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Strategic 4D trajectory conflict-free planning is recognized as one of the core technologies of next-generation air traffic control
and automation systems. To resolve potential conflicts during strategic 4D conflict-free trajectory planning, a protection-zone
conflict-control model based on air traffic control separation constraints was proposed, in which relationships between expected
arrival time and adjusted arrival time at conflicting waypoints for aircraft queues were built and transformed into dynamic linear
equations under the definition of max-plus algebra. A method for strategic deconfliction of 4D trajectory was then proposed using
two strategies: arrival time adjustment and departure time adjustment. In addition, departure time and flight duration perturbations
were introduced to analyze the sensitivity of the planned strategic conflict-free 4D trajectories, and a robustness index for the
conflict-free 4D trajectories was calculated. Finally, the proposed method was tested for the Shanghai air traffic control terminal
area. The outcomes demonstrated that the planned strategic conflict-free 4D trajectories could avoid potential conflicts, and the
slack time could be used to indicate their robustness. Complexity analysis demonstrated that deconfliction using max-plus algebra
is more suitable for deconfliction of 4D trajectory with random sampling period in fix air route.

1. Introduction

With the rapid development of global aviation transporta-
tion, the contention between supply and demand for lim-
ited airspace resources has become increasingly prominent.
Therefore, Europe and the United States have implemented
next-generation air trafficmanagement systems, called Single
European Sky ATM Research (SESAR) and Next-Generation
Air Transportation System (NextGen), respectively [1, 2],
both with the objective of improving ATC service qual-
ity. Obviously, strategic conflict-free 4D trajectory planning
under conditions of high-density traffic flow and small sepa-
ration is one of the main problems that needs to be addressed
by next-generation air traffic control and automation systems
[3, 4].

Trajectory planning can be divided into two categories
according to planning phases: tactical trajectory planning and
strategic trajectory planning. The former focuses on a 10–
30min look-ahead time window for aircraft. In this phase,
individual aircraft departure slots are provided, and rerout-
ings and flight profiles can also be issued in order to avoid
bottlenecks and to maximize airspace capacity according to
real-time traffic demand [5]. Tactical trajectory planning can
be fulfilled by prescribed method, force-field method, and
optimized method [6]. The prescribed method determines
the aircraft maneuvers among a predefined set of procedures
[7, 8], and the planned trajectory is too conservative. The
force field method computes aircraft maneuvers based on a
modified electrostatic equation [9], and the planned trajec-
tory is not always smooth. The optimized method combines
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a kinematic model with a set of cost metrics, and the planned
trajectory is optimized with the lowest cost. For example,
the Center-TRACONAutomation System (CTAS) developed
by NASA’s Ames Research Center predicted long-range (20
minutes) and short-range (5 minutes) conflicts and offered
resolution for such conflicts by using the degrees of freedom
of the aircraft while meeting the scheduled times of arrival;
the degrees of freedom considered in the resolution included
speed, altitude, and routing [10]. In contrast, for the latter
case, it focuses on at least one day look-ahead time window
for aircraft before flight, and its primary aims are to optimize
the overall ATM network performance, minimizing delays
and costs. Chen et al. conducted automatic detection of
flight plans according to flight separation to detect potential
conflicts from the flight plans and then adjusted them tomeet
separation requirements [11]. In addition, Wu et al. presented
a conflict-detection model to detect conflicts that violated
lateral separation when trajectories crossed in the flight
plan [12]. To resolve potential conflicts occurring between
any two intersecting trajectories, Barnier and Allignol pro-
posed a departure-time adjustment strategy and optimization
method based on constraint programming. To compute the
model constraints, the trajectories were pairwise probed
for couples of conflicting waypoints. Hence, it was difficult
to use the method to solve large-scale problems in large
airspaces [13, 14]. Barnier et al. studied the possible com-
plexity reduction achievable by optimizing aircraft take-off
times and employed an evolutionary computation algorithm
to minimize the mean delay among the aircraft population
[15]. Han et al. presented a method of conflict-free 4D
trajectory planning for aircraft by adjusting aircraft departure
schedules and speed plans [16]. Chaimatanan et al. proposed
a methodology to minimize the number of potential con-
flicts between aircraft trajectories via route-departure slot
allocation strategy at the strategic level. In their research, two
metaheuristic optimization approaches were implemented:
standard Simulated Annealing (SA) algorithm and hybrid
optimizationmethod [17]. Cafieri and Durand proposed new
mixed-integer nonlinear programming (MINLP) formula-
tions for deconfliction based on speed regulation, where
conflicts were avoided by allowing aircraft to accelerate or
decelerate and minimizing the time intervals during which
aircraft flies with a modified speed. The proposed heuristic
procedure can be used to solve medium-scale problems [18].

