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Abstract-Driver assistance systems that monitor driver intent, 
warn drivers of lane departures, or assist in vehicle guidance 
are all being actively research and even put into commercial 
production. It is therefore important to take a critical look at 
key aspects of these systems, one of which being lane position 
tracking. In this paper we present an analysis of lane position 
tracking in the context of driver support systems and examine 
previous research in this area. Using this analysis we present 
a lane tracking system designed to work well under a variety 
of road and environmental conditions. We examine what types 
of metrics are important for evaluating lane position accuracy 
for specific overall system objectives. A detailed quantitative 
evaluation of the system is presented in this paper using a variety 
of metrics and test conditions. 

I. INTRODUCTION 
ITHIN the last few years, research into intelligent W vehicles has expanded from being driven mainIy by 

autonomous driving and autonomous robot applications to 
applications which work with or for the human user. Human 
factors research is merging with intelligent vehicle technology 
to create a new generation of driver assistance systems that go 
beyond automated control systems by attempting to work in 
harmony with a human operator. Lane position deterniination 
is an important component of these new applications. Systems 
that monitor driver intent, wam drivers of lane departures, or 
assist in vehicle guidance are all emerging [1]-[4]. With such 
a wide variety of applications i t  is important that we examine 
how lane position is detected and measure performance with 
relevant metrics in a variety of environmental conditions. 

In this paper we will first take a critical look at the overall 
objectives of  these types of driver assistance systems and 
examine how lane position detection plays a role. Next, in 
section 11. we will take a look at previous research in this 
area. In section HI, we wiIl explore the development of a 
lane position detection system in the context of a driver 
assistance system. Finally, in section IV we will quantify the 
lane position accuracy using a number of metric relevant for 
driver assistance applications. 

A. System Objectives 
in this paper we will look at driver assistance applications 

of lane position detection algorithms as illustrated in figure 
1 .  For these applications it is important to examine the role 
that the lane position sensors and algorithms will rake in the 
system, and design the system accordingly. The distinguishing 
characteristics of these systems are: 
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Lane Departure Warning Systems 
For a lane departure warning system, i t  is important 
to accurateIy predict the trajectory of the vehicle with 
respect to the lane boundary. [5] 
Driver Attention Monitoring systems 
For a driver attention monitoring system, it is important to 
monitor the drivers attentiveness to the lane keeping task. 
Measures such as the smoothness of the lane following 
are important for such monitoring. tasks. [4] 

W E  KEEPING PERFORMANCE 

--- a 
(a) lane depanure warning (b) driver attention monitoring 

Fig. 1. 
performance metric5 associntcd with the system nbjeclivcs 

Illustrations of systems which require lane position. and key 

(d) (4 (0 
Fig. 2. 
determination 

Imagcs depicting thc variety of road markings for Lane position 

In addition to the intended application of the lane position 
sensing system, it is important to evaluate the type of condi- 
tions that a e  expected to be encountered. Road markings can 
vary greatly not only between regions, but also over nearby 
stretches of road. Roads can be marked by well-defined solid 
lines, segmented lines, circular reflectors (or “Botts Dots”), 
physical barriers, or even nothing at all. The road surface 
can be comprised of light or dark pavements or combinations 
thereof, An example of the variety of road conditions can 
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be seen in figure 2, all taken from roads within a mile of 
each other to show the variety even within a small region. 
In this figure, (a) shows a relatively simple scene with both 
solid line and dashed line lane markings. Lane position in 
this scene can be considered relatively easy because of the 
clearly defined markings and uniform road texture. Item (b) 
shows a more complex scene in which the road surface vanes 
and markings consist of circular reflectors as well as solid 
lines. Item (c) shows a combination of circular markings and 
dashed line markings as well as a physical barrier. Item (d) 
shows a road marked solely with circular reflectors. Items (e) 
and ( f )  show complex shadowing obscuring road markings. 
Along with the various type of markings and road conditions, 
weather conditions, and time of day can have a great impact 
on the visibility of the road surface. This variation can be seen 
in figures 2e-f and 3. 

