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E.T.S. de Ingenieros de Caminos, Canales y Puertos,
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SUMMARY

The solution of a steady thermal multiphase problem is assumed to be dependent on a set of parameters
describing the geometry of the domain, the internal interfaces and the material properties. These parameters
are considered as new independent variables. The problem is therefore stated in a multidimensional setup.
The Proper Generalized Decomposition (PGD) provides an approximation scheme especially well suited to
preclude dramatically increasing the computational complexity with the number of dimensions. The PGD
strategy is reviewed for the standard case dealing only with material parameters. Then, the ideas presented
in [Ammar et al., “Parametric solutions involving geometry: A step towards efficient shape optimization.”
Comput. Methods Appl. Mech. Eng., 2014; 268:178–193] to deal with parameters describing the domain
geometry are adapted to a more general case including parametrization of the location of internal interfaces.
Finally, the formulation is extended to combine the two types of parameters. The proposed strategy is used
to solve a problem in applied geophysics studying the temperature field in a cross section of the Earth crust
subsurface. The resulting problem is in a 10-dimensional space, but the PGD solution provides a fairly
accurate approximation (error  1%) using less that 150 terms in the PGD expansion. Copyright c� 2014
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many problems with practical application can be characterized by its parametric dependence. The
general solution is sought in a multidimensional parametric space, with an explicit expression
depending on the parameters as new independent variables (or coordinates). This strategy increases
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the dimensionality of the problem (e.g. if you add three free parameters in a 2D spatial problem,
the overall dimension is five) and it may lead to an explosion in the computational complexity often
referred as the curse of dimensionality.

The Proper Generalized Decomposition (PGD) [1–3] is a Reduced Order Model technique
particularly devised to preclude the curse of dimensionality. The PGD is first used in an offline phase
computing the elements characterizing the general solution containing the parametric dependence
(also denoted as computational vademecum [4]). Then, the second phase consists in multiple online
queries in which real-time responses are achieved.

Inverse problems are one of the scenarios were PGD can be successfully utilized. These
problems are employed to find the values of the parameters that better fit the available observations
(experimental measurements). This approach requires solving a number times the direct model,
each time for a different data set and selecting the set of parameters such that the computed values
coincide with (or better fit) the observations. The ability to rapidly solve the direct models could
represent the difference between computationally affordable and non-affordable inverse problems.

The problems considered in this paper include the parametric representation of the geometry and
the shape and location of the internal interfaces. For instance, the geometry parameters describe the
size of the domain, the thickness of a layer, the depth, inclination and curvature of interfaces... This
type of problems, pertaining to the geometry optimization, have been addressed by many authors in
standard contexts, see [5–11].

Here, the PGD is used to obtain a computational vademecum accounting for the parameters
representing the geometry and the location of the interfaces. The proposed methodology is based
on the ideas recently introduced in [12] to deal with the geometric parametrization. The novel
contributions of this work consist in 1) the extension accounting for internal interfaces, 2) the
combination of the geometry parameters with other parameters describing the material properties
and boundary conditions, 3) the methodology allowing a general geometrical description by
constructing separated representations of the elements introducing in the equation the effect of the
geometrical variations (without significant loss of accuracy), and 4) the modular computation of the
PGD modes pre-storing the necessary matrices and allowing an efficient implementation.

The remainder of the paper is structured as follows: Section 2 presents the problem statement and
introduces, with some detail, the PGD technique in the simpler case of the diffusivity-parametrized
Poisson equation. In Section 3 the proposed treatment of the geometrical parameters is presented
and together with the separable version of the operators involved. The general PGD solution for
the diffusivity and geometry parametrized problem is briefly described in Section 4 and, finally, an
example of the proposed technique with application to a temperature distribution in a cross section
in the subsurface of the Earth Crust is presented in Section 5.
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2. PROBLEM STATEMENT AND PGD SOLUTION FOR THE
DIFFUSIVITY-PARAMETRIZED POISSON EQUATION

2.1. Poisson equation with two materials

The function to be approximated is the solution u, taking values in ⌦, of the following boundary
value problem governed by a Poisson equation. The strong form reads: find u such that,

8
>><

>>:

�r · (ru) = s in ⌦,

(ru) · n = g
N

on �
N

,

u = u
D

on �
D

,

(1)

where the source term s, the prescribed values on the Dirichlet boundary u
D

, the prescribed flux on
the Neumann value g

N

and the diffusivity  are the data set. The domain ⌦ is partitioned in two
subdomains ⌦1 and ⌦2, such that the diffusivity function  is defined as

(x) =

8
<

:
1 for x 2 ⌦1,

2 for x 2 ⌦2.
(2)

The diffusivity function  takes a constant value in each subdomain. However, it is straightforward
to generalize the methodologies introduced in the next sections to more complex functions
(characterized also by a set of parameters, for instance two as 1 and 2). Geometrically, ⌦1 and
⌦2 are complementary in ⌦, that is ⌦̄ = ⌦̄1 [ ⌦̄2, and @⌦1 \ @⌦2 is the interface between the two
open subdomains.

The usual variational form of the problem reads: find u 2 V such that

a(u, v) = `(v), for all v 2 V0, (3)

where V := {u 2 H1(⌦) : u = u
D

in �
D

} and its corresponding test functions space is V0 := {u 2
H1(⌦) : u = 0 on �

D

}. The bilinear and linear forms a(·, ·) and `(·) are given by

a(u, v) :=

Z

⌦1[⌦2

ru · (rv) d⌦ and `(v) :=

Z

⌦

sv d⌦+

Z

�
N

g
N

v ds. (4)

Remark 1 (Homegneous Neumann boundary conditions)
For the sake of a simple presentation and without any loss of generality, it is assumed hereafter that
Neumann boundary conditions are homogeneous, that is g

N

= 0. The treatment of non-homogenous
Neumann conditions in the PGD context is described, for example, in [13].

2.2. Parametric problem

In order to compute a generalized solution corresponding to the different values of the set of
parameters 1 and 2, problem (1) is solved taking 1 and 2 as additional independent variables (or
parametric coordinates) and the unknown is formally written as u(x,1,2), being x 2 ⌦, 1 2 I

1

and 2 2 I
2 . Thus, in (1) u takes values in D = ⌦⇥ I

1 ⇥ I
2 and formally, also  depends on

(x,1,2) as indicated in (2).
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Note that for a 2D spatial computational domain ⌦ functions u and  are defined in the 4D space
D. Thus, formally, the solution lies in a tensor product space, namely u 2 V ⌦ L2(I

1) ⌦ L2(I
2).

In other words, freezing two of the arguments, the remaining function belongs to the corresponding
sectorial space, that is

for given values of 1,2; u(·,1,2) 2 V,

for given values of x,2; u(x, ·,2) 2 L2(I
1),

for given values of x,1; u(x,1, ·) 2 L2(I
2).

Note that the tensor product space V ⌦ L2(I
1) ⌦ L2(I

2) collects the multidimensional complexity
of the problem and does not assume separability of the functions: if the three spaces have finite
dimensions, the dimension of the tensor product space is the product of the three dimensions.

