,,v,,q,,p,,k) € RV we have

(VV(p,), P,(t,2)) < dy(p,) [la.ll + (o7 — mk)y,(g,,9,,4,,p,) + (1 — mk)llp, ][]

Defining k" := m~1(1 + am), it follows that
LV (p.(1)) < ~m(k(®) — K )k) + dy (. ()llg. (O

for almost all ¢ € [t;,w). Integration now yields, with ¢, := V(pg) + %m(ko - k*)z,



0< V(o () < 6 = gm0 k)" + || dy(pDla(9)lds

which is valid for all ¢ € [t,,w).
We briefly digress to prove a technicality.

Proposition.  For some positive scalar ci,

[ dy@lsDlla(o)lds < e, [ Tdy(p.(5)) +d, (p.()ds

for all t € [ty,w).

Proof. First observe that
0 § —(s—0) 0 8§ —(s—0)
el < g+ [ e lp@)lde < lig,ll+ [ e [dy(p.(0) + Ndo
0 0

0 $ —(s—0)
<Nl + 2+ "¢ d,(p.(0))do.
0
Therefore,

[} e Maones

=(s-0)

<N+ [ dyouoDds + [ @) [ ¢ dy(pulo))do ds

Applying Holder’s inequality to the second term on the right,
t § —(s-o0)
[ @) [ ¢ dy(pul0))do ds
Ly L

1 3

< ([ dniopas) ( [ ([ atntonan) ds)

0 0

Integrating by parts in the last term on the right

/t: e ( /ts e"dx(pc(a))da) ds < /t : d, (p,(s)) /t : ¢4, (p,(0))do ds.

0



We may now conclude that
t 8 —(s—0) t 2
J 5@ [y plodo do < [ (o)),

whence the claim.
Returning to the proof of the theorem, we now have

0 < V(P) < & = 3mlk(t) = K'Y +¢,(1+ A7 )(k(t) - 1)

for all ¢t € [t;,w). Therefore, we see that the monotone increasing function k(-) is
bounded. This, in turn, implies boundedness of V(p,(-)) and so p,(-) is bounded. It
immediately follows that ¢,(:) is bounded. By assumptions A4 and A5, we see that
(¢,,4r)(-) is bounded. We have now shown that the solution z(-) is bounded and
so w = oo. Assertion (ii) of the theorem is now a consequence of boundedness and
monotonicity of k().

To prove Assertion (iii), we argue as follows. Observe that

dy .2 (D]l < dy A I Bllla. DIl < A llg. (D)lIE(2)

and so, by boundedness of ¢ (-), there exists positive scalar ¢, such that

4\ (P12 < ek(t)
for almost all ¢ > t,. Writing ¢, := m(k" — ko) + ¢,, we conclude that
LV (p.(1)) < —k(t) + (e + 1i(t
for almost all ¢ > t,. Therefore the function
W (p., k) = V(p,) — (1 +¢;)k

is such that

LW (p,(0), k(1) < k() < ~d, (2. )P O ©)

for almost all ¢ > ¢,. Boundedness of the solution z(-) ensures that it has non-empty
w-limit set (2. Since the solution approaches its w-limit set, we first prove that

d,(p.(t)) — 0 como t— oo
by showing that dy(pc) = 0 for all Z = (gr,vr,c, Pe, k) € . Suppose otherwise.

Then there exists & = (gr, Ur, Gc, Pck) € © and € > 0 such that dy(5c)||c|| > 2e. By
continuity, there exist s § > 0 such that



I =2l <8 = d\(&)Ilé]l > e.

Since Z is an w-limit point, there exists a sequence (¢;) with ¢; — oo and
2(t;) = (¢, (t;): 4, (;), 2.(2;), P (2)), k(2;)) — =

as § — oo. By Assumptions A1-A6, it is readily verified that there exist § > 0 and
R > 0 such that

le -zl <8 = |IF)\(¢,2)]| < R. (10)
We may assume 8 < é. By continuity of W,
= €b
W(p,(t;), k(t;)) — W(p,, k) < iR (11)
for all j sufficiently large. Let j* be such that
_ 1- Lk
lo(t;) — 2l <56 Yi>j.
By (7) and (9), it follows that
Ip.(t;) =Bl <& Vtelt;,t; +(8/(3R))]
which holds for all j > j*. Therefore, using (8), we have for all j > j*

Wt k) = WD > [0 6.0l > 5

which contradicts (10). Therefore, dy(p,(t)) — 0 as t — oo.

Since ¢c(t) = —q,(t) + p,(t), we also have dy(g,(t)) — 0 as ¢ — oo. This
establishes Assertion (iii).
Finally, Assertion (iv) is a direct consequence of Assumptions A4 and A5. Q.E.D.

