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Abstract

The objective of this paper is to analyze the pressure stability of fractional step �nite

element methods for incompressible 
ows. For the classical �rst order projection method,

it is shown that there is a pressure control which depends on the time step size, and

therefore there is a lower bound for this time step for stability reasons. The situation is

much worse for a second order scheme in which part of the pressure gradient is kept in the

momentum equation. The pressure stability in this case is extremely weak. To overcome

these shortcomings, a stabilized fractional step �nite element method is also considered,

and its stability is analyzed. Some simple numerical examples are presented to support

the theoretical results.
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1 Introduction

Fractional step methods for the incompressible Navier-Stokes equations have enjoyed wide-

spread popularity since the original works of Chorin [1] and Temam [2]. The reason for this

relies of the computational eÆciency of these methods (see e.g. [3, 4, 5]), basically due to

the uncoupling of the pressure from the velocity components. However, several issues related

to these methods still deserve further analysis, and perhaps the most salient of these are the

behavior of the computed pressure near boundaries and the stability of the pressure itself.

Referring to the pressure boundary conditions, it is well known that numerical boundary

layers may appear. The reason for this can be explained by considering the pressure boundary

condition associated to the splitting of the continuous problem as proposed in [1, 2]. Although

relevant in some cases, this misbehavior does not a�ect the global pressure convergence [6],

and can be shown to be less dramatic than expected in most situations [7]. In any case, any

reference to the correct boundary conditions for the fractional step scheme can be skipped by

considering the splitting at the purely algebraic level, once the space discretization has been

performed. This is the approach advocated in [8, 9] and that we will follow here.

The study of the pressure stability for schemes that use a pressure Poisson equation is the

main concern of this paper. Surprisingly, this stability is rarely made explicit. It is normally

hidden by the convergence analysis, when it is required that the time step size be small

enough. In general, analyses at the continuous space level are based on the stability of the

continuous pressure [10, 11], whereas when the space is discretized it relies on the stability of

this dicretization, either the �nite element method as in [12] or a very simple �nite di�erence

setting as in [13]. Other attempts to study the pressure stability are presented in [14], where

results much weaker than those presented here are stated.

The results to be presented in this paper refer to two types of fractional step schemes,

namely, the classical �rst order projection method and a second order algorithm based on

the Crank-Nicolson discretization for the viscous and convective terms and a second order

pressure splitting, leaving the pressure gradient at a given time level in the �rst step and

computing its increment in the second one (see [15, 16, 17, 11, 18] for di�erent ideas related

to second order schemes). Firstly, the stability of these schemes in the context of a �nite

element space discretization is analyzed in Section 3 using matrix arguments. It is shown

that a certain pressure stability can be expected, regardless of the particular discrete velocity-

pressure spaces chosen. This stability can be useful for the �rst order scheme, but it is

certainly too weak for the second order one. In both cases, though, it is given by the time

step size, and hence this size is limited from below simply to stabilize the space discretization.

It is worth noting that this dependence of the stabilization terms on the time step size also

appears in some formulations aiming to stabilize convection, and not the velocity-pressure

interpolation (see [19] for a version of the Characteristic-Galerkin method where this fact is

clearly demonstrated).
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In order to avoid the bond described, a pressure stabilized scheme is proposed in Sec-

tion 4. Again, the stability analysis of both the �rst and second order fractional step schemes

is undertaken, now using a variational setting rather than the previous matrix language. This

stabilization is intended to mimic the stabilizing e�ect of the �rst order projection method.

The method was originally presented in [20] for the steady Stokes problem, extended to the

nonlinear case in [21] and to the transient problem using a monolithic time discretization

in [22]. In spite of the fact that the variational approach used in Section 4 supersedes the

matrix analysis of Section 3, the latter is extremely useful to understand the stabilization

mechanism introduced by the splitting and, more precisely, by approximation (14) in Sec-

tion 2.

The �nal step is to extend the previous stabilization method to the case in which con-

vection needs also to be stabilized. The resulting formulation, based on the ideas of [23], is

presented in Section 5. It is able to have control over the pressure gradient and the nonlinear

convective term while yielding very accurate numerical results, much less overdi�usive than

classical pressure stabilization methods or upwind techniques designed to deal with convection

dominated 
ows.

Some numerical results are presented in Section 6. In spite of their simplicity, they clearly

show that the theoretical predictions of the paper are encountered in practice. The summary

of the most salient results and the conclusions are �nally presented in Section 7.

2 Fractional step methods for the Navier-Stokes equations

2.1 Problem statement

2.1.1 Continuous problem

In the simplest possible setting, the incompressible Navier-Stokes equations for a 
uid moving

in a domain 
 of R
d
(d = 2 or 3) in a time interval [0; T ] are

@tu+ u � ru� ��u+rp = f in 
; t 2 (0; T ); (1)

r � u = 0 in 
; t 2 (0; T ); (2)

where u is the velocity �eld, p the kinematic pressure, f the vector �eld of body forces and

� > 0 the kinematic viscosity. These equations need to be supplied with an initial condition

for the velocity and a boundary condition, which, for simplicity, we will take as the simple

homogeneous Dirichlet condition u = 0 on @
, t 2 [0; T ].

The �nite element space discretization that we will consider is based on the variational

formulation of the problem. In order to write it, let us introduce the forms

a(u;v) := �(ru;rv); b(q;v) := (q;r � u);

c(u;v;w) := (u � rv;w) +
1

2
((r � u)v;w) ;
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where (�; �) denotes the standard L2 inner product. In these expressions, for a �xed t 2 [0; T ],

u;v;w are assumed to belong to the velocity space V = [H1
0 (
)]

d of vector functions whose

components and their derivatives are square-integrable and vanish on @
, and q belongs to

the pressure space Q = L2(
)=R of square-integrable functions modulo constants. Observe

that c corresponds to the skew-symmetric form of the convective term. For exactly divergence

free u, the second term of c vanishes. However, it will simplify the analysis of the discrete

problem, where we will often make use of the property c(u;v;v) = 0 for all v 2 V .

Having introduced this notation, the weak form of problem (1)-(2) consists of �nding u

and p such that

(@tu;v) + c(u;u;v) + a(u;v)� b(p;v) = hf ;vi 8v 2 V ;

b(q;u) = 0 8q 2 Q;

and u satisfying the initial condition. The notation hf ;vi stands for the duality pairing of

v 2 V and f 2 [H�1(
)]d (for t 2 [0; T ]).