The integration is now in D and therefore in a multi-dimensional space. The derivation of (5) is
performed using the standard weighted residuals technique integrating in D but requires standard
integration by parts only in ⌦. The corresponding weak form in the multi-dimensional setup reads:
find u 2 V ⌦ L2(I

1) ⌦ L2(I
2) such that

A(u, v) = L(v), for all v 2 V0 ⌦ L2(I
1) ⌦ L2(I

2), (5)

with the following definitions of the bilinear and linear forms

A(u, v) :=

Z

I

1

Z

I

2

a(u, v) d2 d1 and L(v) :=

Z

I

1

Z

I

2

`(v) d2 d1. (6)

The number of dimensions of the solution domain increases with the number of parameters used
in the problem characterization. The traditional numerical techniques (standard finite elements,
finite volumes or finite differences) fail in providing an affordable methodology because the
computational cost blows up exponentially with multidimensionality. Handling multidimensional
functions raises the issue of precluding the curse of dimensionality. The PGD approach to tackle
this problem consists in enforcing a separable structure in the function that has to approximate u.

2.3. Separable approximation

The PGD methodology assumes that u(x,1,2) can be fairly approximated by a sum of separated
terms, namely

u(x,1,2) ⇡ un

PGD
(x,1,2) =

nX

m=1

Fm

x

(x)Fm

1
(1)F

m

2
(2)

= un�1
PGD

(x,1,2) + Fn

x

(x)Fn

1
(1)F

n

2
(2).

(7)

The function un

PGD
stands for the PGD approximation with n terms (or modes) and is defined as a

sum of separable terms. Each term (mode) is the product of functions depending only of one of
the arguments. Note that in some of the PGD implementations the separated modal functions are
normalized and therefore a scalar coefficient affects each mode and characterizes its amplitude.
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Hereafter, the explicit dependence of the functions is dropped out in the notation because it is
already indicated in the subscript. For example, Fm

x

stands also for Fm

x

(x) and it is assumed that it
depends only on x.

Derivation of the PGD algorithm requires assuming that the bilinear and linear operators, A(·, ·)
and L(·), are also separable. This is equivalent to say that the functions involved in the operators, in
this case, the diffusivity function (x,1,2) and the source term s(x,1,2), have both a separable
structure similar to uPGD(x,1,2), namely

(x,1,2) ⇡ PGD(x,1,2) =
n

X

k=1

Bk

x

Bk

1
Bk

2
(8a)

s(x,1,2) ⇡ sPGD(x,1,2) =
n

sX

l=1

Sl

x

Sl

1
Sl

2
. (8b)

The functions Sl

?

and Bk

?

(for ? = x, 1 and 2, k = 1, . . . , n


, l = 1, . . . , n
s

) describe the source
term s and the diffusivity  that are both part of the data. The separable representation (or
approximation) of s and  must be obtained as a preprocess.

Note that despite the dependence of the source term s on the diffusivities might seem atypical, in
other circumstances the source term could depend on the parameters. Thus, to present the general
situation this dependence is explicitly kept.

Remark 2 (Separability of diffusivity)
Note that the diffusivity function, , as given in (2), admits an exact separable form based on
Heaviside like functions Hi(x) : ⌦ ! R defined as,

Hi(x) =

8
<

:
1 for x 2 ⌦

i

,

0 otherwise.

Thus, the separable form of the (x,1,2) is,

(x,1,2) = H1(x)1 +H2(x)2. (9)

This equation has the structure described by (8b), taking B1
x

(x) = H1(x), B1
1
(1) = 1 and

B1
2
(2) = 1, and similarly for the second term. There is no additional difficulty in extending this

strategy to any number of different space subdomains larger than two, taking n


equal to the number
of subdomains.

If the separate representation is not as trivial as in the previous case, the Proper Orthogonal
Decomposition (POD) can be used to obtain an approximated separable representation. For instance,
this is to be applied in the general case to obtain an expression like (8b) for function s defining the
source term. The use of the standard POD is restricted to the case of having only two parameters.
More than two parameters require using a High Order Singular Value Decomposition (HO-SVD)
[14, 15].
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2.4. Greedy algorithm: independent computation of terms for the PGD expansion

The number of terms required in the PGD approximation, n in equation (7), is, in general, not known
a priori. One of the assets of the PGD strategy is to compute the n terms sequentially, using a greedy
approach. The number of terms is set by stopping the computation whenever the obtained solution is
trusted to be accurate enough. Goal oriented error assessment can also be used in this strategy [16].
Note also that each new term in (7) is computed using an alternating directions iterative scheme
with a 2D complexity.

Once the previous terms un�1
PGD

are known, the unknowns that have to be determined to compute
un

PGD
are functions F

x

, F
1 , and F

2 (the dependence on n displayed in (7) is now omitted in the
notation because attention is concentrated in the n term and therefore there is no ambiguity). These
functions are sought in the spaces V , L2(I

1) and L2(I
2), and the corresponding test functions

belong to V0, L2(I
1) and L2(I

2). The weak problem presented in (5) determines the last term of
un

PGD
. Thus, the objective now is to evaluate the separated contributions F

x

2 V , F
1 2 L2(I

1) and
F
2 2 L2(I

2) for all �F
x

2 V0, �F
1 2 L2(I

1) and �F
2 2 L2(I

2) such that

A(F
x

F
1F2 , v) = L(v) � A(un�1

PGD
, v) with v = �F

x

F
1F2 + F

x

�F
1F2 + F

x

F
1�F2 . (10)

The problem is nonlinear because each equation (for a given v) involves the product of the unknown
functions and the test set for v is characterized in terms of the solution itself (increasing the nonlinear
character of the problem). Moreover, the test functions v belong to V0 ⌦ L2(I

1) ⌦ L2(I
2) such

that they are written as v = �F
x

F
1F2 + F

x

�F
1F2 + F

x

F
1�F2 . This functional set is not a

vectorial space and therefore the solution of (10) cannot be interpreted as a Galerkin projection.
However, it can be seen as a relaxation of problem (5) in order to obtain as many equations as
unknowns and force to vanish the residual in this particular functional set where the form of the test
function is understood as a variation of the separable unknown, namely

v = �(F
x

F
1F2) = �F

x

F
1F2| {z }

v

x

+F
x

�F
1 F2| {z }

v

1

+F
x

F
1�F2| {z }
v

2

= v
x

+ v
1 + v

2 .

As proved by by Falcó and Nouy , see [17], the nonlinear problem (10) is well posed and the
fixed-point iteration method has guaranteed convergence for the case of the elliptic problems.

In the remainder of the presentation, the developments are presented for the discrete spaces. The
discrete FE test spaces are denoted by V h

x

, V h

1
and V h

2
, respectively. In the discrete setup, taking

both the candidate solutions and the test functions in the discrete spaces problem (10) is formulated
as: find the discrete separated contributions F

x

, F
1 and F

2 such that

A(F
x

F
1F2 , v?) = L(v

?

) � A(un�1
PGD

, v
?

)

8
>><

>>:

for all �F
?

2 V h

?

,

with v
?

= �F
?

F
x

F
1F2/F?

,

for ? = x, 1 and 2.

(11)

The iterative solver is devised using the idea of computing a new iteration F
x

, F
1

and F
2

as
a correction of the previous one F

x

, F
1

and F
2

and assuming that the iteration scheme will lead
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to convergence towards the solution of (11). Next section is devoted to present a fixed-point solver
with an alternating directions strategy to be used in this context.