To improve the robustness of the conflict-free 4D trajec-
tories generated, Dupuy and Porretta stated that the uncer-
tainty associated with the resulting prediction depended on
aircraft intent, navigation data, aircraft performance, and
meteorological factors and then proposed a trajectory pre-
dictionmodel considering these factors [19]. Meyn presented
a method for perturbing air traffic scenarios and analyzing
the resulting conflicts. The perturbations consisted of a spec-
ified range of spatial and temporal trajectory modifications,
and the analysis identified all possible conflicts within the
perturbation range [20]. Ruiz et al. presented a strategic
deconfliction algorithm based on causal modeling approach
to explore the emergent dynamics between the resolution
trial trajectories, which was employed to find solutions to
respond to network and trajectory-level perturbations [21].

Generally, it has proven necessary to propose a systematic
strategic conflict-free 4D trajectory planning method for
large-scale airspace and to evaluate the robustness.

To resolve potential conflicts during strategic 4D conflict-
free trajectory planning while reducing computational com-
plexity and avoid pairwise probing for couples of conflicting
waypoints in large airspaces, a protection-zone conflict-
control model has been proposed in this paper to plan strate-
gic conflict-free 4D trajectories and analyze their robustness
using linear dynamic equations under the definition of max-
plus algebra. This approach has been demonstrated to be
more suitable for deconfliction of 4D trajectory with random
sampling period in fix air route.

The remainder of this paper is organized as follows. In
Section 2, the development of a protection-zone conflict-
control model based on air traffic control separation con-
straints is described. In Section 3, the relationships between
expected arrival time and adjusted arrival time at the con-
flicting waypoint for an aircraft queue were built according
to air traffic control separation constraints, which were
transformed into dynamic linear equations under the defini-
tion of max-plus algebra. In Section 4, the conflict-free 4D
trajectory adjusting method is proposed using two strategies:
arrival-time adjustment and departure-time adjustment. In
Section 5, an index is proposed to evaluate the robustness
of strategic conflict-free 4D trajectories. In Section 6, a
simulated case of the Shanghai air traffic control terminal
area is presented to demonstrate the effectiveness of strategic
deconfliction and perturbation analysis of 4D trajectories. In
addition, the computational complexities of deconfliction are
compared. Finally, conclusions are drawn and future research
directions are suggested.

2. Air Traffic Discrete-Event Dynamic
System Model

2.1. Constraint-Free State Transition Model. According to the
nominal flight profile model, a whole flight can be divided
into multiple segments, and the flight duration in each
segment is determined by the aircraft airspeed plan. Thus,
the constraint-free state transition model can be depicted by
a subclass of Petri nets, and for the notion of Petri nets, one
can refer to [22].

Definition 1 (constraint-free state transition model). A
constraint-free state transition model is defined as a time-
event graph 𝐺 = (𝑃𝐺, 𝑇𝐺, 𝐼𝐺, 𝑂𝐺,𝑀𝐺, Γ), where the place set
𝑃𝐺 denotes airway segments, the transition set 𝑇𝐺 denotes
waypoints between two airway segments, the input function
𝐼𝐺 : 𝑃𝐺 × 𝑇𝐺 → 𝑁 and the output function 𝑂𝐺 : 𝑇𝐺 × 𝑃𝐺 →

𝑁 represent forward and backward connecting relationships
between airway segments and waypoints, respectively, ∀𝑝 ∈

𝑃, |∙𝑝| = |𝑝
∙
| = 1, 𝑀𝐺 : 𝑃𝐺 → 𝑁 is marking function,

representing the distribution of aircraft in the segments, and
Γ : 𝑃
𝐺
→ 𝑅
+ represents the flight duration in segments.