Fig. 3. Images of the same stretch of road shown in the daytime and nighttime 

11. PREVIOUS W O R K  

Road and lane markings can very greatly, making the 
generation of a singie feature extraction technique difficult. 
Edge based techniques can work well with solid and dashed 
lines, and can even be extended to attempt to compensate for 
circular reflectors [6]. Frequency based techniques, such as 
the LANA system [7], have been shown to be effective in 
dealing with extraneous edges. Other techniques, such as the 
RALPH system [SI, base the lane position on an adaptive road 
template. These methods generally assume a constant road 
surface texture and can fail in situations such as in figure 2b. 

Road modelling can be effective in increasing system per- 
formance by helping to eliminate false positives via outlier 
removal. A variety of different road modelling techniques have 
been used. This variety of techniques stems from the wide 
variety of roads. Bertozzi and Broggi 191 assumed simply that 
the road markings for parallel lines in an inverse perspective 
warped image. More recently, deformable contours such as 
splines have been used to parameterize roads [ 101. 

The two most common tracking techniques used in lane 
position detection systems are Kalman filtering [ I l l  and 
particle filtering [12]. In these systems, feature extraction 
and position tracking are often combined into a closed loop 
feedback system in which the tracked lane position defines an 
a priori estimate of the location and orientation of the extracted 
features. 

. .  

111. VISION BASED LANE POSITION DETECTION FOR 
DRIVER ASSISTANCE 

Breaking down the design into the modules described in 
I1 helps to create a lane position detection system focused 

on one or more of the system objectives described in section 
I-A and capable of handling a variety of the environmental 
conditions explored in section I-B. By examining the system 
one piece at a time and understanding how that choice might 
affect overall system performance we can optimize our system 
for our application. 

. 

Fig. 4. System Row far driver assistance focused lane position tracking 

The system described in this section is intended to provide 
accurate lane position over time for the purposes of driver as- 
sistance. This includes lane departure warning and driver intent 
inferencing. The intended environment for the lane position 
detection is daytime and nighttime highway driving under a 
variety of different roadway conditions. These road conditions 
include shadowing and lighting changes, road surface texture 
changes, and road markings consisting of circular reflectors, 
dashed lines, and solid lines. The overall system that we have 
implemented is diagramed in Figure 4. 

In this section we will describe each of the system modules 
and the motivation behind their development. The feature 
extraction and overall system is based upon our previous work 
presented in McCall et al. [13]. In tbe system presented in 
this paper, we expand our previous work to include more 
robust curvature detection, improve the road model, present 
an analysis of the metrics used to quantify performance, and 
present a detailed quantitative analysis of the performance 
under varying environmental and road conditions. 

A. Vehicle and Road Modelling 

pqzF+y-! 
..-  .. - * *  

z 
Y 

Fig 5 Vehicle and road models used in the system 

Our system objective requires a road and vehicle model that 
retains accuracy for distances of at least 30-40 meters. This is 
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required because, in critical situations in which driver assis- 
tance systems are useful, a prediction of the vehicle trajectory 
at least one second ahead of the vehicle is  necessary. A simple 
parabolic road model, as shown in figure 5, incorporates 
position, angle and curvature while approximating a clothoid 
model commonly used in the construction of highway roads 
[ l I ] .  In the figure, X ,  represents the lane offset along the 
center of the road, Z, represents the distance in front of the 
vehicle, P represents lane position, 0 represent the lane angle, 
C represents lane curvature, 9 represents the steering angle, 
and W represents the lane width. Equation 1 describes the 
road down the center of the lane while equation 2 describes 
the road at the lane boundaries. I takes the value of I for 
the left lane and -1 for the right lane. Lane width is assumed 
locally constant, but is updated via a Kalman filter described 
in section 111-E. The vehicle dynamics are approximated using 
a bicycle model similar to that used in Southall et al. [I41 

X,(Z,) = P + ez, + cz: ('1 

E. Road Feature Exfraction 
As previously discussed, road feature extraction is a difficult 

problem for a variety of reasons. For our objective and 
intended environment, it is necessary to have a robust estimate 
of road features given a variety of road marking type and 
conditions. Making the problem even more difficult is the 
necessity for fast algorithms for feature extraction. To this 
end, we have found features extracted by using steerable filters 
provide robust results for multiple types of lane markings. 