Remark 3 (Reduction in number of unknows)
The number of unknowns involved in finding un

PGD
(or F

x

, F
1 and F

2) in (11) is d
x

+ d
1 + d

2 .
This corresponds to the sum of the dimensions of the spaces V h

x

, V h

1
and V h

2
. The choice for the set

of test functions states the same number of equations. These equations are however nonlinear. This
is the price to pay for reducing the computational complexity of the original problem statement,
see problem (5). Recall that in the original problem test functions range in V h

x

⌦ V h

1
⌦ V h

2
and ,

consequently, have d
x

d
1d2 degrees of freedom and equations.

2.5. Fixed-point solver for the nonlinear problem

Following previous works, see for example [16, 18–20], an alternating directions scheme is
sequentially applied to the non-linear problem (11). The alternating directions approach consists
in solving each dimension separately, assuming that the other components are known. The idea is
similar to a block-based Gauss-Seidel scheme.

Using this idea (11) is split in three sequential linear equations, the first problem reads: given F
1

and F
2

, update F
x

, such that

A(F
x

F
1
F
2
, v

x

) = L(v
x

) � A(un�1
PGD

, v
x

) for all �F
x

2 V h

x

with v
x

= �F
x

F
1
F
2
. (12a)

Then, the second problem reads : given F
x

, and F
2

, update F
1

, such that

A(F
x

F
1
F
2
, v

1) = L(v
1) � A(un�1

PGD
, v

1) for all �F
1 2 V h

1
with v

1 = F
x

�F
1F2

. (12b)

And, finally, the third problem reads: given F
x

and F
1

, update F
2

, such that

A(F
x

F
1
F
2
, v

2) = L(v
2) � A(un�1

PGD
, v

2) for all �F
2 2 V h

2
with v

2 = F
x

F
1

�F
2 . (12c)

Note that problems (12) are linear because the unknowns are F
x

, F
1

and F
2

respectively for
each of them. The method proposed consists in iterating the three equations to reach a stationary
solution. The converged solution is assumed to fulfill equation (11).

2.6. Matrix form of the resulting linear equations

As previously said, each of the problems described by (12) is linear. This section is devoted to detail
the matrix form of these equations. With the definitions of (4), (6) and (8a), it turns out that

A(u, v) =
n

X

k=1

Z

I

1

Z

I

2

Z

⌦1[⌦2

ru · (Bk

x

Bk

1
Bk

2
rv) d⌦ d2 d1 (13)
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Recalling (12), where both arguments of A(·, ·) u and v are separable, say u = F
x

F
1F2 and

v = F̃
x

F̃
1 F̃2 , (13) becomes

A(u, v) =
n

X

k=1

Z

⌦1[⌦2

rF
x

· (Bk

x

rF̃
x

) d⌦

�"Z

I

1

F
1B

k

1
F̃
1d1

#"Z

I

2

F
2B

k

2
F̃
2d2

#

=
n

X

k=1

ak(F
x

, F̃
x

) mk

1
(F

1 , F̃1) mk

2
(F

2 , F̃2),

(14)

where the bilinear forms ak(·, ·), mk

1
(·, ·) and mk

2
(·, ·) are defined in Appendix A.

The FE discrete approximations of the functions depending on each of the independent variables,
that is for x, 1 and 2 are expressed in terms of the interpolation functions constituting basis for the
spaces V h

x

, V h

1
and V h

2
. The basis functions are readily collected in the vectors of shape functions,

namely N

T
x

= [N1
x

, N2
x

, . . . , Nd

x

x

], N

T
1

= [N1
1
, N2

1
, . . . , N

d

1
1 ] and N

T
2

= [N1
2
, N2

2
, . . . , N

d

2
2 ].

Thus, any function depending on, for example, x is readily expressed in terms of a vector of d
x

nodal values, namely
Fm

x

= N

T
x

f

m

x

where vector f

m

x

collects the nodal values of Fm

x

in the nodes defining the FE discretization
associated with the basis {N1

x

, N2
x

, . . . , Nd

x

x

}. Similarly for Fm

1
= N

T
1

f

m

1
and Fm

2
= N

T
2

f

m

2
.

The matrices associated with the bilinear forms ak(·, ·), mk

1
(·, ·) and mk

2
(·, ·) in the discrete

spaces are denoted by Kk

x

, Mk

1
and Mk

2
, respectively, as detailed in Appendix A.

A similar approach is followed with the right-hand-side term.

L(v) =
n

sX

l=1

Z

I

1

Z

I

2

Z

⌦1[⌦2

(Sl

x

Sl

1
Sl

2
)v d⌦ d2 d1

=
n

sX

l=1

Z

⌦1[⌦2

Sl

x

F̃
x

d⌦

�"Z

I

1

Sl

1
F̃
1 d1

#"Z

I

2

Sl

2
F̃
2 d2

#
,

(15)

where, as before, functions Sl

x

, Sl

1
and Sl

2
are written in terms of nodal functions and values,

namely, Sl

x

= N

T
x

s

l

x

, Sl

1
= N

T
1

s

l

1
and Sl

2
= N

T
2

s

l

2
. Recall also that the term associated with

g
N

is assumed to vanish. Further, the load vectors, corresponding to the different terms in the
previous equation are denoted by q

l

x

, q

l

1
and q

l

2
, as described in Appendix A.

This allows rewriting (12a) in matrix form: given f

m

x

, f

m

1
and f

m

2
for m = 1, . . . , n � 1

(characterizing un�1
PGD

), f

1
(representing F

1
) and f

2
(representing F

2
) , update f

x

(representing
F
x

) such that "
n

X

k=1

ck
x

Kk

x

#
f

x

= r

x

(16a)
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where the constant ck
x

and the vector r

x

are defined as

ck
x

:= (fT
1
Mk

1
f

1
)(fT

2
Mk

2
f

2
),

r

x

:=
n

sX

l=1

(fT
1

q

l

1
)(fT

2
q

l

2
)ql

x

�
n�1X

m=1

n

X

k=1

ck,m
x

Kk

x

f

m

x

, and

ck,m
x

:= (fT
1
Mk

1
f

m

1
)(fT

2
Mk

2
f

m

2
).

Similarly, problem (12b) becomes: given f

m

x

, f

m

1
and f

m

2
for m = 1, . . . , n � 1 (characterizing

un�1
PGD

), f

x

(representing F
x

) and f

2
(representing F

2
) , update f

1
(representing F

1
) such that

"
n

X

k=1

ck
1
Mk

1

#
f

1
= r

1 (16b)

where the constant ck
1

and the vector r

1 are defined as

ck
1

:= (fT
x

Kk

x

f

x

)(fT
2
Mk

2
f

2
)

r

1 :=
n

sX

l=1

(fT
x

q

l

x

)(fT
2

q

l

2
)ql

1
�

n�1X

m=1

n

X

k=1

ck,m
1

Mk

1
f

m

1
, and

ck,m
1

:= (fT
x

Kk

x

f

m

x

)(fT
2
Mk

2
f

m

2
).