The constraint-free state transition model for an aircraft
queue is shown in Figure 1, where 𝑃

𝐺
= {𝑝
1
, 𝑝
2
, 𝑝
3
}, which

means there are 3 segments in the airway: 𝑇
𝐺

= {𝑡
1
, 𝑡
2
, 𝑡
3
},
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Figure 1: Constraint-free state transition model.

which means there are 3 waypoints; for input function,
𝐼𝐺(𝑝1, 𝑡2) = 1, 𝐼

𝐺
(𝑝
2
, 𝑡
3
) = 1, which means segments 𝑝

1
and

𝑝2 are ended by waypoints 𝑡
2
and 𝑡
3
, respectively; for output

function, 𝑂𝐺(𝑡1, 𝑝1) = 1, 𝑂𝐺(𝑡2, 𝑝2) = 1, 𝑂𝐺(𝑡3, 𝑝3) = 1,
whichmeans segments𝑝1,𝑝2, and𝑝3 are started bywaypoints
𝑡1, 𝑡2, and 𝑡3, respectively, formarking𝑀𝐺(𝑝1) = 1,𝑀𝐺(𝑝2) =
1, and𝑀

𝐺
(𝑝
3
) = 0, which means there are two aircraft in the

segments 𝑝
1
and 𝑝

2
, respectively.

It is assumed that the expected arrival times at way-
point 𝑡

1
for aircraft queue 𝐹 = {𝑎(1), 𝑎(2), . . . , 𝑎(𝐾)} are

input, denoted as U = [𝑢(1), 𝑢(2), . . . , 𝑢(𝐾)], the flight dura-
tions from waypoint 𝑡

𝑖
to 𝑡
𝑖+1

for aircraft queue 𝐹,
that is, the sojourning times in places 𝑝

𝑖
are D

𝑖
=

[𝜏
𝑖
(1), 𝜏
𝑖
(2), . . . , 𝜏

𝑖
(𝐾)], 𝑖 = 1, . . . , 𝑛, and the time vec-

tor when place 𝑝
𝑖
is marked is denoted as X

𝑖
=

[𝑥
𝑖
(1), 𝑥
𝑖
(2), . . . , 𝑥

𝑖
(𝐾)], 𝑖 = 1, . . . , 𝑛.

Thus, the state of constraint-free state transition model
can be calculated as

𝑥
1 (𝑘) = 𝑢 (𝑘)

𝑥
𝑖 (𝑘) = 𝑥

𝑖−1 (𝑘) + 𝜏
𝑖−1 (𝑘) ,

𝑘 = 1, 2, . . . , 𝐾, 𝑖 = 2, . . . , 𝑛.

(1)

Hence, the arrival times at the last waypoint 𝑡𝑛 for
aircraft queue 𝐹 are output and denoted as Y = [𝑦(1),
𝑦(2), . . . , 𝑦(𝐾)], which can be calculated as

𝑦 (𝑘) = 𝑥
𝑛 (𝑘) , 𝑘 = 1, 2, . . . , 𝐾. (2)

2.2. Horizontal Conflicting Protection Zone. Dowek and
Munoz and Rey et al. identify three types of pairwise conflicts
from the horizontal and vertical view, respectively [23, 24],
combining which 7 possible pairwise conflicts are illus-
trated in Figure 2, including horizontal following, horizontal
opposing, and vertical crossing conflicts occuring between
aircrafts from the same route or crossing routes, where the
Cartesian coordinate system is defined as follows: choosing
the conflicting waypoint 𝑂 as the origin, setting magnetic
north on pressure level at waypoint 𝑂 as 𝑦-axis, setting
magnetic east on pressure level at waypoint 𝑂 as 𝑥-axis, and
setting normal direction of pressure level at waypoint 𝑂 as
𝑧-axis.

As shown in Figures 2(a) and 2(b), let V1 and V2 represent
level flight speed and vertical crossing speed, respectively,
and let 𝛾 denote the vertical crossing angle. Then, the speed
component V

2
⋅ cos 𝛾 denotes the horizontal following or

opposing speed, which means that vertical crossing conflict
from the same route can be treated as horizontal following or

horizontal opposing conflicts, as shown in Figures 2(c) and
2(d) using vertical projection.