2.1.2 Monolithic time discretization

We start by considering the simplest time discretization of the problem, namely, the trape-

zoidal rule. Let � 2 [0; 1] be a given parameter and consider a partition of [0; T ] into N

time steps of (for simplicity) equal size Æt . Let f be a generic function of time and fn

the value of f at tn = nÆt or an approximation to it, and let fn+� := �fn+1 + (1 � �)fn,

Ætf
n := (fn+1 � fn)=Æt . Given un at tn, the time discrete problem consists of �nding un+1

and pn+1 at tn+1 as the solution of

(Ætu
n;v) + c(un+�;un+�;v) + a(un+�;v)� b(pn+1;v) = hfn+�;vi 8v 2 V ; (3)

b(q;un+1) = 0 8q 2 Q: (4)

The pressure value computed here has been identi�ed as the pressure evaluated at tn+1,

although this is irrelevant for the velocity approximation. The values of interest of � are

� = 1=2, corresponding to the second order Crank-Nicolson scheme (see [24] for a thorough

analysis of this scheme) and � = 1, which corresponds to the backward Euler method. If f

is not continuous in time, hfn+�;vi can be taken as the time average of hf ;vi over the time
step [tn; tn+1].

2.1.3 Finite element discretizations

Let V h be a �nite element space to approximate V and Qh a �nite element approximation

to Q. Functions in V h need to be continuous piecewise polynomials, whereas continuity

is in principle not required for Qh. However, we will consider only continuous pressure

interpolations, for reasons explained below.
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The �nite element discretization of (3)-(4) reads:

(Ætu
n
h;vh) + c(un+�

h ;un+�
h ;vh) + a(un+�

h ;vh)� b(pn+1

h ;vh) = hfn+1;vhi 8vh 2 V h;

b(qh;u
n+1

h ) = 0 8qh 2 Qh:

It is well known that for this discrete problem to be stable the velocity and pressure spaces

need to satisfy the classical inf-sup condition (see e.g. [25]), which in particular precludes

the use of convenient equal velocity-pressure interpolations. However, it was early noted that

this condition is not required when fractional step methods using a pressure Poisson equation

are employed (see e.g. [26, 27, 28, 29]). The analysis and clari�cation of this situation is

precisely the objective of this paper.

Before presenting the fractional step schemes to be studied, let us introduce the matrix

form of the problem. This is given by

MÆtU
n + K(Un+�)Un+� + GP

n+1 = F
n+�; (5)

DUn+1 = 0; (6)

where U and P are the arrays of nodal velocities and pressures, respectively. If we denote the

node indexes with superscripts a, b, the space indexes with subscripts i, j, and the standard

shape function of node a by Na, the components of the arrays involved in these equations

are:

M
ab
ij = (Na; N b)Æij (Æij is the Kronecker Æ);

K(Un+�)abij = (Na;un+�
h � rN b)Æij +

1

2

�
Na; (r � un+�

h )N b
�
Æij + �(rNa;rN b)Æij ;

G
ab
i = �(@iNa; N b);

Fai = hNa; fii;

D
ab
j = (Na; @jN

b):

It is understood that all the arrays are matrices (except F, which is a vector) whose compo-

nents are obtained by grouping together the left indexes in the previous expressions (a and

possibly i) and the right indexes (b and possibly j).

2.2 Fractional step schemes

The fractional step schemes we will consider can be introduced at this point, applied to the

fully discrete problem (5)-(6). This is exactly equivalent to

M
1

Æt
(Û

n+1
� U

n) + K(Un+�)Un+� + 
GPn = F
n+�; (7)

M
1

Æt
(Un+1 � Û

n+1
) + G(Pn+1 � 
Pn) = 0; (8)

DUn+1 = 0; (9)
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where Û
n+1

is an auxiliary variable and 
 is a numerical parameter, whose values of interest

are 0 and 1. At this point we can make the essential approximation

K(Un+�)Un+� � K(Û
n+�

)Û
n+�

; (10)

where Û
n+�

:= �Û
n+1

+(1� �)Un. Expressing Un+1 in terms of Û
n+1

using (8) and inserting

the result in (9), the set of equations to be solved is

M
1

Æt
(Û

n+1
� Un) + K(Û

n+�
)Û

n+�
+ 
GPn = Fn+�; (11)

ÆtDM�1
G(Pn+1 � 
Pn) = DÛ

n+1
; (12)

M
1

Æt
(Un+1 � Û

n+1
) + G(Pn+1 � 
Pn) = 0; (13)

which have been ordered according to the sequence of solution, for Û
n+1

, Pn+1 and Un+1.

This uncoupling of variables has been made possible by (10). This approximation is inter-

preted in [8, 9] as an incomplete block LU factorization of the original problem (7)-(9). The

advantage of this discrete approach is that now there is no question about the boundary

conditions for the intermediate variable Û
n+1

: since boundary conditions are incorporated

in the discrete problem (5)-(6), the prescriptions for Û
n+1

are exactly the same as for the

end-of-step velocity Un+1.

Even though problem (11)-(13) can be implemented as such, it is very convenient to make

a further approximation. Observe that DM�1G represents an approximation to the Laplacian

operator. In order to avoid dealing with this matrix (which is computationally feasible only

if M is approximated by a diagonal matrix), we can approximate

DM
�1
G � L; with components Lab = �(rNa;rN b): (14)

Matrix L is the standard approximation to the Laplacian operator. The quality of approxi-

mation (14) is discussed bellow. Clearly, this approximation is only possible when continuous

pressure interpolations are employed.

After using (10) and (14) the problem to be solved is:

M
1

Æt
(Û

n+1
� U

n) + K(Û
n+�

)Û
n+�

+ 
GPn = F
n+�; (15)

Æt L(Pn+1 � 
Pn) = DÛ
n+1

; (16)

M
1

Æt
(Un+1 � Û

n+1
) + G(Pn+1 � 
Pn) = 0: (17)

Once arrived at this point, we may also write the discrete variational equations corresponding

to this matrix problem, which are

1

Æt
(ûn+1

h � un
h;vh) + c(ûn+�

h ; ûn+�
h ;vh) + a(ûn+�

h ;vh)� 
b(pnh;vh)

= hfn+1;vhi 8vh 2 V h;

�Æt (r(pn+1

h � 
pnh);rqh) = (qh;r � ûn+1

h ) 8qh 2 Qh;

1

Æt
(un+1

h � ûn+1

h ;vh)� b(pn+1

h � 
pnh;vh) = 0 8vh 2 V h;
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where ûh is obviously the piecewise continuous function obtained by interpolating from the

nodal values Û.

Formally, it is easy to see that the splitting error, introduced by approximation (10),

is of order O(Æt ) when 
 = 0 and of order O(Æt 2) when 
 = 1 (observe from (17) that

O(kUn+1 � Û
n+1

k) = Æt O(kPn+1 � 
Pnk) in any norm k�k). In order to have the same error

due to the splitting and due to the original time discretization, we will consider two sets of

parameters. The �rst is 
 = 0, � = 1, which yields the classical �rst order projection scheme,

and the second 
 = 1, � = 1=2, which yields a (formally) second order time accurate method.