And, finally, problem (12c) becomes: given f

m

x

, f

m

1
and f

m

2
for m = 1, . . . , n � 1 (characterizing

un�1
PGD

), f

x

(representing F
x

) and f

1
(representing F

1
), update f

2
(representing F

2
)such that

"
n

X

k=1

ck
2
Mk

2

#
f

2
= r

2 (16c)

where the constant ck
2

and the vector r

2 are defined as

ck
2

:= (fT
x

Kk

x

f

x

)(fT
1
Mk

1
f

1
)

r

2 :=
n

sX

l=1

(fT
x

q

l

x

)(fT
1

q

l

1
)ql

2
�

n�1X

m=1

n

X

k=1

ck,m
2

Mk

2
f

m

2
, and

ck,m
2

:= (fT
x

Kk

x

f

m

x

)(fT
1
Mk

1
f

m

1
).

Equations (16) are linear systems of equations of the size of the number of degrees of freedom
each variable dimension, that is d

x

, d
1 and d

2 respectively.

3. PGD FOR THE GEOMETRY PARAMETRIZATION

The parametrization of the geometry is essential in CAD and also in exploring the design space for
shape optimization problems. A similar problem is associated with the parametric characterization
of the location of internal boundaries or interfaces, which is very important for inverse problems
(identification of geometrical patterns through indirect measurements, for instance).

Copyright c� 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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Ω1

Ω2

θ1

θ2

Figure 1. Example 3: Triangular macro-element mesh (left, n
T

= 11). The two subdomains ⌦1 and ⌦2
are represented in two different colors. The geometry of the macro-elements varies as a function of the
parameters ✓ (right). Here ✓1 is the horizontal size of ⌦1 and ✓2 its vertical size. The geometry of the (finer)

finite element mesh is also mapped parametrically from a sub-mesh of the reference element ⌦
R

.

Thus, the extension of PGD to deal also with the geometrical parametrization is of outmost
practical interest because it reduces drastically the cost of sampling the design space. This idea
was recently proposed in [12]. Here this approach is used and further improved to deal with a larger
number of independent design parameters. Moreover, it is also extended to encompass the concept
of geometrical parametrization of internal boundaries and material subdomains.

In this section, the same model problem presented in (1) is adopted. Now, the parametrization
is not concerned with diffusivity  but rather with the geometrical definition of ⌦ (its boundary)
and the different subdomains in which ⌦ is partitioned. Thus, it is assumed that there are two
parameters, say ✓1 and ✓2, describing the geometry. Thus, now the computational domain⌦ depends
on (✓1, ✓2) and also the subdomains description depends on them, viz. ⌦1(✓1, ✓2), ⌦2(✓1, ✓2). The
presentation is restricted to two parameters for the sake of an easer reading, there is no conceptual
difficulty in increasing the number of parameters or subdomains. This is illustrated in Figure 1 for
the configuration of example 3.

The statement of the problem is identical to the previous one, except for the fact that the new
parameters are ✓1 and ✓2 instead of 1 and 2. This modifies (6) and (7), where 1 and 2 have to be
directly replaced by ✓1 and ✓2. However, in the case of the geometrical parameters ✓1 and ✓2, there
is no explicit parametric dependence in the equation as described in (8) for 1 and 2. This section
is devoted to discuss the rationale of the techniques characterizing the effect of the geometrical
parameters in the equation and, hence, in the solution.

3.1. Domain decomposition of the parametric geometry

In order to properly represent the problem dependence on the geometrical parameters, it is assumed
that the domain ⌦ is divided in a set of simple (typically triangular) subdomains that are referred as

Copyright c� 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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Te 

coordinates �, via a mapping denoted by �e. That is400

�e : T �! Te

� 7�! x = �e(�)
(32)

Each mapping depends on the geometry parameters, that is �e(�1, �2) or401

�e(✓), for e = 1, 2, . . . , nT . The Jacobian matrix associated with this map-402

ping is denoted by Je(✓) = ��e

��
. The functional approximation is performed403

in terms of these macro-elements mappings in the usual finite element fashion.404

A function u(x) is therefore described in terms of its macro-element contri-405

butions parametrized with the coordinates � denoted by ue(�), e = 1, . . . , nT .406

This is formally written as407

u =
nTX

e=1

ue � ��1
e , (33)

in the sense that every point x in � is mapped back to T according to the408

macro-element Te where it lies. In the following, any function u taking values409

in � is identified with the set of local restrictions to the macro-elements,410

u1, . . . , unT .411

Thus, the expressions in (4), become412

a(u, v) =

Z

�

ru · (�rv) d�

=
nTX

e=1

Z

T
(J�1

e r
�

ue) · (�J�1
e r

�

ve)|Je| d�

=
nTX

e=1

Z

T
r

�

ue · (�|Je|J�T
e J�1

e| {z }
De

r
�

ve) d�

and �(v) =

Z

�nT
e=1 Te

sv d�

=
nTX

e=1

Z

T
sve|Je| d�

(34)

where it is assumed that the gradient operator r is acting in the coordinates x413

and r
�

is its counterpart in the reference element described by the coordinates414

�, |Je| is the Jacobian determinant and De := �|Je|J�T
e J�1

e is the (fictitious)415

21

Figure 2. Each macro-element T
e

is the image of a reference element T with mapping  
e

.

macro-elements T1, T2 , ... , T
n

T

. These macro-elements constitute a finite element mesh denoted
as the geometrical mesh because it is used to characterize the geometry, both the boundary of ⌦ and
the internal interfaces, not to introduce a functional approximation. Therefore, the macro-elements
cover the complete domain, that is the closure of

S
n

T

e=1 T
e

coincides with the closure of ⌦.
When ⌦ is partitioned into subdomains, for instance ⌦1 and ⌦2 as shown in Figure 1, the macro-

elements are nested into these subdomains. That is, the subdomains are divided in one or more
macro-elements but one macro-element T

e

cannot intersect two or more subdomains. Thus, the
parametric geometrical characterization of the macro-elements characterizes also the geometry of
the subdomains.

Following the standard idea of the isogeometric mapping extensively used in FE formulations, it
is assumed that each macro-element T

e

, for e = 1, 2, . . . , n
T

, is the image of a reference element T
described by the coordinates x̂, via a mapping denoted by  

e

, see Figure 2. That is,

 
e

: T �! T
e

x̂ 7�! x =  
e

(x̂)

Each mapping depends on the geometry parameters; that is,  
e

(✓1, ✓2) or  
e

(✓) for e =

1, 2, . . . , n
T

. The Jacobian matrix associated with this mapping is denoted by J
e

(✓) = @ 
e

/@x̂.
The functional approximation is performed in terms of these macro-elements mappings in the

usual finite element fashion. A function u(x) is therefore described in terms of its macro-element
contributions parametrized with the coordinates x̂ denoted by u

e

(x̂), e = 1, . . . , n
T

. This is formally
written as

u =
n

TX

e=1

u
e

� �1
e

, (17)

in the sense that every point x in ⌦ is mapped back to T according to the macro-element T
e

where it
lies. In the following, any function u taking values in ⌦ is identified with the set of local restrictions
to the macro-elements, u1, . . . , un