G2'(z, y) e G,, cos2 + G,, sin2 B + G,, cos B sin B (3) 

Bmin = arctan( Gm - "' - ) (4) 2Gzg 
where 

A = qG',, - 2G,,G,, + + 4G,, ( 5 )  

G,,, Gzy, and G,, represent second derivatives of a two- 
dimensional gaussian. 

Using the formulas 3 and 4, we can evaluate the response for 
a given lane angle for solid lines or find the minimum response 
for circular reflectors [13]. Figure 6 shows a typical highway 
scene with lane markings consisting of both circular reflectors 
and solid lines along with the image after being filtered and 
thresholded by the minimum response value. 

These results show the usefulness of the steerable filter 
set for relatively normal highway conditions. This filtering 
technique is also very useful for dealing with shadowed 
regions of road. Figure 7 below shows a road section that 
is shadowed by trees and the filter response tuned for the lane 
angle. 

Fig. 6. 
reflectors on a highway 

Application of Steerable filter road marking recognition for circular 

Fig. 7. Filter results when lane markings are shadowed with complex shadows 
and non-uniform road materials. 

c. Road Curvature Estimation 
Some sections of road within our intended environment 

are marked solely by circular reflectors as is seen in figure 
2f. These circular reflectors are too small to be seen with 
the cameras used in our configuration at distances greater 
than about 20 meters. In these situations an adaptive template 
is used to measure curvature beyond the range of what is 
detectable by road markings alone. Curvature detection is 
performed by matching a template of the current road to the 
road ahead, then fitting the detected results to the lane model 
described in section 111-A. The adaptive template is generated 
per pixel using a weighted average of the intensity values of 
the previous template and the intensity values .of the lane area 
for the current image. The intensity values for the lane area 
are found by applying an inverse perspective warping to the 
image and cropping a rectangular area centered around the 
current estimate of the lane position a few meters ahead of 
the vehicle. The weighting can be adjusted to allow faster or 
slower response times and is initialized using the intensity 
values of the initial frame. The template is then matched to 
the road ahead by minimizing the squared error in intensity 
values of the inverse perspective warped image. The error is 
minimized laterally at equally-spaced distances ahead of the 
vehicIe to get an estimate of the lateral position of the road 
at specific distances ahead of the vehicle. The final curvature 
estimate is generated by minimizing the squared error between 
the parabolic road model and the measured road positions. 

D. Postprocessing and Outlier Removal 
In order to perform robust tracking in situations such as in 

figures 2 and 3, some more post-processing on the filter results 
is performed. First, only the filter candidates within the vicinity 
of the lanes are used in updating the lanes. This removes 
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Fig. 8. Images showmg curvature detection. Ctockwise from upper left: 
Derected lanes overlaid onto image, aerial view with vehicle path highlighted, 
recansiructcd top view from multiple camem with lanes overlaid. inverse 
perspective warping showing curvature dfection and template 

outliers from other vehicles and extranews road markings. 
Secondly, for'each lane, the first and second moments of 
the point candidates are computed. Straight lane markings 
should be aligned so that there is a high variance in the lane 
heading direction and a low variance in the other direction. 
OutIiers are then removed based on these statistics. Finally, for 
circular reflectors, the speed of the vehicle is used to calculate 
the expected movement of the reflectors between half frames 
of an interleaved frame. This is performed using the inverse 
perspective equations described in 6. T and R represent the 
transformation and rotation of the camera respectively. The 
world coordinate Y is assumed zero because of the flat plane 
road model. Potential circular reflector detections which do 
not move as predicted by the ground plane are removed as 
outliers. Because the algorithm uses a local search about the 
lanes for candidates, it requires initialization. In testing, it was 
sufficient to initialize the lane tracker position and trajectory 
to zero (corresponding to the center of the lane). 