Similarly, as shown in Figure 2(e), the speed components
V1 ⋅cos 𝛾1 and V2 ⋅cos 𝛾2 denote the horizontal crossing speeds
from crossing routes, whichmeans that vertical crossing con-
flict from crossing routes can be treated as horizontal crossing
conflict using vertical projection, as shown in Figure 2(f),
where 𝛼 denotes the entering angle and 𝛽 denotes the leaving
angle.

In particular, for the horizontal crossing conflict shown
in Figure 2(f), when 𝛼 = 0 and 𝛽 = 0, it is transformed into
the horizontal following conflict shown in Figure 2(c), and
when 𝛼 = 𝜋 and 𝛽 = 𝜋, it is transformed into the horizontal
opposing conflict shown in Figure 2(d). When 𝛼 ̸= 0 and
𝛽 = 0, it is transformed into the converging conflict shown
in Figure 2(g).

Therefore, vertical crossing, horizontal following, hori-
zontal opposing, and horizontal converging conflicts can be
treated as special cases of horizontal crossing conflict and can
be unified under the definition of horizontal crossing conflict.
To avoid potential conflicts described above and ensure
separation between two aircrafts, the idea of a conflicting
protection zone is introduced.

Assume that aircrafts are allowed to fly only on fixed air
routes to reduce the computational complexity of strategic
deconfliction of 4D trajectory, different from the tradi-
tional protection zone based on elliptic cylinder, as shown
in Figure 3(a), whose semimajor axis is 𝑎 = 𝑑

(1)

min/2,
where 𝑑

(1)

min denotes the minimum longitudinal separation,
the semiminor axis is 𝑏 = 𝑑

(2)

min/2, where 𝑑
(2)

min denotes
the minimum lateral separation, and the height is ℎ =

𝑑
(3)

min, where 𝑑
(3)

min denotes the minimum vertical separation.
For tactical trajectory planning, the conflict waypoints are
dynamic and should be detected in real time, and the center
of protection zone based on elliptic cylinder is the position of
one aircraft, which may cause the motion of protection zone
as the aircraft track evolves along the 4D trajectory for its
time dimension and increase the computational complexity
of conflict detection and resolution. While the potential
conflict waypoints for strategic 4D trajectories of different
aircraft can be determined in advance. As a result, we can
fix the center of protection zone at the potential conflict
waypoints, which reduce the computational complexity of
conflict detection and resolution, which can be illustrated
in computational complexity analysis section. As analyzed
above, vertical crossing conflict can be treated as horizontal
following or horizontal opposing conflicts using vertical
projection, as shown in Figure 3(b). If the dimension of
horizontal protection zone meets given requirements, it
can be proven that all the separation can be satisfied in
combination with the conflict-control strategy.

The protection zone based on horizontal triangles is
proposed in this study. As shown in Figure 3(c), triangles
𝐴𝑂𝐵, 𝐶𝑂𝐷, 𝐼𝑂𝐽, and 𝐾𝑂𝐿 are horizontal protection zones,
where the top vertex is a conflicting crossing, following,
and converging waypoint, and the lengths of the two sides
are considered to meet three types of minimal separation
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Figure 2: Possible types of conflicts.
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Figure 3: Two different protection zones.

requirements in combination with the conflict-control strat-
egy: (1) the distance between aircraft entering segments 𝐴𝑂
and 𝐵𝑂, as well as the distance between aircraft leaving
segments 𝑂𝐶 and 𝑂𝐷, should meet the minimum lateral
separation requirement; (2) the distance between aircraft
entering segment 𝐴𝑂 and aircraft leaving 𝑂𝐶, as well as
the distance between the aircraft entering 𝐵𝑂 and leaving
𝑂𝐷, should meet the minimum longitudinal separation
requirement; and (3) the distance between aircraft entering
segment 𝐴𝑂 and aircraft leaving 𝑂𝐷, as well as the distance
between the aircraft entering 𝐵𝑂 and leaving 𝑂𝐶, should
meet the minimum lateral separation requirement.