Remarks. By the above theorem, we see that the proposed adaptive feedback
strategy ensures a form of practical stability for the system class ¥. In essence, for
any prescribed A > 0, the subsystem state (g,(t),p,(t)) is asymptotic to that ball
(centred at zero in R27%) of radius ), the remaining subsystem state (¢,(t),4r(2)) is
asymptotic to a ball (centred at zero in §R2"') of radius ¢\ — however, the scale factor
¢ > 0 depends on the unknown function h and so is not computable from a prior:
system information.



4 ILLUSTRATIVE EXAMPLE

Consider a 10-story base isolated shear building as shown in Figure 1 and described
by equations (2). The masses of the base and of each floor of the building are 6 x
10° Kg. The stiffness of the base is ky = 7 X 10° N/m and its damping ratio is 0.1.
The stiffness of the building varies in § x 10" N /m between floors, from 9 X 10° N /m

the first one to 4.5 x 10° N/m the top one, while the damping ratio is 0.05. The
nonlinear force f produced by the base isolation device on the base has elastoplastic
hysteretic or frictional characteristics (Figure 2).

v(t).d(t) u(t)

Figure 1 Building structure with a hybrid control system. PC -
passive control system. AC — active control system.

The purpose of this example is to show the effectiveness of the control law (5) and
(6) when applied to the above described structural system. To do this, the first step
is to identify the function <, appearing in (6). In this case, u(¢.) = 1. To obtain
the function +, according to assumption A6, we first need to identify function g, for
the case of equations (2). Comparing subsystems ¢ in equations (1) and (2), it is
observed that

ge(t, 4, (1), dr (1), 4, (8), de(®)) = [y + T CTg, + [y + T K J]g,

(12)
T . T :
—J Cq . —J Kq, —cpv — kyd + f(q,,4,,d,v)

10
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Figure 2 Base isolation systems: (a) histeretic); (b) frictional.

According to the elastoplastic or the friccional behaviour considered for the isolator,
the nonlinear force f remains always bounded. Thus, condition (4) reduces to

”f(qc?q.c’d?v)” <¢ (13)

¢ being an unknown scalar. Using now inequalities (3) and (13) in equation (12), it
can be readily written

”gc(t7 qr7q.r7qc’q.c)” S 67(qr’q.r7qc7q.c) (14)

where € is an unknown scalar and

; : 2 .2 2 2 .2 .2 1/2
v(4,,4,,9:54.) =la, +4, +a@py + s+, F 4+ + G, +1] (15)

Using this function, the control law (5) and (6) is now applied to compute the active
control u for all time t.

The application of the control law has been numerically simulated and some of the
results are included in this section. In all the tests, parameter n has been chosen
equal to 1. In Figures 3-5, the case of the structure of Figure 1 with a hysteretic
base isolation is considered. Figures 3 and 4 show the time histories of the absolute
displacement and the displacement of the 10th floor of the structure relative to the
base. The seismic excitation has been that of the El Centro (1940) earthquake. In
both figures the responses for the passive and hybrid cases are compared. It can be
observed that, for the hybrid case, the displacement response rapidly enters within a

11



Passive
Hybrid

20.

mo ﬁ_o 0
(w) yuowaoe[dsip aseq 9In[0sqQy

Time (s)

Figure 3 Absolute base displacement response for passive and hy-

brid cases —hysteretic base isolator—.

20.

Hybrid
--m-=-w=== Passive

(w) yuowoorydsIp 9AnB[Y

Time (s)

Figure 4 Displacement of the 10th floor relative to the base for

passive and hybrid cases —hysteretic base isolator—.
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Time (s)

Figure 5 Active control force —hysteretic base isolator—.

bounded region around zero. This shows a behaviour as expected from the stability
analysis performed in previous section 3.1. The corresponding control force, plotted
in Figure §, remains within an acceptable range. The responses of Figures 3-5 have
been simulated for a value A = 0.8.

A is the most significant parameter in the implementation of the adaptive control
law, since it defines the size of the stability region. The control forces calculated
according to this law assure the accomplishment of the control objective, that is
they maintain the values of the base response within a ball whose size is A. It can
be observed that even in the case in which the base response lies within this ball,
the adaptive control law generates continuously control forces aimed to avoid that
the response goes out of the ball. In this last case an interesting condition from
a practical point of view can be added to the control strategy: if the value of the
base response is smaller than \, the control force is set equal to zero. In the following
examples, the standard use of the adaptive control law will be denoted as case (a) while
the situation in which the control forces are calculated by applying the mentioned
practical condition will be denoted as case (b). Comparative results for these two
cases can be seen in Figures 6-9 for the same hysteretic base isolation system used in
the example of Figures 3-5.