3 Basic stability estimates

In this section we obtain stability estimates for the two schemes described above. We show

that there is a certain pressure stability regardless of any compatibility requirement between

the velocity and pressure approximations. In order to understand how is this possible, we

show �rst how the fractional step scheme (15)-(17) can be viewed as a stabilized monolithic

scheme.

3.1 Equivalent stabilized monolithic formulations

In problem (15)-(17) we can eliminate either Û or U, and think of the remaining variable

as the approximation to the velocity. These two possibilities lead to two di�erent stabilized

formulations, as we show now.

Let us start by writing the problem only in terms of Û. Since

Un = Û
n
� ÆtM�1G(Pn � 
Pn�1);

equations (15)-(17) can be re-written as

M
1

Æt
(Û

n+1
� Û

n
) + K(Û

n+�
)Û

n+�
+ G[(1 + 
)Pn � 
Pn�1] = Fn+1; (18)

DÛ
n+1

� Æt L(Pn+1 � 
Pn) = 0: (19)

In the case 
 = 0, this formulation can be viewed as a stabilized �nite element method, the

stabilization e�ect coming from the pressure Laplacian in the discrete continuity equation

(19), in a similar way to other popular methods such as Galerkin/Least-Squares [30, 31, 32].

Except for the parameter multiplying L, which now is Æt , the formulation is similar to the

stabilization method analyzed in [33]. This observation was �rst pointed out in [34]. Let us

remark that the use of Û as the velocity variable is also proposed in [35].

An additional comment is that, even though the pressure gradient is treated explicitly in

(18), the resulting scheme turns out to be stable in time. This results from the forthcoming

analysis.
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A di�erent approach was advocated in [28]. The idea is to write the problem in terms of

U rather than Û. Since

Û
n+1

= U
n+1 + ÆtM�1

G(Pn+1 � 
Pn); (20)

equations (15)-(17) can be also re-written as

M
1

Æt
(Un+1 � Un) + K(Un+�)Un+� + E(Un+�) + GPn+1 = Fn+1;

DUn+1 + Æt (DM�1G� L)(Pn+1 � 
Pn) = 0; (21)

where E(Un+�) can be thought of as the splitting error, and is given by

E(Un+�) := K(Sn+�)Un+� + K(Un+�)Sn+� + K(Sn+�)Sn+�;

S
n+� := �ÆtM�1

G(Pn+1 � 
Pn):

Clearly, E(Un+�) is formally of order O(Æt 1+
).

Consider again the case 
 = 0 (what happens when 
 = 1 is analyzed later). The

stabilization e�ect now comes from the term ÆtBPn+1, where B := DM�1G� L. It is shown

in [36] that this matrix is positive semi-de�nite. For completeness, let us provide the (simple)

proof here. This will allow us to introduce some of the concepts used in Section 4.

Let us consider the vector space Eh := V h+rQh, where rQh denotes the space of vector

functions which are gradients of functions in Qh. If n1 is the dimension of V h and n1 + n23

the dimension of Eh, it can be split as

Eh = V h � V ?

h = Spanfv1; :::;vn1g � Spanfv01; :::;v
0

n23g:

Let qh be an arbitrary element in Qh and Q the array of nodal values of qh, and consider the

decomposition

rqh = �1 + �23 =

n1X
k=1

�1;kvk +

n23X
k=1

�23;kv
0

k; �1 2 V h; �23 2 V ?

h ;

where �1 and �23 are the arrays of nodal values of �1 and �23, respectively. We have that

�Q � LQ =

Z



jrqhj2 d
 = �1 �M�1 +

Z



�23 � �23 d
;

and, on the other hand, if M�1

ij are the components of M�1:

Q � DM�1GQ = �
n1X

i;j=1

�Z



rqh � vi d

�
M
�1

ij

�Z



rqh � vj d

�

= �
n1X

i;j=1

n1X
k;l=1

�1;k

�Z



vk � vi d

�
M
�1

ij �1;l

�Z



vl � vj d

�

= ��1 �M�1:
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Therefore,

Q � BQ =

Z



�23 � �23 d
 � 0:

This proves that B is positive semi-de�nite and explicitly shows that the components of rqh
controlled by this matrix are those orthogonal to the �nite element space V h, that is, �23.

This fact is used in [20] to prove that approximation (14) yields an error of the same order

as the pressure interpolation error, and thus it does not deteriorate the accuracy of the �nite

element approximation.

At this point, it is convenient to introduce some additional notation. If X, Y are arrays,

fXngn=0;1;:::;N is a sequence of arrays of N+1 terms and A a symmetric positive semi-de�nite

matrix, we de�ne

kXkA := (X � AX)1=2;

kYk�A := sup
X 6=0

Y � X
kXkA

(here A is assumed to be positive de�nite);

fXng 2 `1(A) () kXnkA <1 8n = 0; 1; :::; N;

fXng 2 `p(A) ()
NX

n=0

Æt kXnkpA <1; 1 � p <1:

A remark is needed when A = K. This matrix is not symmetric, but it has the contribution

from the convective term, which is skew-symmetric, and the contribution from the viscous

term, Kvisc, which is symmetric and positive-de�nite. We will simply write U � K(U)U =

U � KviscU � kUk2
K
.

We will make use also of L+ := �L, which is the positive semi-de�nite matrix correspond-
ing to the discretization of ��.

These de�nitions will allow us to express our stability results in a compact manner. The

basic assumption in all the cases will be that

NX
n=0

Æt kFnk2
�K
� C <1; (22)

which is the matrix version of the classical condition required for the problem to be well

posed. Here and in the following, C denotes a positive constant, not necessarily the same at

di�erent appearances.

3.2 Stability of the �rst order projection method

We will study now the stability properties of the �rst order projection method, which corre-

sponds to scheme (15)-(17) with 
 = 0 and � = 1:

M
1

Æt
(Û

n+1
� Un) + K(Û

n+1
)Û

n+1
= Fn+1; (23)

Æt LPn+1 = DÛ
n+1

; (24)

M
1

Æt
(Un+1 � Û

n+1
) + GPn+1 = 0: (25)
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The stability result for this scheme reads:

Stability of the �rst order projection scheme:

fUng 2 `1(M), fÛ
n
g 2 `1(M) \ `2(K), f

p
ÆtPng 2 `2(L+)

To prove the result, let us multiply (23) by 2Æt Û
n+1

and (25) by 2ÆtUn+1. Using the

relation 2a(a� b) = a2 � b2 + (a� b)2 it is easily obtained that

kÛ
n+1

k2
M
� kUnk2

M
+ kÛ

n+1
� U

nk2
M
+ Æt kÛ

n+1
k2
K
� Æt kFn+1k2

�K
; (26)

kUn+1k2
M
� kÛ

n+1
k2
M
+ kUn+1 � Û

n+1
k2
M
+ 2ÆtUn+1 � GPn+1 = 0: (27)