According to the horizontal crossing angles of two cross-
ing routes, the protection zones based on horizontal triangles
can be classified into three categories. Figure 4 shows type
I horizontal crossing protection zone, where 𝛿 ≥ 𝜋/2 and
𝜃 ≥ 𝜋/2, Figure 5 shows type II horizontal crossing protection

A

B

C
E

D

F

G

H

O

I J

K

L

𝛽𝛼
𝜃

𝛿

Figure 4: Type I horizontal crossing protection zone.

zone, where 𝛿 ≥ 𝜋/2 and 𝜃 < 𝜋/2, or 𝛿 < 𝜋/2 and 𝜃 ≥ 𝜋/2,
and Figure 6 shows type III horizontal crossing protection
zone, where 𝛿 < 𝜋/2 and 𝜃 < 𝜋/2.
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Figure 5: Type II horizontal crossing protection zone.
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Figure 6: Type III horizontal crossing protection zone.

If the lengths of the two sides for protection zones are
set as follows, all the above constraints can be satisfied in
combination with the conflict-control strategy proposed in
next section.

𝑑
𝐴𝑂

= 𝑑
𝐵𝑂

=

{{{{{

{{{{{

{

𝑑
(1)

min, 𝛼 = 0

max {𝑑(1)min, 𝑑
(2)

min ⋅ sec𝛼} , 0 < 𝛼 <
𝜋

2

max {𝑑(1)min, 𝑑
(2)

min} , 𝛼 ≥
𝜋

2

𝑑
𝑂𝐶

= 𝑑
𝑂𝐷

=

{{{{{

{{{{{

{

𝑑
(1)

min, 𝛽 = 0

max {𝑑(1)min, 𝑑
(2)

min ⋅ sec𝛽} , 0 < 𝛽 <
𝜋

2

max {𝑑(1)min, 𝑑
(2)

min} , 𝛽 ≥
𝜋

2

𝑑
𝑂𝐼

= 𝑑
𝑂𝐽

=

{{{{{

{{{{{

{

𝑑
(2)

min ⋅ sec (𝛿/2)
2

, 0 < 𝛿 ≥
𝜋

2

max{
𝑑
(2)

min ⋅ sec (𝛿/2)
2

, 𝑑
(2)

min} , 𝛿 ≥
𝜋

2

𝑑
𝑂𝐾

= 𝑑
𝑂𝐿

=

{{{{{

{{{{{

{

𝑑
(2)

min ⋅ sec (𝜃/2)
2

, 0 < 𝜃 <
𝜋

2

max{
𝑑
(2)

min ⋅ sec (𝜃/2)
2

, 𝑑
(2)

min} , 𝜃 ≥
𝜋

2
.

(3)

For simplicity, the constraint-free state transition model
of types I, II, and III horizontal crossing protection zones can
be described as the same Petri net, as shown Figure 7, where
each place or transition has three captions that represent the
place or transition for type I, type II, and type III constraint-
free state transition model, respectively.

2.3. Conflicting Protection Zone ControlModel. Tomeet three
types of minimal separation requirements mentioned above,
the controlled Petri nets with external enabling conditions
called control places should be introduced firstly [23].

Definition 2 (protection-zone conflict-control model). A
protection-zone conflict-control model is defined as a con-
trolled free-choice Petri nets CPN = (𝑃, 𝑇, 𝐼, 𝑂,𝑀, Γ) =

(𝐺
1
, 𝐺
2
, 𝑃
𝐶
, 𝐼
𝐶
, 𝑂
𝐶
,𝑀
𝐶
), where 𝐺

1
and 𝐺

2
represent two

related constraint-free state transition models that share the
same transition. The place set 𝑃

𝐶
denotes conflict-control

places. The input function 𝐼
𝐶

: 𝑃
𝐶
× 𝑇
𝐺

→ 𝑁 and the
output function 𝑂

𝐶
: 𝑃
𝐶
× 𝑇
𝐺
→ 𝑁 represent forward and

backward connecting relationships between control places
and controlled transitions, respectively. 𝑀𝐶 : 𝑃𝐶 → 𝑁

represents the markings of the conflict-control places.
The type I protection-zone conflict-control model CPN1

for 𝐺
𝐴𝑂𝐶

and 𝐺
𝐵𝑂𝐷

shown in Figure 7 can be described by
the Petri nets shown in Figure 8, where places 𝑝(𝑖)