T

.
Thus, the expressions in (4), become

a(u, v) =

Z

⌦

ru · (rv) d⌦ =
n

TX

e=1

Z

T
r
x̂

u
e

· (|J
e

|J�T
e

J�1
e| {z }

D
e

r
x̂

v
e

) dx̂
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and

`(v) =

Z

⌦

sv d⌦ =
n

TX

e=1

Z

T
sv

e

|J
e

| dx̂

where it is assumed that the gradient operator r is acting in the coordinates x and r
x̂

is its
counterpart in the reference element described by the coordinates x̂, |J

e

| is the Jacobian determinant
and D

e

:= |J
e

|J�T
e

J�1
e

is the (fictitious) conductivity tensor associated with every macro-element
T
e

.
As the integrals are resolved in the reference element T instead of ⌦, the volume element dx̂

replaces d⌦. Both J
e

and |J
e

|, and therefore also D
e

, depend on the geometry parameters ✓, and
the dependence is different for each macro-element T

e

, for e = 1, 2, . . . , n
T

.
When mappings  

e

are linear (for triangular macro-elements), the Jacobian is constant inside
each macro-element (it does not depend on x̂ but it is still different for each e) and therefore also
D

e

is independent of x̂.
The discretization space is also build on the basis of this domain decomposition. The functional

approximation mesh (the standard one, associated with V h

x

) is constructed by assembling sub-
meshes of the macro-elements of the geometry mesh, as illustrated in Figure 1. Accordingly, the
space discretization functions N

x

are built by assembling the local contributions from the macro-
elements, that is

N

x

=
n

T

A
e=1

N

⇠

� �1
e

,

where it is assumed that the submeshes of all macro-elements are topologically identical and result
of mapping a mesh of T associated with the vector of shape functions N

⇠

. The symbol A denotes
the assembly operator, standard in finite elements, acting as a smart sum that relates local and global
connectivities.

3.2. PGD formulation for the domain decomposition parametrization

As previously said, in the case of geometrical parametrization equation (6) is still valid replacing 1

and 2 by ✓1 and ✓2. Thus, the multidimensional operators read

A(u, v) =

Z

I

✓1

Z

I

✓2

a(u, v) d✓2 d✓1 =
n

TX

e=1

Z

I

✓1

Z

I

✓2

Z

T
r
x̂

u
e

· (D
e

r
x̂

v
e

) dx̂ d✓2 d✓1

and

L(v) =

Z

I

✓1

Z

I

✓2

`(v) d✓2 d✓1 =
n

TX

e=1

Z

I

✓1

Z

I

✓2

Z

T
sv

e

|J
e

| dx̂ d✓2 d✓1

Analogously to equation (11), the PGD solution un

PGD
= un�1

PGD
+ F

x

F
✓1F✓2 is sought by using an

iterative scheme that solves a nonlinear approximation problem. The problem reads: given un�1
PGD

,
find F

x

, F
✓1 and F

✓2 such that

A(F
x

F
✓1F✓2 , v?) = L(v

?

) � A(un�1
PGD

, v
?

)

8
>><

>>:

for all �F
?

2 V h

?

,

with v
?

= �F
?

F
x

F
✓1F✓2/F?

,

for ? = x, ✓1 and ✓2.

(19)
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PGD OF A GEOMETRICALLY PARAMETRIZED HEAT PROBLEM FOR GEOPHYSICS 13

The strategy is identical to the formulation for the classical (non geometrical) parametrization and
the nonlinear problem (19) has to be split in three linear successive iterations analogous to equations
(12).

When dealing with the geometry parametrization, the difference lies in the separability of the
operators A(·, ·) and L(·) and the resulting matrix forms. This is mainly related with the separability
of |J

e

| and D
e

. As already mentioned, in the case of triangular macro-elements J
e

does not depend
on x̂. Thus, for each e, |J

e

| and D
e

depend only on ✓1 and ✓2. The following developments are made
under this assumption.

The parametric dependence of |J
e

| and D
e

on ✓ is readily derived from the analytical expressions
giving the coordinates of the macro-elements vertices (the nodes of the geometrical mesh) as
functions of ✓.

Let x1 = (x1, y1), x2 = (x2, y2) and x3 = (x3, y3) be the vertices of the macro-element T
e

. Note
that x1(✓), x2(✓) and x3(✓) depend on ✓ in a different way for each e, the dependence on e is
omitted in the notation. The dependence on ✓ of the macro-element coordinates is assumed to be
analytically known and given by a simple expression.

Taking as T the element of vertices x̂1 = (1, 0), x̂2 = (0, 1) and x̂3 = (0, 0) equipped with the
standard linear shape functions,

N1(x̂1, x̂2) = x̂1, N2(x̂1, x̂2) = x̂2 and N3(x̂1, x̂2) = 1 � x̂1 � x̂2,

the Jacobian reads

J
e

(✓) =
h@x

@x̂

i
=

 
x1(✓) � x3(✓) x2(✓) � x3(✓)

y1(✓) � y3(✓) y2(✓) � y3(✓)

!
=

 
�x13 �x23

�y13 �y23

!
,

where a notation for the difference of the nodal coordinates has been introduced: �x
ij

:= x
i

(✓) �
x
j

(✓) and �y
ij

:= y
i

(✓) � y
j

(✓), for i, j = 1, 2, 3. Thus, the expression for the determinant is

|J
e

| = �x13�y23 ��x23�y13, (20)

the inverse of the Jacobian reads,

J�1
e

=
1

|J
e

|

 
�y23 ��x23

��y13 �x13

!
,

and the expression for matrix D
e

is

D
e

=
1

|J
e

|

 
(�y23)2 + (�x23)2 ��y23�y13 ��x13�x23

��y23�y13 ��x13�x23 (�x13)2 + (�y13)2

!
. (21)

Even if the parametric dependence of each nodal coordinate x

i

in ✓ is simple, it is clear from
(20) and (21) that the functional dependence of |J

e

| and A
e

is much more involved. Recall that a
separable form of A(·, ·) and L(·) as defined in (18) is required to carry out the PGD implementation.
This requires a separable expression for |J

e

| and D
e

that, in most of the cases, cannot be obtained
analytically from the expressions available for x

i

. Note that if the geometrical deformation that can
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14 S. ZLOTNIK, P. Dı́EZ, D. MODESTO AND A. HUERTA

be described using very simple parametric expressions, it would be possible to obtain analytical
versions of (20) and (21). The advantage of the procedure described next is its applicability to
any regular deformation in 2 and 3 dimensions (the regularity assumption is preventing singular
geometrical mappings).

3.3. Approximated separable expressions for D
e

and |J
e

|
For a given macro-element T

e

, the dependence of x

i

(i = 1, 2, 3) on ✓ is known analytically (and
presumably simple). As stated in sections 2.2 and 2.3, the parametric spaces for ✓1 and ✓2, L2(I

✓1)

and L2(I
✓2), are readily discretized with a finite element spaces V h

✓1
and V h

✓2
. The spaces V h

✓1
and

V h

✓2
are associated with a grid of sampling points in I

✓1 and I
✓2 and, hence, in I

✓1 ⇥ I
✓2 .

The expressions given in (20) and (21) are difficult to handle analytically but they are simple to
evaluate in all the points of the grid in I

✓1 ⇥ I
✓2 . Taking this set of sample points as snapshots,

the POD technique provides a fair separable approximation of both |J
e

| and D
e

. The POD
approximation for |J

e

| reads

|J
e

| ⇡
n

e

JX

l=1

T e,l

✓1
T e,l

✓2
, (22)

where ne

J

is the number of terms required to fairly represent |J
e

| with the POD and T e,l

✓1
and T e,l

✓2

the corresponding modes (depending on ✓1 and ✓2 respectively).
Note that the symmetric 2 ⇥ 2 matrix D

e

(in 2D problems) has three independent components,
namely, ce1 = [D

e

]1,1, ce2 = [D
e

]1,2 = [D
e

]2,1 and ce3 = [D
e

]2,2. Thus, the fictitious conductivity
matrix for each macro-element can be written as

D
e

=
3X

a=1

ce
a

I
a

,

where

I1 :=

 
1 0

0 0

!
, I2 :=

 
0 1

1 0

!
and I3 :=

 
0 0

0 1

!
.