On the other hand, from (24) multiplied by Pn+1, using the fact that G = �Dt, and (20)

with 
 = 0, we have

ÆtPn+1 � LPn+1 = �Un+1 � GPn+1 + ÆtPn+1 � DM�1
GP

n+1;

2ÆtUn+1 � GPn+1 = 2Æt2 Pn+1 � BPn+1 = 2Æt k
p
ÆtPn+1k2

B
:

Using this in (27), adding up (26) and (27) and summing for n (up to any m � N) it follows

that:

fUng 2 `1(M); fÛ
n
g 2 `2(K); f

p
ÆtPng 2 `2(B):

On the other hand, (25) implies

kUn+1 � Û
n+1

k2
M
= �Æt2 Pn+1 � DM�1GPn+1;

and from the de�nition of B it is easy to see that

NX
n=0

Æt k
p
ÆtPn+1k2

L
+ =

NX
n=0

Æt2 Pn+1 � BPn+1 +

NX
n=0

kUn+1 � Û
n+1

k2
M
:

Both terms on the right-hand-side are bounded. The �rst because because f
p
ÆtPng 2 `2(B),

and the second because it is part of the contribution from (27) when it is added up with (26)

and summed for n. Therefore,

f
p
ÆtPng 2 `2(L+):

It remains to show that fÛ
n
g 2 `1(M), which follows easily adding up (26) and (27) evaluated

at n instead of n+ 1 and summing for n.

3.3 Stability of the second order scheme

The second order scheme corresponds to the choices 
 = 1 and � = 1=2 in (15)-(17), that is,

M
1

Æt
(Û

n+1
� Un) + K(Û

n+1=2
)Û

n+1=2
+ GPn = Fn+1=2; (28)

Æt L(Pn+1 � Pn) = DÛ
n+1

; (29)

M
1

Æt
(Un+1 � Û

n+1
) + G(Pn+1 � Pn) = 0: (30)

11



We will take P0 = 0. For this method, the stability result is:

Stability of the second order scheme:

fUng 2 `1(M), fÛ
n
g 2 `1(M), fÛ

n+1=2
g 2 `2(K),

fÆtPng 2 `1(L+), f
p
Æt ÆPng 2 `2(L+)

Let us prove this. Multiplying (28) by 2Æt Û
n+1=2

= Æt (Û
n+1

+Un) and (30) by Æt (Un+1+

Û
n+1

) it is found that

kÛ
n+1

k2
M
� kUnk2

M
+ Æt kÛ

n+1=2
k2
K
+ Æt (Û

n+1
+ U

n)GPn � CÆt kFn+1k2
�K
;

kUn+1k2
M
� kÛ

n+1
k2
M
+ Æt (Un+1 + Û

n+1
) � G(Pn+1 � P

n) = 0: (31)

Adding up these two expressions we �nd that

kUn+1k2
M
� kUnk2

M
+ Æt kÛ

n+1=2
k2
K
+ Æt Û

n+1
� GPn+1

+ÆtUn � GPn + ÆtUn+1 � GÆPn � CÆt kFn+1k2
�K
: (32)

From (29) it is easily found that

Æt Û
n+1

� GPn+1 = �ÆtPn+1 � DÛ
n+1

= �Æt2 Pn+1 � LÆPn

=
Æt2

2

�
kPn+1k2

L
+ � kPnk2

L
+ + kÆPnk2

L
+

�
: (33)

On the other hand, (30) implies

U
n+1 = Û

n+1
� ÆtM�1

GÆPn;

and therefore

ÆtUn � GPn = �ÆtPn � DUn = �ÆtPn � D(Û
n
� ÆtM�1GÆPn�1)

= �ÆtPn � (Æt LÆPn�1 � ÆtDM�1
GÆPn�1)

= Æt2 Pn � BÆPn�1 =
Æt2

2

�
kPnk2

B
� kPn�1k2

B
+ kÆPn�1k2

B

�
: (34)

Likewise,

ÆtUn+1 � GÆPn = �Æt ÆPn � DUn+1 = �Æt ÆPn � D
�
Û
n+1

� ÆtM�1GÆPn
�

= �Æt ÆPn �
�
Æt LÆPn � ÆtDM�1

GÆPn
�

= Æt2 ÆPn � BÆPn = Æt k
p
Æt ÆPnk2

B
: (35)

Using (33)-(35) in (32), taking P0 = P�1 = 0 and summing for n we conclude that

fUng 2 `1(M); fÛ
n+1=2

g 2 `2(K); fÆtPng 2 `1(L+); f
p
Æt ÆPng 2 `2(L+):

12



It remains to show that fÛ
n
g 2 `1(M). From (29) we have that

Æt Û
n+1

� GÆPn = �Æt ÆPn
DÛ

n+1
= Æt2 kÆPnk2

L
+ ;

which substituted in (31) yields, after making use of (35),

kÛ
n+1

k2
M
= kUn+1k2

M
+ Æt2 kÆPnk2

L
+ + Æt2 kÆPnk2

B
:

The result follows noting that all the right-hand-side terms are `1 sequences.

4 Pressure stabilized schemes

4.1 Pressure stabilization

It has been shown in the previous section that the pressure stability of both the �rst and

second order schemes depends on the time step size. It can be anticipated that if Æt is very

small stability problems may occur, especially for the second order scheme. In order to avoid

this, one can resort to a stabilized formulation, in the same spirit as for monolithic schemes.

Since the stability of the �rst order scheme is known to be adequate when Æt is taken

close to the critical time step of the explicit scheme (� = 0 in (5)), it seems natural to devise

a stabilized formulation which inherits the stabilization e�ect of this �rst order scheme. This

idea was �rst developed in [20] for the Stokes problem, and is brie
y reproduced here for the

transient Navier-Stokes equations and used in conjunction with a fractional step method.

Let ~D, ~M and ~G be the matrices with the same components as D, M and G, respectively,

but letting the velocity shape functions run also over the boundary nodes. Starting with the

monolithic time discretization, the stabilized formulation we consider is

MÆtU
n + K(Un+�)Un+� + GPn+1 = Fn+�;

DU
n+1 + �(~D�n+� � LP

n+1) = 0;

~M�n+1 = ~GPn+1;

where � is an auxiliary variable, which may be treated either implicitly if � = 1 or explicitly

if � = 0, and � is a stabilization parameter which depends on the local element sizes. For

the sake of simplicity in the exposition, we will take the �nite element meshes quasi-uniform,

and thus � will depend only on the diameter of the �nite element partition h. The stability

and convergence analysis dictates that it must behave as

� � C
h2

�

for viscous dominated cases (an appropriate choice for the constant is C = 1=4 when linear

elements are used). In general, it can be taken close to the critical time step of the explicit

time integration of (5)-(6) (see [20, 22] for further discussion). Nevertheless, the exact value

of � is irrelevant for our discussion.