𝐶
(1 ≤ 𝑖 ≤

6) denote the conflict-control place, whose initial markings
𝑀𝐶0(𝑝

(𝑖)

𝐶
) = 1 ensure that protection zones 𝐴𝑂𝐵, 𝐶𝑂𝐷,

𝐼𝑂𝐽, 𝐾𝑂𝐿, 𝐴𝑂𝐶, and 𝐵𝑂𝐷 can accommodate at most one
aircraft each, that is, 𝑀(𝑝𝐴𝑂) + 𝑀(𝑝𝐵𝑂) ≤ 1 and 𝑀(𝑝𝑂𝐶) +

𝑀(𝑝𝑂𝐷) ≤ 1, which ensure the separation requirement (1);
𝑀(𝑝𝐴𝑂) + 𝑀(𝑝𝑂𝐶) ≤ 1 and 𝑀(𝑝𝐵𝑂) + 𝑀(𝑝𝑂𝐷) ≤ 1, which
ensure the separation requirement (2);𝑀(𝑝

𝐼𝑂
) +𝑀(𝑝

𝑂𝐽
) ≤ 1

an 𝑀(𝑝
𝐾𝑂

) + 𝑀(𝑝
𝑂𝐿
) ≤ 1, which ensure the separation

requirement (3). For the purpose of clarity, the observation
places are neglected.

Suppose that the expected arrival time at waypoint 𝑂 of
aircraft 𝑎(𝑘

𝑗
), that is, the 𝑘

𝑗
th aircraft of aircraft queue in

constraint-free state transition model 𝐺
𝑗
, is 𝑢
𝑂
(𝑘
𝑗
), 𝑗 = 1, 2

before deconfliction; themomentwhen conflict-control place
𝑝
(𝑖)

𝐶
, 𝑖 = 1, . . . , 6, is marked is denoted by 𝑥(𝑖)

𝐶
(𝑘
𝑗
), 𝑗 = 1, 2;

and the sojourning times in place𝑝
𝐴𝐼
, 𝑝
𝐼𝑂
, . . . , 𝑝

𝐽𝐷
for aircraft

𝑎(𝑘
𝑗
) are 𝜏

𝐴𝐼
(𝑘
𝑗
), 𝜏
𝐼𝑂
(𝑘
𝑗
), . . . , 𝜏

𝐽𝐷
(𝑘
𝑗
), respectively.

If 𝑢
𝑂
(𝑘
1
) ≤ 𝑢

𝑂
(𝑘
2
), aircraft 𝑎(𝑘

1
) is assigned priority

to enter protection zones. Hence, the state equation can be
expressed as

𝑥
(1)

𝐶
(𝑘1) = max {𝑥(5)

𝐶
(𝑘1 − 1) + 𝜏𝐴𝑂,

sel {𝑥(1)
𝐶

(𝑘
1
− 1) , 𝑥

(1)

𝐶
(𝑘
2
− 1)} + 𝜏

𝐴𝑂
,
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Figure 7: Constraint-free state transition model of types I, II, and III horizontal crossing protection zone.
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Figure 8: Type I protection-zone conflict-control model.

sel {𝑥(3)
𝐶

(𝑘
1
− 1) , 𝑥

(3)

𝐶
(𝑘
2
− 1)} + 𝜏

𝐼𝑂
,

sel {𝑥(4)
𝐶

(𝑘
1
− 1) , 𝑥

(4)

𝐶
(𝑘
2
− 1)} ,

sel {𝑥(2)
𝐶

(𝑘
1
− 1) , 𝑥

(2)

𝐶
(𝑘
2
− 1)} , 𝑢

𝑂
(𝑘
1
)}

𝑥
(2)

𝐶
(𝑘1) = 𝑥

(1)

𝐶
(𝑘1) + 𝜏𝑂𝐶

𝑥
(3)