The POD approximation of D
e

is performed by analyzing the three components separately and
reads

D
e

⇡
3X

a=1

n

e,a

DX

m=1

Ge,a,m

✓1
Ge,a,m

✓2
I
a

, (23)

where ne,a

D

is the number of modes of the POD approximation of ce
a

, and Ge,a,m

✓1
and Ge,a,m

✓2
the

corresponding functions (depending on ✓1 and ✓2 respectively).
According to the numerical experiments less than three terms (nd,a

D

 3) are sufficient to obtain
fairly accurate approximations (errors < 1%). This is probably due to the smooth parametrical
dependence of the nodal locations x(✓).

If more than two geometrical dimensions are present, a High Order Singular Value Decomposition
(or similar procedure) is required to obtain separable approximations of ce

a

and |J
e

|. The number
of terms involved in the separated expressions, in that case, could increase, depending on the
dependence of the macro-elements on the parameters (not all macro-elements depend on all
parameters). This raise in the number of terms will produce an increased computational effort,
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nevertheless, it is usually not critical because it only affects the off-line phase of the scheme. Using
the HO-SVD code provided in [15], the authors have successfully run examples involving up to 6
geometrical dimensions.

Moreover, the computation cost of evaluating the separated operators is partially mitigated by pre-
computing the involved matrices. The evaluation, then, reduces to matrix times vector operations.
In the case of geometrical parameters, as it is described in the following, the sum of matrices is
replaced by an assembly operation with no significant increase of computational complexity.

The expression corresponding to (14) is found recalling the separability of u and v, that
is u = F

x

F
✓1F✓2 and v = F̃

x

F̃
✓1 F̃✓2 . Moreover, as expressed in (17), the geometrical domain

decomposition via the macro-elements identifies each of the space modes F
x

(x) and F̃
x

(x) with
the local contributions F

x,e

(x̂) and F̃
x,e

(x̂). Thus, the expression corresponding to (14) is now

A(u, v) =
n

TX

e=1

3X

a=1

n

e,a

DX

m=1

Z

I

✓1

Z

I

✓2

Z

T
r
x̂

F
x,e

F
✓1F✓2 · (Ge,a,m

✓1
Ge,a,m

✓2
I
a

r
x̂

F̃
x,e

F̃
✓1 F̃✓2) dx̂ d✓2 d✓1

=
n

TX

e=1

3X

a=1

n

e,a

DX

m=1

Z

T
r
x̂

F
x,e

· (I
a

r
x̂

F̃
x,e

) dx̂

�Z

I

✓1

Ge,a,m

✓1
F
✓1 F̃✓1 d✓1

�Z

I

✓2

Ge,a,m

✓2
F
✓2 F̃✓2 d✓2

�

=
n

TX

e=1

3X

a=1

n

e,a

DX

m=1

aaT (Fx,e

, F̃
x,e

) me,a,m

✓1
(F

✓1 , F̃✓1) me,a,m

✓2
(F

✓2 , F̃✓2),

where the bilinear forms aaT (·, ·), me,a,m

✓1
and me,a,m

✓2
are defined in Appendix B, as well as the

matrices corresponding to their discretized forms, Ka

x̂

, Me,a,m

✓1
and Me,a,m

✓2
. Similarly,

L(v) =
n

TX

e=1

Z

I

✓1

Z

I

✓2

Z

T
s
e

v
e

|J
e

| dx̂ d✓2 d✓1

=
n

TX

e=1

n

e

JX

l=1

Z

I

✓1

Z

I

✓2

Z

T
s
e

v
e

T e,l

✓1
T e,l

✓2
dx̂ d✓2 d✓1

=
n

TX

e=1

n

e

JX

l=1

Z

T
s
e

F̃
x,e

d⌦

�Z

✓1

T e,l

✓1
F̃
✓1 d✓1

�Z

✓2

T e,l

✓2
F̃
✓2 d✓2

�
,

(24)

where it is assumed that the source term s has its macro-element representations s
e

, e = 1, . . . , n
T

.
Moreover, here s does not depend on the geometrical parameters ✓1 and ✓2 and therefore a separable
approximation similar to (8b) is not required. The load vectors, corresponding to the different terms
in the previous equation are denoted by q

e

x̂

, q

e,l

✓1
and q

e,l

✓2
, as introduced in Appendix B.

The next step requires splitting the problem into linear iterations. First, the spatial mode is iterated
in the equation analogous to (12a). Here, an additional difficulty arises from the macro-element
representation of the spatial modes. As mentioned above, in the discrete representations the sums
over e (ranging in the number of macro-elements n

T

) are replaced in the matrix equations by the
assembly operator A.

When iterating to update the spatial mode f

x

, the resulting problem reads: given f

m̄

x

, f m̄

✓1
and f

m̄

✓1

for m̄ = 1, . . . , n � 1 (characterizing un�1
PGD

), f

✓1
(describing F

✓1
) and f

✓2
(describing F

✓2
) , update
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f

x

(describing F
x

) such that
n

T

A
e=1

"
3X

a=1

ce,a
x

Ka

x̂

#
f

x

= r

x

(25a)

where the constant ce,a
x

and the vector r

x

are defined as

ce,a
x

:=

n

e,a

DX

m=1

(fT
✓1
Me,a,m

✓1
f

✓1
)(fT

✓2
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As for the equation to iterate the mode corresponding to one of the geometrical parameters, say
✓1, the resulting problems reads: given f

m̄

x

, f m̄

✓1
and f
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✓1
for m̄ = 1, . . . , n � 1 (characterizing un�1
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where f

x,t

stands for the restriction of f

x

to the nodes of the submesh discretizing macro-element
T
e

and the constant ce,a,m
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and vector r
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The problem corresponding to the other geometrical parameter ✓2 is very similar to the one
described in (25b) and therefore it is not worthy writing it here.