13
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Absolute acceleration (m/s**2)
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Control force (N)
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Figure 8 Absolute acceleration response of the 10th floor for pas-
sive and hybrid cases —hysteretic base isolator—. (a)
standard adaptive control law. (b) zero force if response
within the ball.
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Figure 9 Active control force —hysteretic base isolator—. (a)

standard adaptive control law. (b) zero force if response
within the ball.
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An extreme case is that of Figures 10-12 in which ) has been set to 1.2, a high
value for which the structural response lies always within the ball. As a consequence,
algorithm (b) produces zero control forces, the simulated structural response being
identical to that of the passive case. It can be observed from Figure 11 that the
relative displacement is higher if the standard adaptive control law is used, due to
the effect of the non-zero control forces of Figure 12.

v: 1 | 1 | L | 1
(a]
= n
= 7 A
S ] i
(5]
E « voLd
S = N A B
S vile o (b)
a ’ Y N\
E ',l: i
et | L ]
S o HRA AV -
I
S v oy
e 1 ¢}
2 S ba
5 I\ A
2 7 W INA
o — ARTIRA\ANE\VLY
< =7 VAV ATy
v |“' ‘V
] ] L]
0 5 10. 15 20
Time(s)

Figure 10 Absolute base displacement response for the hybrid case
—hysteretic base isolator—. (a) standard adaptive con-
trol law. (b) zero force if response within the ball.

In order to assess the influence of parameter A on the effectiveness of the control
law, a single degree of fredom model has been considered, having the same mass and
stiffness as the first floor of the previously studied 10-story building. The stiffness

of the base is ky = 7 x 11.843525" N/m and its damping ratio is 0.2. Figures 13-16
display the maximum values of the absolute base displacement, displacement of the
10th floor relative to the base, absolute acceleration of the top floor and control force,
respectively, as a function of A. Five harmonic ground motions have been considered,
each of them having a different frequency and the maximum responses are plotted
for both the pure friction and hysteretic cases. The general observation can be made
that smaller the value of ) is, smaller controlled displacements are obtained, since it
implies a more demanding control objective. The final, constant, zones of the plots
correspond to the passive base isolated building, as the before mentioned zero force
condition has been used for the case in which the response lies within the ball.