E. Position Tracking 
Position Tracking for our objective of driver assistance 

is vitally important. Position tracking can provide improved 
results in noisy situations and generate other useful nietrics 
important for the overall system objective. Kalman filtering 
provides a way to incorporate a linearized version of the 
system dynamics to generate optimal estimates under the 
assumption of gaussian noise. Kalman filtering also provides 
estimates of state variable which are not directly observable, 
but may be useful far the system. 

The Kalman filter state variables are updated using the 
Jane position and angle estimates along with measurements of 
yaw rate (from steering angle) and wheel velocity. The lane 
position and angle estimates are determined using the detection 
statistics described in section III-D. These measurements are 

then used to update the discrete time Kalman filter for the road 
and ve_hicle state as described in section 111-A. The system and 
measurement equations as well as the Kalman state equations. 
at time step k are shown below. Road curvature ahead of the 
vehicle C (as apposed to the second derivative of position) is 
currently tracked separately. 

Z k + l l k  = A%jk + Buk 

5 = [P, P = tan 8, P ,  w ] ~  

0 1 
Y h  = h!!xk (8) 

(9) 
where 

Iv. EXPERIMENTS AND PERFORMANCE EVALUATION 

Lane detection systems have been studied quite extensively, 
and several metrics for the evaluation of Jane position error 
have been proposed [15]. However, most proposed algorithms 
have shown limited numerical results or have only shown 
selected images as results. While these images can provide 
information on the performance of road marking extraction 
in specific contexts, they fail to account for errors involved 
in transforming image coordinates to world coordinates and 
cannot be used to quantitativety compare different algorithms. 
In order to adequately measure the effectiveness of a lane 
position detection system in a specific context or system. 
specific metrics must be used, In this section we will explore 
the usefulness of a variety of performance metrics and show 
how the algorithm described in this paper performs based on 
these metrics in a variety of test conditions. 

A. System Test-bed Configuration and Tesr Condifiuns 
The video inputs to the system are taken from a forward 

looking rectilinear camera for our test results, but can be taken 
from any number of cameras on our test bed vehicle. For more 
information on this test bed,'please refer to McCall et al. [16] 
Information about the vehicles state including wheel velocities 
and steering angle are acquired from the car via the internal 
CAN bus. 

Testing was performed on highways in southern California. 
These highways contained road conditions shown in figures 2 
and 3. Namely this includes: 

.lighting changes from overpasses. 
both circular lane markers and painted line lane markers. 

0 shadowing from trees and vehicles. 
0 changes in road surface material. 
A camera directed downwards at the road,on the side of 

the vehicle provided a good view for generating hand-marked 
positional ground truth data. Figures 9 and 10 show results 
from the algorithm plotted along with the ground truth data. 
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Fig. 9. Detected h e  position in meters (solid blue) superimposed on ground 
truth (dashed red) plotted vs. frame number with dashed lines marking the 
position of lane boundaries for an 1 1,000 frame (slightly over 6 minute) 
sequence. 

1.1 1.2 1.1 1.1 1.5 $6 1.1 1.8 1.3 2 2.1 2.2 
io' 

Fig. IO.  Detected departure rite in m/s2 (solid blue) superimposed on 
ground Uuth (dashed red) plotted vs. frame number with dashed line marking 
the abscissa for the same sequence shown in figure 9. 

B. Merrics For Objective-Spec$c Performance Evuluation 
The most common metrics for lane position performance 

evaluation are mean absolute error and standard deviation of 
error. While this provides a good estimate of the performance 
of a lane position tracker for system objectives such as 
control and driver intent, it lacks usefulness in quantifying 
the accuracy for other objectives. For example, road departure 
warning is an objective in which the rate of approach to the 
road boundary are important. For this reason it is important to 
use a variety of performance metrics when evaluating a system 
rather than just one. 

Several metrics have been proposed to evaluate the perfor- 
mance of driver lane change intent and road departure warning 
systems. Most of these involve looking at the system as a 
whole and measunng false positives, false negatives, or the 
time it takes to trigger an alarm [I] ,  1151, [171. However, 
because the systems involve collection of data other than 
just lane position it is difficult to decouple the lane position 
performance from the system performance using these types 
of metrics. In order to generate an accurate prediction of 
performance with these objectives, it is necessary to exam@ 
the accuracy of the parameters used by the system. In this 

situation, we expect the metrics of error distribution of the 
rate of change of lane position to provide good indicators of 
system performance. 