13



To see that the modi�ed monolithic problem will inherit the type of stability of the �rst

order projection method, note that if � = 1 and � is eliminated, the modi�ed continuity

equation is

DU
n+1 + � ~BPn+1 = 0; ~B := ~D ~M

�1~G� L;

which is similar to (21) with 
 = 0.

The reason for having modi�ed matrices D, M and G to ~D, ~M and ~G, respectively, is that

in this way the modi�ed monolithic problem does not su�er from spurious pressure boundary

layers, as it happens for the �rst order projection scheme (see [20] for the analysis of this

point).

From the monolithic scheme we may use the same approximations (10) and (14) as for

the non-stabilized (Galerkin) formulation to arrive to the split problem:

M
1

Æt
(Û

n+1
� U

n) + K(Û
n+�

)Û
n+�

+ 
GPn = F
n+�;

Æt L(Pn+1 � 
Pn) + �(LPn+1 � ~D�n+�) = DÛ
n+1

;

M
1

Æt
(Un+1 � Û

n+1
) + G(Pn+1 � 
Pn) = 0;

~M�n+1 = ~GPn+1:

The variational statement corresponding to this matrix problem, which we will use in this

section, consists of �nding ûn+1

h 2 V h, p
n+1

h 2 Qh, u
n+1

h 2 V h, and �
n+1

h 2 ~V h such that

1

Æt
(ûn+1

h � un
h;vh) + c(ûn+�

h ; ûn+�
h ;vh) + a(ûn+�

h ;vh)� 
b(pnh;vh)

= hfn+�;vhi 8vh 2 V h; (36)

�Æt (r(pn+1

h � 
pnh);rqh)� �(rpn+1

h � �n+�
h ;rqh) = (qh;r � ûn+1

h ) 8qh 2 Qh; (37)

1

Æt
(un+1

h � ûn+1

h ;vh)� b(pn+1

h � 
pnh;vh) = 0 8vh 2 V h; (38)

(�n+1

h ;�h) = (rpn+1

h ;�h) 8�h 2 ~V h; (39)

where ~V h is the space V h enlarged with the continuous vector functions associated to the

boundary nodes. The meaning of the new auxiliary variable �h is clearly observed from (39):

it is the projection of the pressure gradient rph onto ~V h.

In the following analysis, we will need several projections of rph, all of them with respect

to the L2-inner product. These projections are

�1 : projection onto V h;

�2 : projection onto V ?

h \ ~V h;

�3 : projection onto ~V
?

h :

Likewise, we will denote �ij := �i + �j . Observe in particular that �12 � �h, and that,

using these projections, (38) implies

u
n+1

h = û
n+1

h � Æt (�n+1
1 � 
�n

1 ): (40)
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We will see from the following analysis that the terms multiplied by � provide control on

�3, that is, the component of the pressure gradient orthogonal to the space of continuous

vector �elds. Control on �1 can be directly obtained from the momentum equation, as we

will see, whereas control over �2 follows from the condition

krphk � C(k�1k+ k�3k); (41)

which is assumed to hold for any ph 2 Qh. This condition is studied in detail in [20]. In

particular, it is shown to hold when equal interpolation is used for the velocity components

and the pressure, the situation in which we are interested.

Similarly to Section 3, the stability estimates we will obtain here will be expressed using

the following notation. Let ffng be a sequence of generic functions (scalar or vectorial). We

de�ne

ffng 2 `1(L2) () kfnk <1 8n = 0; 1; :::; N;

ffng 2 `p(L2) ()
NX

n=0

Æt kfnkp <1; 1 � p <1;

ffng 2 `2(H1) ()
NX

n=0

Æt kfnk21 <1;

where k � k is the standard L2 norm and k � k1 the H1 norm, that is, the sum of the L2 norm

of a function and the L2 norm of its gradient. We recall that for functions f vanishing on

@
, kfk1 is equivalent to krfk. Likewise, we will use the fact that `2(L2) � `1(L2), valid for

�nite time intervals of analysis.

Finally, let us state the condition analogous to (22) in the variational setting that we use

now, which is

NX
n=0

Æt kfnk2
�1 � C <1;

where k � k�1 is the dual norm of k � k1.

4.2 Stability of the stabilized �rst order scheme

The �rst order stabilized scheme is obtained taking 
 = 0 and � = 1 in (36)-(39), which

yields:

1

Æt
(ûn+1

h � un
h;vh) + c(ûn+1

h ; ûn+1

h ;vh) + a(ûn+1

h ;vh) = hfn+1;vhi 8vh 2 V h; (42)

�Æt (rpn+1

h ;rqh)� �(rpn+1

h � �n+�
h ;rqh) = (qh;r � ûn+1

h ) 8qh 2 Qh; (43)

1

Æt
(un+1

h � ûn+1

h ;vh)� b(pn+1

h ;vh) = 0 8vh 2 V h: (44)

The stability result for this formulation is:
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Stability of the stabilized �rst order scheme:

fun
hg 2 `1(L2), fûn

hg 2 `1(L2) \ `2(H1),

f
p
Ætrpnhg 2 `2(L2), f

p
�rpnhg 2 `1(L2)

Let us proceed to prove this. Taking vh = 2Æt ûn+1

h in (42) and vh = 2Ætun+1

h in (44) it

is found that

kûn+1

h k2 � kun
hk

2 + kûn+1

h � un
hk

2 + Æt �krûn+1

h k2 � CÆt kfn+1k2
�1; (45)

kun+1

h k2 � kûn+1

h k2 + kun+1

h � ûn+1

h k2 � 2Æt (pn+1

h ;r � un+1

h ) = 0: (46)

On the other hand, from (43) and using (40) (with 
 = 0) we have that

�(pn+1

h ;r � un+1

h ) = (rpn+1

h ; ûn+1

h )� Æt (rpn+1

h ;�n+1
1 )

= Æt (rpn+1

h ;rpn+1

h ) + �(rpn+1

h ;rpn+1

h � �n+�
h )� Æt (�n+1

1 ;�n+1
1 )

= Æt k�n+1
23 k2 + �(rpn+1

h ;rpn+1

h � �n+�
h ): (47)

Calling �� := 1� �, the second term in the right-hand-side can be written as

(rpn+1

h ;rpn+1

h � �n+�
h ) = (rpn+1

h ;�n+1
3 ) + ��(rpn+1

h ;�n+1

h � �n
h)

= k�n+1
3 k2 +

��

2

�
k�n+1

h k2 � k�n
hk

2 + k�n+1

h � �n
hk

2
�
:

Using this in (47), the result in (46), adding it with (45) and summing for n it is found that

fun
hg 2 `1(L2); fûn

hg 2 `2(H1);

f
p
Æt�n

23g 2 `2(L2); f
p
��n

3g 2 `2(L2):

On the other hand, from (40) again,

kun+1

h � ûn+1

h k2 = Æt 2k�n+1
1 k2;

and since the sum for n of the left-hand-side is bounded (it appears when (45) and (46)

are added) we have that f
p
Æt�n

1g 2 `2(L2), which together with the fact that f
p
Æt�n

23g 2
`2(L2), implies that f

p
Ætrpnhg 2 `2(L2).