4. GENERAL FORM FOR THE MIXED GEOMETRIC AND MATERIAL
PARAMETRIZATION

Assume now that the problem is parametrized by n
p

material parameters 1,2, . . . ,n

p

and n
g

geometrical parameters ✓1, ✓2, . . . , ✓n
g

. This section is devoted to present the PGD formulation that
allows handling this complex parametrization by merging the concepts introduced in Sections 2 and
3. This is not introducing a further conceptual difficulty but the expressions become more involved.
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The counterpart of (7) is now
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(26)

The separable approximation of the input data analogous to (8), (22) and (23) are now expressed
as follows

 ⇡
n

X

k=1

Bk

x

n

pY

p=1

Bk



p

, s ⇡
n

sX

l=1

Sl

x

n

pY

p=1

Sl



p

,

|J
e

| ⇡
n

e

JX

l=1

n

gY

g=1

T e,l

✓

g

, D
e

⇡
3X

a=1

n

e,a

AX

m=1

n

gY

g=1

Gt,a,m

✓

g

I
a

,

(27)

where the two last expressions have to be set for each macro-element T
e

, e = 1, . . . , n
T

. When
needed, the spatial modes Bk

x

and Sl

x

are duly represented in terms of their descriptions in the
macro-elements, that is Bk
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.
Then, the iterative process to determine the spatial mode reads: given for m̄ = 1, . . . , n � 1 the
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All the linear systems to iterate for one of the parametric modes have similar structures. For
instance, taking parameter 

p̃

, the problem reads: given for m̄ = 1, . . . , n � 1 the vectors f
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, f

m̄



p

(for p = 1, . . . , n
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where the scalar ce,k
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Note that despite the complexity of the previous expressions, which involve many terms, the
resulting systems are of the size expected and both matrices and force vectors are computed as
linear combinations of a reduced number of different matrices that can be easily stored, as can
be noted in Appendix B. The equations corresponding to any other parameter are similar to the
previous one. The implementation of this methodology is much more efficient if the basic matrices
and the corresponding modal vectors are properly stored. Consequently, book keeping strategies are
particularly important.

5. NUMERICAL EXAMPLES

5.1. Two examples of parametric geometry

Two examples are presented next to validate the methodology proposed in Section 3 (geometry-
parametrized Poisson problem) and to show its accuracy. Their simplicity allow comparing uPGD with
other numerical or analytical solutions. The governing problem is presented in (1), having ⌦ divided
into two subdomains, ⌦1(✓) and ⌦2(✓), that depend on two parameters ✓1 and ✓2 (diffusivities are
kept constant). Boundary conditions are of Dirichlet type in the top and bottom of the model, with
values of one and zero respectively, and Neumann homogeneous at the side walls.

In example 3, the shape of the subdomains is controlled by two geometrical parameters that
determine the size of a rectangular interior domain as shown in Figure 1. Four sets of parameters,
corresponding to the extreme values of the geometrical parameters were chosen to compare the PGD
solution against the corresponding FE solution. That is, the maximum and minimum values of ✓1
and ✓2 describing the four corner panels in Figure 1. The convergence curves are plotted in Figure 3.
The PGD solution with 40 terms has a relative error (in L2 norm) of order 10�4 when compared
with the four reference cases.

In example 4, two parameters ✓ = (L, ✓), control the size and rotation of a small square inclusion.
L controls its size and ✓ its rotation between 0 and ⇡/4 counterclockwise, see Figure 4.

A simple test is done by setting diffusivities of both materials to one, in order to obtain an obvious
linear solution independent of the parameter for the geometry. The expected linear solution is found
for all tested cases, see Figure 4. Computing 30 terms, the maximum nodal error is of order 10�2 and
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Figure 3. Example 3: Convergence of uPGD for the geometry-parametrized problem ( constant in each
subdomain). Each curve corresponds to one value of the parameters that generates one of the geometries

shown at the corner panels of Figure 1

θ
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a b

c d

Figure 4. Example 4: Solution and meshes for different values of the geometry parameters. Colours represent
the pgd solution for the case where 1 = 2 (linear solution expected) and thin white lines are the contour
lines. Gray lines represent finite element mesh, blue lines the geometry mesh, and thick white lines indicate

the internal boundary between ⌦1 and ⌦2.

the maximum error in L2 norm is 10�4. It is important to note that similar errors are also obtained
when the diffusivities of the two subdomains are different (1 = 1 and 2 = 0.01).

The geometry parametrization as described in Section 3 is based on the parametric location of the
nodes of the geometry mesh. Because the connectivity of the geometry mesh is kept constant, it is
important to avoid the collapse or the flipping of the macro-elements.

5.2. Temperature field in a geological cross section

This last example studies the temperature distribution in the subsurface of the Earth crust; it has
both scientific and practical interests. The geothermal gradient, for example, is used to estimate the
thickness of the crust and tectonic plates, see for instance [21]. This gradient is also used to infer
the age of the oceanic plates [22]. Moreover, knowledge on the temperature distribution is vital in
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Figure 5. Example 5. Panels a and b from [24] show depth migrated seismic section and geological
interpretation. Two rock contacts (interfaces) well resolved by the seismic line are indicated by labels 1
and 2 (compare the seismic data and the interpretation). Two poorly resolved features are the lateral contacts
of the Diapir with the surrounding rocks (label 3) and the thickness of the Sant (gray) layer crossing the
section. Panel c and d show the geometry mesh and the simplified structure used in the numerical model.
They also show geometry variations produced by the geometrical parameters. Dashed lines on panel c show

the approximate location of the wells 1 and 2.

regions where geothermal energy is exploited. And it is also important in the study of subsurface
water flow, as convection patterns could be linked to the thermal state of the region [23].

The proposed example presents a model for the thermal state of the subsurface that depends on 8
parameters of two different kinds. First, different rock types have different physical properties such
as density and thermal diffusivity. Some rocks, for example Halite (sedimentary rock composed
by Salt) exhibit a wide range of thermal diffusivities depending on its composition. Therefore, the
effective thermal diffusivity of each rock type in the model is controlled by its own parameter.

Second, the location of different rock bodies in the subsurface is in commonly determined using
seismic studies. While many structures are very well resolved by the seismic data, others are not,
leading to uncertainties in the location of the contacts (interfaces) between rock bodies. These
unresolved, or noisy, patches are common in the presence of Salt, because of the very high contrast
between rock properties. Therefore, the location of some contacts in the model is controlled by
geometrical parameters.

This model is based in a cross section from the Central European Basin in North-West Germany
where multiphase salt tectonics are present. Seismic data and its interpretation is taken from [24] and
simplified to be included in this model. The transect exhibits a Salt Diapir, i.e. the central structure
in Figure 5, cutting some sedimentary layers. It is important to stress that in this work the objective
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Figure 6. Example 5. Convergence in modes of uPGD with respect to the corresponding FE solution for 5
random sets of parameters.

is not to gain geological insight on the region; the simplified section is used to show the capabilities
of the numerical techniques presented so far.

Panels a and b of Figure 5 show seismic data and the geological interpretation provided by [24]
(modified from their Figure 6). Examples of well resolved contacts (interfaces that can be univocally
located based on the seismic data) and poorly resolved features were added to their Figure. Label
3 and 4 show two poorly resolved features: the smoothness of the lateral contact of the Salt body
with surrounding rocks, and the thickness of the Salt layer that crosses the section. Two geometry
parameters were chosen to investigate how these two features affect the thermal state of the section.
The first parameter, ✓1, determines the smoothness of the contact between the walls of the Diapir
and surrounding rocks, and the second parameter, ✓2, controls the thickness of the Salt layer crossing
the domain.

In addition, six parameters control the thermal diffusivity of domains ⌦1 to ⌦6 shown in Figure 5.
which correspond to different rock types. The last subdomain, ⌦7, has a known constant diffusivity.

Boundary conditions are the same as used in previous examples (Dirichlet at top and bottom,
homogeneous Neumann at the side walls).