C. Euuhation and Quantitative Results 
In order to provide a more complete test our system, we 

chose to quantify the error using three different metrics. The 
three metrics we chose are standard deviation of error (table 
I), mean absolute enor  (table 11). and standard deviation of 
error in rate of change of lane position (table 111). 

Fig. I I .  
photography. (photography courtesy USGS) 

The 65 kilometer route uwd in testing uverlayed on aerial 

Results were analyzed according to these metrics under 
a variety of conditions as described in section IV-A. More 
specifically, data was. collected following the roughly 65 
kilometer route shown in figure 1 I during both daytime and 
nighttime. Scenes from each of these corresponding to the 
points A, B, C ,  and D in figure 11 along with an aerial view 
of the individual points are shown in figure 12. ' 

Fig. 12. 
(row 3) 

Scenes from aerial views (row I) .  daytime (row 2), and nighllime 

After examining the results shown in tables I, L1, and In, 
it is interesting to note that the system actually performs 
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Time of Day 
Solid Lines 

U I U 

Circular Reflectors 11 13.1245 I 10.6518 11 11.8130 
r Combined I1 12.6619 I 10.3261 I\ 11.4714 I( 

Standard Deviation of Error (m) 
Day I Night 1 1  Combined . 

12.1191 I 9.8588 I1 11.0193 

Time of Day 
Solid Lines 

11 I Circular Reflectors 11 9.8430 I 8.7476 11 9.2352 1 
I Combined . 9.6629 I 7.9558 11 8.7616 1 

Mean Absolute Error (cm) 
Day I Night 11 Combined 

9.5112 1 6.8450 !l 8.1503 

TABLE 111 
RESULTS FROM THE DEPARTURE RATE PERFORMANCE METRIC 

EVALUATED UNDER VARIOUS LIGHTING AND ROAD CONDITIONS 

” , , -  L 
Solid Lines 0.2716 0.2079 0.2442 
Cix- 0.28080.2455 0.2617. 
Combined 0.2766 0.2304 0.2531 

I 11 Standard deviation of error in 11 i] departure rate metric ( m / s )  
Xme of Dav 11 Dav I Nieht I1 Combined 

better at night. This can be attributed to the larger contrast 
in road markings due to heir  reflective nature as well as 
the lack of complex shadows formed by trees and vehicles 
during the daytime. Complex shadows hamper the systems 
ability to detect circular reflectors in scenes such as that 
shown in figure 7. Furthermore, the difference in departure rate 
performance between daytime and nighttime driving points to 
an increased number of successful detections for nighttime 
driving. This is likely due to the increased contrast during 
nighttime as the reflective road markings are illuminated 
by the vehicles headlamps. The comparatively smaller gain 
in standard deviation performance over mean absolute error 
might suggest that the tracking at nighttime performed better 
in general, hut still contained cases where the tracking was 
off. This is because the mean absolute error metric is less 
influenced by the small amounts of data points that contain 
a larger amount of error, Also, roads that are marked with 
solid line markings had better results than areas marked only 
with circular reflectors. Again, this is most likely due to better 
contrast and visibility of solid line markings. 

v. CoNCLUslON 

In conclusion, we have discussed how the overall system 
objective, environment, and sensor systems affect the design 
decisions when designing a lane position tracker. We have 
shown a new type of lane tracker based upon these design 
criteria. Finally, we have examined the metrics used to quantify 
accuracy of lane position systems and presented detailed 
quantitative results that are relevant to the systems application 
in a driver assistance vehicle. 

Specific examples of the types of applications that this lane 
position tracker was designed to be used are those described 
in Huang et al. [18], McCall et a1 [4], and Gandhi et al. 
[?I. These systems are designed to capture the entire vehicle 
context including vehicle surround, vehicle state, and driver 
state. 
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