Stability of f
p
��n

1g is more delicate. It is provided by the momentum equation actually

solved by the fractional scheme, which after adding (42) and (44) is found to be:

1

Æt
(un+1

h � un
h;vh) + c(ûn+1

h ; ûn+1

h ;vh) + a(ûn+1

h ;vh) + (rpn+1

h ;vh) = hfn+1;vhi:

Taking vh = �
n+1
1 and using the standard inverse estimate (see e.g. [37])

k�n+1
1 k1 �

Cinv

h
k�n+1

1 k; (48)
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valid for quasi-uniform �nite element partitions, we have

k�n+1
1 k2 �

1

Æt
kun+1

h � un
hkk�

n+1
1 k

+
�
Nakûn+1

h k1 +Nckûn+1

h k21
� Cinv

h
k�n+1

1 k+ kfn+1k�1
Cinv

h
k�n+1

1 k; (49)

where Na and Nc are the norms of the forms a and c, respectively, and we have used the con-

tinuity of a and c, that is, a(u;v) � Nakuk1kvk1, c(u;v;w) � Nckuk1kvk1kwk1. Dividing
by k�n+1

1 k, summing for n, noting that
p
� � Ch and using the previous stability bounds,

it is found that f
p
��n

1g 2 `1(L2). This, together with the fact that f
p
��n

3g 2 `2(L2) and

assumption (41), allows us to conclude that f
p
�rpnhg 2 `1(L2). Observe that the reason why

this result can not be improved to f
p
�rpnhg 2 `2(L2) is the presence of the term Nckûn+1

h k21
in (49) (see [22] for a discussion about the possibility to improve this result for the monolithic

scheme).

Finally, the fact that fûn
hg 2 `1(L2) follows adding (45) and (46) evaluated at n instead

of n+ 1 and summing for n.

4.3 Stability of the stabilized second order scheme

To conclude this section, let us study the stabilized second order method, which is obtained

selecting 
 = 1 and � = 1=2 in (36)-(39):

1

Æt
(ûn+1

h � un
h;vh) + c(û

n+1=2
h ; û

n+1=2
h ;vh) + a(û

n+1=2
h ;vh)� b(pnh;vh)

= hfn+1=2;vhi 8vh 2 V h; (50)

�Æt (r(pn+1

h � pnh);rqh)� �(rpn+1

h � �n+�
h ;rqh) = (qh;r � ûn+1

h ) 8qh 2 Qh; (51)

1

Æt
(un+1

h � ûn+1

h ;vh)� b(pn+1

h � pnh;vh) = 0 8vh 2 V h: (52)

Contrary to what happened for the �rst order scheme, now we need to require that � � CÆt .

The stability we are able to prove in this case is:

Stability of the stabilized second order scheme:

fun
hg 2 `1(L2), fûn

hg 2 `1(L2), fûn+1=2
h g 2 `2(H1),

fÆtrpnhg 2 `1(L2), f
p
ÆtrÆpnhg 2 `2(L2), f

p
� rpnhg 2 `1(L2)

The proof-strategy is similar to the previous cases. Taking vh = 2Æt û
n+1=2
h in (50) and

vh = Æt (un+1

h + û
n+1

h ) in (52) it is found that

kûn+1

h k2 � kun
hk

2 + Æt �krûn+1=2
h k2 � Æt (pnh;r � ûn+1

h )� Æt (pnh;r � un
h)

� CÆt kfn+1=2k2
�1; (53)

kun+1

h k2 � kûn+1

h k2 � Æt (pn+1

h � pnh;r � un+1

h )� Æt (pn+1

h � pnh;r � ûn+1

h ) = 0:
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Adding these two expressions we get

kun+1

h k2 � kun
hk

2 + Æt �krûn+1=2
h k2 � Æt (pnh;r � un

h)� Æt (pn+1

h � pnh;r � un+1

h )

�Æt (pn+1

h ;r � ûn+1

h ) � CÆt kfn+1=2k2
�1: (54)

We need to deal with the di�erent terms involving the pressure in the left-hand-side of this

inequality. Using (51) and (52), as well as (40), the various terms can be written as

�(pnh;r � un
h) = �(pnh;r � ûn

h) + Æt (pnh;r � (�n
1 � �

n�1
1 ))

= Æt (rÆpn�1h ;rpnh) + �(rpnh � �
n+��1
h ;rpnh)� Æt (rpnh;�

n
1 � �

n�1
1 )

= Æt (�n
23 � �

n�1
23 ;rpnh) + �(rpnh � �

n+��1
h ;rpnh)

=
1

2
Æt
�
k�n

23k
2 � k�n�1

23 k2 + k�n
23 � �

n�1
23 k2

�
+ �(rpnh � �

n+��1
h ;rpnh) (55)

�(Æpnh;r � un+1

h ) = �(Æpnh;r � ûn+1

h ) + Æt (Æpnh;r � (�n+1
1 � �n

1 ))

= Æt (rÆpnh;rÆp
n
h) + �(rpn+1

h � �n+�
h ;rÆpnh)� Æt (rÆpnh;�

n+1
1 � �n

1 )

= Æt k�n
23 � �

n
23k

2 + �(rpn+1

h � �n+�
h ;rÆpnh) (56)

�(pn+1

h ;r � ûn+1

h ) = Æt (rÆpnh;rp
n+1

h ) + �(rpn+1

h � �n+�
h ;rpn+1

h )

=
Æt

2

�
krpn+1

h k2 � krpnhk
2 + krpn+1

h �rpnhk
2
�

+�(rpn+1

h � �n+�
h ;rpn+1

h ): (57)

The terms multiplied by � in these expressions can be written as

(rpn+1

h � �n+�
h ;rpn+1

h ) = (�n+1
3 ;rpn+1

h ) + ��(�n+1

h � �n
h;rp

n+1

h )

= k�n+1
3 k2 +

��

2

�
k�n+1

h k2 � k�n
hk

2 + k�n+1

h � �n
hk

2
�
;

(rpn+1

h � �n+�
h ;rÆpnh) = (�n+1

3 ;rÆpnh) + ��(�n+1

h � �n
h;rÆp

n
h)

=
1

2

�
k�n+1

3 k2 � k�n
3k

2 + k�n+1
3 � �n

3k
2
�
+ ��k�n+1

h � �n
hk

2:

Using these expressions in (55)-(57), the result in (54), and summing for n it is found that

fun
hg 2 `1(L2); fûn+1=2

h g 2 `2(H1);

fÆtrpnhg 2 `1(L2); f
p
ÆtrÆpnhg 2 `2(L2); f

p
� �n

3g 2 `2(L2):

On the other hand, from (53), the inequality ab � (a2+ b2)=2 and these stability results it is

readily seen that

kûn+1

h k2 �
1

2
kûn+1

h k2 + C
�
kun

hk
2 + Æt 2krpnhk

2 + Æt kfn+1=2k2
�1

�
;

from where fûn
hg 2 `1(L2).