16



...
~~~ /
I1W\ (ll'l"y
azzzosooooTTT "
@ - l....lll..nHHHH..lhhllhh.-.
/ ST
e s
ewm=z22IIIIIIIIIIIIINOCIOOO0
puindaded-1-1 L

e i om o o
LS

_ : T g+ | " % 1 T
§T°0 Nmo mﬂ_.o '0 S0°0 "0 S0°0-1°0- ST°0-

(w) Juowaor]dsIp 9ATIB[Y

Lo
S w
i3
oy
—~~
)
by=
)
=
S
o
-t
Q
N
=
~Q
N

the hybrid case —hysteretic base isolator—.

dard adaptive control law.

Figure 11 Displacement of the 10th floor relative to the base for
within the ball.

B —

¢l

1
Amoﬁ*v

T

|
0 0 S0

(N) 9210] [011U0)

Time (s)

Figure 12 Active control force —hysteretic base isolator

. Stan-

dard adaptive control law.

17



Base (m)

o]
s ———— 3 Rad/s i
mm====t 4 Rad/s
J =—e=—a § Rad/s
= === 8 Rad/s
- — — = 15 Rad/s
ol B
- L e
= Pd -
| /cf_'_-_-—-_'_'_'_'
b -
Sl
3 o ——— e —— ]
v/_—"' —_—
- =7
——
- o — O TS S em——m e e e e —
o _,/—_ ml
-——’/’-‘
] _—
—
T T T T T I T
(). 0.2 0.4 0.6 0.8 l. 1.2 1.4 1.6
Lambda
g n L L L 1 1 L 1 L 1 i Il . |
3 Rad/s
S | m=mmmee- 4 Rad/s -
—em=——e= 5 Rad/s
{ | ====— 8 Rad/s L
—— = — |5 Rad/s pef TS
v
pes =
~
o] L
o
- L
N
S -
=2 i
y T T T T T g T T T T T T T -
0. 0.2 0.4 0.6 0.8 l. 1.2 1.4 1.6
Lambda

Figure 13 Plot of the absolute base displacement against A. (a)
pure friction base isolator. (b) hysteretic base isolator.

18



)
“_ __
i1
@ oo “. 11
1 RRRRS __ __
RN m “ 1
- | b I |
[ l
| il il
H __
I
| 4!
e =t
PR S = |ﬂ||u||_ﬂfnl... e et =
v\ Vo
| ! \ \
1
1 kY \ \
\ /; \ /
\ / \
T \ o \
% >\ \
* N\
44— Y \ \
E \ /; \ /
x_ / // \
/ /» / /
T /— /» // \
/ / N /
WO S0 €00 | sz00 | 200 | stho | 100 so0g

()} sanproy

1.6

1.4

1.2

Lambda

vovov o~
—_————
TOTD @
R NI
ok od o o

T oe —

T L U T T v
SE0°0 £0°0 §20°0 20°0 5100 10°0
(w) aane[ay

T
$00°0

1.6

0.6 0.8
Lambda

0.4

0.2

(2) pure friction base isolator. (b)

base against A.
ysteretic base isolator.

Figure 14 Plot of the displacement of the model relative to the
h

19



0l8
Lambda

©n o ow~
~———
TTTO «
© Qo

[s =A==
vy

0.4

N~ v oo —

0.2

1.6

4
model against

1.2
(b) hysteretic base

0.8
Lambda

20

0.6

0.4
A. (a) pure friction base isolator.

isolator.

0.2

Sy 0y ¢¢ 0¢ €T 0T Sl Sy 0y KT 0¢ By 0t Sl 01
(Zy4S/mx) uoTyRIS[OIOR (T 4S/mx) uoryRIS[EIOR

Figure 15 Plot of the absolute acceleration of the



3 Rad/s
mmmm=e 4 Rad/s
——e=— 5 Rad/s
—e=e 8§ Rad/s

15 Rad/s

T ¢l

A%szvya&

0.8
Lambda

0.6

0.4

0.2

(01X N) 99103

A. (2) pure

isolator.

friction base isolator. (b) hysteretic base

Figure 16 Plot of the active control force against

21



ACKNOWLEDGEMENTS
Finantial support from CIRIT (Government of Catalonia) and the British Coun-

cil/Spanish Ministry of Education (Acciones Integradas Programme) is greately ap-
preciated.

10.

11,

12.

REFERENCES

G. Leitmann, Deterministic control of uncertain systems via a constructive use of
Lyapunov stability theory, in Proceedings of the 14th IFIP Conference on System
Modelling and Optimization, Lecture Notes in Control and Information Sciences,
143 (H.J. Sebastian and K. Tammer, editors), Springer-Verlag, New York, 38-55,
1990.

J.M. Kelly, G. Leitmann and A. Soldatos, Robust control of base-isolated structures
under earthquake excitation, Journal of Optimization Theory and Applications, 53,
159-181, 1987.

Y.H. Chen and J. Piontek, Robust modal control of distributed parameter systems
with uncertainty, in Proceedings of the American Control Conference, San Diego,
USA, 2014-2019, 1990.

J. Rodellar, G. Leitmann and E.P. Ryan, Output feedback control of uncertain
coupled systems, International Journal of Control, 58(2), 445-457, 1993.

M. Corless and G. Leitmann, Adaptive control of systems containing uncertain
functions and unknown functions with uncertain bounds, Journal of Optimization

Theory and Applications, 41, 155-168, 1983.

E.P. Ryan, A universal adaptive stabilizer for a class of nonlinear systems, Systems
and Control Letters, 16, 219-218, 1991,

R.I. Skinner, W.H. Robinson and G.H. McVerry, An Introduction to Seismic Iso-
lation, John Wiley & Sons, Chichester, 1993.

J. Inaudi, F. Lépez Almansa, J.M. Kelly and J. Rodellar, Predictive control of base
isolated structures, Earthquake Engineering and Structural Dynamics, 21, 471-482,
1992.

J. Inaudi and J.M. Kelly, A simple active isolation scheme, in 8th VPI & SU
Symposium on Dynamics and Control of Large Structures, Blacksburg, VA, USA,
219-231, 1991.

J.N. Yang, Z. Li, A. Danielians and S.C. Liu, Aseismic hybrid control of nonlin-
ear and hysteretic structures, I and II, Journal of Engineering Mechanics, ASCE,
118(7), 1423-1456, 1992.

S. Nagarajaiah, M. Riley, A. Reinhorn and M. Shinozuka, Hybrid control of slid-
ing isolated bridges, in Proceedings 1992 Presure Vessels and Piping Conference,
ASME/PVP-237, 2, 83-89, 1992.

M.Q. Feng, M. Shinozuka and S. Fujii, Friction-controllable sliding isolated system,
Journal of Engineering Mechanics, ASCE, 119(9), 1845-1864, 1993.

22