Thus, the solution of the parametrized equation belongs to a 10 dimensional space (8 parameters
plus space), and it has the form uPGD(x,µ), where µ = (✓1, ✓2,1, . . . ,6). The geometrical
parameters are ✓

i

2 (0, 1) for i = 1, 2 and the diffusivity parameter are 

j

2 (0.05, 1) for j = 1

to 6.
The PGD solution is compared with the corresponding FE solution for some random generated

set of parameters. Convergence of uPGD as the number of modes increases is depicted in Figure 6.
Note that with 100 terms an error of order 10�2 is obtained for all tested cases.

The PGD solution is used next to solve several synthetic inverse problems. These problems
simulate the practical situation where only a few observed quantities are available, for example
temperature or heat flux measurements, and the parameters of the model are unknown. The goal is
to recover the optimal set of parameters, using the available incomplete information.

In the synthetic problems the optimal set of parameters, µ

opt, is chosen a priori. The complete
temperature field is computed as T opt(x) = uPGD(x,µ

opt). Next, the “observed” data is extracted
from T opt and, finally, using only the observed data the objective is to recover µ

opt. This last step
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Figure 7. Example 5. Relative error of the recovered parameters, µrec, for three different data sets.
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Figure 8. Example 5. The sensitivity of 6 in space is shown as the partial derivative of uPGD with respect to
6. Sampling values on the left part of the domain is not useful to determine the value of 6.

involves the solution of a constrained nonlinear optimization problem, that is implemented through
the fmincon function of Matlab, using the Sequential Quadratic Programming algorithm.

Temperatures along two wells is used as “observed” data. The results of the inversions is
summarized in Figure 7. This figure presents the relative error between recovered parameters, µ

rec,
and the ones use to generate the synthetic example, µopt. The black curve corresponds to an inversion
problem using the complete temperature field as the observed value. In that case the recovery of
the parameters is almost exact, with differences of order 10�7 for all the parameters. The first
geometrical parameter controlling the smoothness of the diapir, does not produce large temperature
variations and therefore is is difficult to recover with large accuracy. Data from well 1 provides
a very good approximation to the original parameters. In the case of well 2, most parameters are
correctly recovered with the exception of 6; this is reasonable because the distance between the
well 2 and ⌦6 is large.

A major benefit of the PGD solution is that it provides the complete space of solutions and also
its derivatives. Therefore, it is simple to estimate the sensitivity of 6 as (@uPGD/@6) evaluated
at (x,µopt). Figure 8, which precisely plots this derivative, clearly indicates that temperature
measurements in the left part of the domain do not provide useful information to recover parameter
6. Or in other words, variations of 6 do not produce any temperature change at well 2. This ability
of easily evaluate sensitivities for any parameters can be extremely useful to decide the best location
of a sampling well in order to maximize the usefulness of information.

Finally it is worth noting that in the solution of each one of the inversion problems, more that 1500
evaluations of the objective function were required. Each one of these evaluations is very efficient
for uPGD .

In this example the average number of iterations to compute each mode is three (a grand total
of 152 iterations to compute 50 modes). It is difficult extracting conclusions comparing CPU time
measurements, however, some figures are provided here for reference. The PGD offline phase took
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⇡ 10 hours to complete in a standard computer. Then, once the PGD solution is available, the
optimization phase involving approximately 1500 queries is solved in less than one minute.

On the other hand, a standard FEM code takes approximately 2 hours in performing these 1500
queries. Thus, for a single inverse problem and with the simple 2D FE model used here, the cost
of pre-computing the PGD solution (ten hours for the PGD offline phase plus one minute online) is
larger than a direct FE approach (which requires two hours online).

Consequently, in the case of solving a series of inverse problems corresponding to multiple data
sets the PGD approach become competitive (in both approaches, PGD and direct FE, the online
phase has to be performed many times but the offline PGD phase is performed just once). This is
particularly interesting when the data sets evolve with time. Moreover, if the problem requires not
only multiple queries but also fast queries (for example in control problems), the PGD solution is
the only option (the online phase provides a fast response).

6. CONCLUSIONS

This work addresses a multiphase Poisson problem where diffusivities and interface locations are
taken as parametric dimensions. Its multidimensional solution brings in the usual difficulties of
high dimensional problems. The Proper Generalized Decomposition is used to circumvent these
difficulties.

The parametric description of the geometry in the PGD context was first proposed by [12].
Here, this work is extended presenting a general procedure able to deal with more complex
geometrical descriptions based on any number of geometrical parameters. An approximated
separable expression for the inverse of the Jacobian of the mapping functions is devised to be applied
in the PGD context.

The examples presented include geometrical parametrization of internal interfaces, together
with parameters controlling material properties (viz. thermal diffusivity). An applied geophysical
parameter-recovery problem, with its solution in a 10-dimensional space, is successfully solved
using the proposed methodology.

In all the examples tested a relative small number of terms (< 100) and obtain a solution with
an acceptable accuracy (relative errors < 10�2). In addition, once computed, the PGD solution is
evaluated extremely fast, making feasible to solve inverse problems in a short period of time with
low computational resources.
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A. OPERATORS AND MATRICES FOR THE DIFFUSION-PARAMETRIZED POISSON
PROBLEM

The bilineal operators in Section 2.6 are defined as follows (for generic arguments F
?

and F̃
?

)

ak(F
x

, F̃
x

) :=

Z

⌦

rF̃
x

· �Bk

x

rF
x

�
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x
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d⌦,
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1
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1
F̃
1 d1, mk

2
(F

2 , F̃1) :=

Z

I

2

F
2 B

k

2
F̃
2 d2.

The matrices associated with the previous bilinear operators are the following (the vectors of
shape functions N

x

, N

1 and N

2 are column vectors)

Kk

x

= ak(N
x

,NT
x
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2
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where index k runs from 1 to the number of terms in the decomposition of .
The vectors associated with (15) read

q

l

x

=
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Sl
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B. OPERATORS AND MATRICES FOR THE GEOMETRICALLY PARAMETRIZED
POISSON PROBLEM

The bilineal operators in Section 3.3 are defined as follows (for generic arguments F
?

and F̃
?

)

aaT (Fx,e

, F̃
x,e

) :=

Z

T
r
x̂

F̃
x,e

· (I
a

r
x̂

F
x,e

) dx̂,

me,a,m

✓1
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✓1 , F̃✓1) :=
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and
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✓2 , F̃✓2) :=
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Ge,a,m

✓2
F
✓2 F̃✓2 d✓2.

They induce the following matrices

Ka

x̂

= aaT (Nx̂

,NT
x̂

), Me,a,m

✓1
= me,a,m

✓1
(N

✓1 ,N
T
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), and Me,a,m

✓2
= me,a,m

✓2
(N

✓2 ,N
T
✓2
),

where indices range as follows: e = 1, . . . , n
T

, a = 1, 2, 3, and m = 1, . . . , ne,a

A

. Thus, the number
of matrices to be stored are:

• 3 matrices Ka

x̂

of size the number of nodes of the macro-element sub mesh
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• P
e,a

ne,a

A

matrices Me,a,m

✓1
and Me,a,m

✓1
of size the dimension of number of nodes discretizing

I
✓1 and I

✓1 . If all macro-elements and components of D
e

have the same number of terms n
A

in POD approximation (23), the number of matrices is 3n
T

n
A

. In practice, the number of
matrices to be precomputed and stored is much lower because for different values of indices
e and a, the value of ne,a

A

is small (often equal to 1) if the parameters have nearly no influence
in the component a of element e.

Finally, the vectors associated with (24) read
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