It remains to bound �n
1 in `1(L2). Using the same strategy as for the �rst order scheme

(see (49)), we now have that

Æt
p
�k�n+1

1 k �
p
�kun+1

h � un
hk+ Æt

�
Nakû

n+1=2
h k1 +Nckû

n+1=2
h k21

�
+Æt kfn+1=2k�1:
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When summing for n, the only term that still has not been shown to be bounded is the �rst

on the right-hand-side. Bounding it will conclude the proof. Since

N�1X
n=0

p
�kun+1

h � un
hk �

N�1X
n=0

p
�kun+1

h � ûn+1

h k+
N�1X
n=0

p
�kûn+1

h � un
hk (58)

and, from (40) and the assumption � � CÆt ,

N�1X
n=0

p
�kun+1

h � ûn+1

h k =
N�1X
n=0

p
�Æt k�n+1

1 � �n
1k � C

N�1X
n=0

Æt 2krpn+1

h �rpnhk
2 <1;

it only remains to bound the last term in (58). Taking vh = û
n+1

h �un
h in (50) and using an

inverse estimate similar to (48), it is found that

1

Æt
kûn+1

h � un
hk

2 �
1
p
�
Ankûn+1

h � un
hk+Bn;

An := Nakû
n+1=2
h k1 +Nckû

n+1=2
h k21 + kfn+1=2k�1;

Bn := (pnh;r � ûn+1

h )� (pnh;r � un
h):

Using the fact that if x2 � bx+ c then x � 2b+ 2
p
c, we obtain

N�1X
n=0

p
�kûn+1

h � un
hk � C

 
N�1X
n=0

Æt An +

N�1X
n=0

p
Æt
p
�
p
Bn

!
:

The �rst term on the right-hand-side is bounded, and therefore it only remains to obtain a

bound for the second. Since � � CÆt ,

N�1X
n=0

p
Æt
p
�
p
Bn � C

N�1X
n=0

Æt Bn:

From (55) we have

�
N�1X
n=0

Æt (pnh;r � un
h) �

1

2

N�1X
n=0

Æt2
�
k�n

23k
2 � k�n�1

23 k2 + k�n
23 � �

n�1
23 k2

�

+

N�1X
n=0

Æt �

"
k�n

3k
2 +

��

2

�
k�n

hk
2 � k�n�1

h k2 + k�n
h � �

n�1
h k2

�#
<1;

and similarly to (55)-(57) we can obtain

N�1X
n=0

Æt (pnh;r � ûn+1

h ) =

N�1X
n=0

h
�Æt2 (rÆpnh;rp

n
h)� Æt �(rpn+1

h � �n+�
h ;rpnh)

i

=

N�1X
n=0

"
Æt2

2

�
krpnhk

2 � krpn+1

h k2 + krpnh �rp
n+1

h k2
�

�Æt �(�n+1
3 ;�n

3 )� Æt � ��(�n+1

h � �n
h;�

n
h)

#

� C
N�1X
n=0

Æt2
�
krpnh �rp

n+1

h k2 + k�n+1
3 k2 + k�n

3k
2 + ��k�n+1

h � �n
hk

2
�
<1;

which completes the proof of stability.
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5 Pressure and convection stabilization

The pressure stabilization procedure introduced in the previous section consists of adding the

term

�(rpn+1

h � �n
h;rqh)

to the variational equations of the Galerkin method (either to the monolithic or to the

fractional step time discretization). We have considered directly the case � = 0, which is more

appealing from the computational point of view and has the same stability properties as the

case � = 1. This stabilizing term can be thought of as a least-squares form of the component

of the pressure gradient orthogonal to the �nite element space, �n+1
3 = rpn+1

h � �
n+1

h . If

this allows to stabilize the pressure, the idea that naturally arises is to use the same strategy

to stabilize convection when the convective term dominates the viscous one. This idea is

developed in [23]. Here we describe only the �nal outcome, which consists of adding

�(ûn+�
h � rûn+�

h +rpn+1

h � �n
h ; ûn+�

h � rvh +rqh)

to the variational equations of the Galerkin method. The contribution to the momentum

equation is obtained when the pressure test function is qh = 0, whereas the contribution to

the continuity equation is found when vh = 0. The �nal result is that the equations to be

solved when fractional step methods are used are

1

Æt
(ûn+1

h � un
h;vh) + c(ûn+�

h ; ûn+�
h ;vh) + a(ûn+�

h ;vh)� 
b(pnh;vh)

+�(ûn+�
h � rûn+�

h +rpnh � �
n
h ; ûn+�

h � rvh) = hfn+�;vhi 8vh 2 V h;

�Æt (r(pn+1

h � 
pnh);rqh)� �(ûn+�
h � rûn+�

h +rpn+1

h � �n
h;rqh)

= (qh;r � ûn+1

h ) 8qh 2 Qh;

1

Æt
(un+1

h � ûn+1

h ;vh)� b(pn+1

h � 
pnh;vh) = 0 8vh 2 V h;

(�n+1

h ;�h) = (ûn+�
h � rûn+�

h +rpn+1

h ;�h) 8�h 2 ~V h;

which replace (36)-(39). It has to be observed that the pressure in the �rst equation is treated

explicitly, in order to keep the uncoupling of the velocity and pressure calculations. Observe

also that now �h has the meaning of being the projection of ûh � rûh +rph onto the �nite

element space.

Let us �nally remark the possibility of treating explicitly the projection �h greatly simpli-

�es the numerical implementation of this stabilization technique. Apart from the evaluation

of the several additional terms in the equations for the velocity and the pressure, only an L2

projection needs to be performed at the end of each time step. This is computationally very

inexpensive, especially if the Gramm matrix ~M involved in the process is approximated by

the diagonal one obtained from a standard lumping technique.
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6 Numerical results

In this section we present the result of two simple 2D numerical experiments to illustrate

the practical impact of the theoretical �ndings. The objective of the �rst is to show the

dependence of the pressure stability on the time step, whereas the second is mainly intended

to check the accuracy, a point that has been mentioned but not analyzed.

6.1 Cavity 
ow problem

This example is the classical cavity 
ow problem. The Navier-Stokes equations are solved in

the unit square with zero velocities everywhere on the boundary except on the top, where a

tangent unit velocity is prescribed. The viscosity has been taken as � = 0:01, which yields a

Reynolds number of 100. A mesh of 20�20 four-noded bilinear elements has been employed.

The 
ow equations have been advanced in time until the steady-state has been reached. The

critical time step for the explicit scheme has been estimated to be

Æt crit =

�
4�

h2
+
2U

h

�
�1

; (59)

where h = 0:05 is the element size and U = 1 the characteristic velocity. This yields Æt crit =

1=56.

Pressure contours using the original �rst order scheme are shown in Fig. 1. It is clearly

observed there that for Æt = 0:1 Æt crit some oscillations appear, whereas for Æt = Æt crit the

solution is acceptable. Likewise, when Æt is large (1 in this case), the solution is de�nitely

overdi�usive. This shows the dependence of the pressure stability on the time step size.

The same cases have been computed with the second order scheme. From Fig. 2 it is seen

that only for very large values of Æt the weak stability inherent to the scheme is activated.

Contrary to the previous case, for Æt = 0:1 Æt crit and Æt = Æt crit the pressure solution is

completely oscillatory.

The �nal set of results for this problem shown in Fig. 3 corresponds to the stabilized

formulation using the second order scheme. The stability parameter � has been computed

as the critical time step given by (59) but for each element, taking U as the mean element

velocity. The pressure solution is correct for all the values of Æt .

Even though the implicit schemes we have considered allow us to use time steps as large

as desired, it is known that in practice the steady-state is reached faster (both in real time

and in CPU time) using Æt close to Æt crit. We have also used this example to demonstrate

this. Converge to the steady-state for the di�erent formulations employed is shown in Fig. 4,

where the residual is measured as jUn � Un�1j=jU1 �U0j (here j � j is the standard Euclidean

norm of an array). From Fig. 5 it is seen that this dependence on Æt is similar for all the

schemes.
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6.2 A test with analytical solution

We have referred to the two formulations analyzed throughout the paper as the �rst order

projection method and a second order scheme. In this example we test the accuracy of these

formulations. Since we have seen that the second order one is unstable, we have combined it

with the pressure stabilization technique, with the parameter � computed as in the previous

test.

In this example we solve again the Navier-Stokes equations in the unit square with ho-

mogeneous velocity conditions and taking the force vector so as to have as exact solution

u1(x1; x2; t) = f(x1)f
0(x2)g(t); u1(x1; x2; t) = �f 0(x1)f(x2)g(t); (60)

f(x) = 100x2(1� x)2; g(t) = cos(�t) exp(�t);

with two solutions for the pressure, namely, p = 0 and p = 100x2. The time interval of

analysis is [0; 1] and the viscosity � = 0:1. A mesh of 40 � 40 bilinear elements has been

employed to discretize the computational domain. The velocity solution at t = 1 is shown in

Fig. 6.

Convergence of the time approximation for the case p = 0 and measured at t = 1 is

plotted in Fig. 7, where `total' refers to the scheme with 
 = 0 in (15)-(17) and `incremental'

to the case 
 = 1. The error has been computed as jUt=1 � Uexactj=jUexactj, where Ut=1 is

the numerical solution at t = 1 and Uexact the array of nodal values of the exact velocity at

t = 1. Since the exact pressure is p = 0, the value of 
 does not a�ect the accuracy in this

example. From Fig. 7 it is seen that � = 1 gives a �rst order approximation and � = 1=2 a

second order one. The evolution of the �rst velocity component u1 at a point is depicted in

Fig. 8 and Fig. 9 for the �rst and second order schemes, respectively.

The evolution to the steady-state when g(t) is replaced by 1 in (60) is shown in Fig. 10.

As in the previous example, it is seen that large values of Æt may yield slower rates of

convergence. Finally, Fig. 11 shows the error at the steady-state as a function of Æt when

p = 100x2, measuring the well known property that for the �rst order scheme the solution

depends largely on Æt .

7 Summary of main results and conclusions

The main objective of this paper has been to clarify the role of the pressure Poisson equation

in the pressure stability of fractional step methods for incompressible 
ows, in our case using

the �nite element method for the space discretization. The basic stability results for the two

schemes analyzed are:

First order: f
p
Ætrpnhg 2 `2(L2), f

p
�rpnhg 2 `1(L2)

Second order: fÆtrpnhg 2 `1(L2), f
p
ÆtrÆpnhg 2 `2(L2), f

p
� rpnhg 2 `1(L2)
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Inspecting these results, the main conclusions that can be drawn are:

� For the original (� = 0) �rst order scheme, pressure is stable, but the parameter that

controls the amount of stability is the time step size, and therefore:

� If Æt is very small, pressure oscillations may appear.

� If Æt is large, the method may be overdi�usive. This limits the applicability of

implicit schemes, since appropriate values of Æt adequate for stability turn out to

be close to the critical time step of explicit schemes (� = 0).

� The original (� = 0) second order method has a very poor pressure stability, although

it may be active if Æt is very large. At the steady-state, only that Æt krphk < 1 can

be ensured, whereas the optimum would be to have control on
p
Æt krphk.

� Pressure stability in stabilized schemes depends on an algorithmic parameter � , which

may be chosen independent of Æt (except for the condition � � CÆt needed for the

second order scheme). Both for the �rst and for the second order methods, this stabi-

lization allows us to free the link stability{Æt .

A very important fact from the computational point of view is that the pressure gradient

projection for stabilized schemes may be treated explicitly (which corresponds to taking � = 0

in (37)). It has been shown that this does not upset stability. Finally, let us mention

that convection dominated 
ows can be stabilized by considering a natural extension of the

pressure stabilization technique which has been described in Section 5.
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Figure 1: Pressure contours for the cavity 
ow problem using the �rst order scheme. From

the top to the bottom: Æt = 0:1 Ætcrit, Æt = Ætcrit and Æt = 1:0.
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Figure 2: Pressure contours for the cavity 
ow problem using the second order scheme. From

the top to the bottom: Æt = 0:1 Ætcrit, Æt = Ætcrit and Æt = 1:0.

29



Figure 3: Pressure contours for the cavity 
ow problem using the second order scheme with

stabilization. From the top to the bottom: Æt = 0:1 Ætcrit, Æt = Ætcrit and Æt = 1:0.
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Figure 4: Velocity convergence towards the steady state for the cavity 
ow problem. From

the top to the bottom: �rst order scheme, second order scheme and second order scheme

with stabilization.
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Figure 6: Velocity vectors for the test with analytical solution.

0.01

0.1

0.01 0.1

lo
g(

E
)

log(dt)

First order, total
Second order, total

First order, incremental
Second order, incremental

Slope = 1
Slope = 2
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Figure 8: Evolution of the x-velocity at (0:75; 0:75) using the a �rst order scheme. Case

p = 0.
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Figure 9: Evolution of the x-velocity at (0:75; 0:75) using the a second order scheme. Case

p = 0.
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