𝐶
(𝑘
1
) = 𝑥
(1)

𝐶
(𝑘
1
)

𝑥
(4)

𝐶
(𝑘
1
) = 𝑥
(1)

𝐶
(𝑘
1
) + 𝜏
𝑂𝐿

𝑥
(5)

𝐶
(𝑘
1
) = 𝑥
(1)

𝐶
(𝑘
1
) + 𝜏
𝑂𝐶

,

(4)
where “sel” is a selection operator, which is defined as follows:

sel {𝑥(𝑖)
𝐶
(𝑘1 − 1) , 𝑥

(𝑖)

𝐶
(𝑘2 − 1)}

=
{

{

{

𝑥
(𝑖)

𝐶
(𝑘
1
− 1) , 𝑢

𝑂
(𝑘
1
− 1) ≥ 𝑢

𝑂
(𝑘
2
− 1)

𝑥
(𝑖)

𝐶
(𝑘
2
− 1) , 𝑢

𝑂
(𝑘
1
− 1) < 𝑢

𝑂
(𝑘
2
− 1) ,

𝑖 = 1, 2, . . . , 5.

(5)

Else, if 𝑢
𝑂
(𝑘
2
) < 𝑢
𝑂
(𝑘
1
), aircraft 𝑎(𝑘

2
) is assigned priority

to enter protection zones. Hence, the state equation can be
expressed as follows:

𝑥
(1)

𝐶
(𝑘
2
) = max {𝑥(6)

𝐶
(𝑘
2
− 1) + 𝜏

𝐵𝑂
,

sel {𝑥(1)
𝐶

(𝑘2 − 1) , 𝑥
(1)

𝐶
(𝑘1 − 1)} + 𝜏𝐵𝑂,

sel {𝑥(4)
𝐶

(𝑘
2
− 1) , 𝑥

(4)

𝐶
(𝑘
1
− 1)} + 𝜏

𝐾𝑂
,

sel {𝑥(3)
𝐶

(𝑘2 − 1) , 𝑥
(3)

𝐶
(𝑘1 − 1)} ,

sel {𝑥(2)
𝐶

(𝑘
2
− 1) , 𝑥

(2)

𝐶
(𝑘
1
− 1)} , 𝑢

𝑂
(𝑘
2
)}

𝑥
(2)

𝐶
(𝑘
2
) = 𝑥
(1)

𝐶
(𝑘
2
) + 𝜏
𝑂𝐷

𝑥
(3)

𝐶
(𝑘
2
) = 𝑥
(1)

𝐶
(𝑘
2
) + 𝜏
𝑂𝐽
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𝑥
(4)

𝐶
(𝑘
2
) = 𝑥
(1)

𝐶
(𝑘
2
)

𝑥
(6)

𝐶
(𝑘
2
) = 𝑥
(1)

𝐶
(𝑘
2
) + 𝜏
𝑂𝐷

,

(6)

where the selection operator “sel” is defined as follows:

sel {𝑥(𝑖)
𝐶
(𝑘
2
− 1) , 𝑥

(𝑖)

𝐶
(𝑘
1
− 1)}

=
{

{

{

𝑥
(𝑖)

𝐶
(𝑘
2
− 1) , 𝑢

𝑂
(𝑘
2
− 1) ≥ 𝑢

𝑂
(𝑘
1
− 1)

𝑥
(𝑖)

𝐶
(𝑘
1
− 1) , 𝑢

𝑂
(𝑘
2
− 1) < 𝑢

𝑂
(𝑘
1
− 1) ,

𝑖 = 1, 2, . . . , 5.

(7)

The strategic conflict-free 4D trajectories for aircraft
queues𝐹

1
and𝐹
2
, that is, the adjusted arrival time at waypoint

𝑂 after deconfliction, can be expressed as

𝑦
𝑂
(𝑘
1
) = 𝑥
(1)

𝐶
(𝑘
1
) , if 𝑢

𝑂
(𝑘
1
) ≤ 𝑢
𝑂
(𝑘
2
)

𝑦
𝑂
(𝑘
2
) = 𝑥
(1)

𝐶
(𝑘
2
) , if 𝑢

𝑂
(𝑘
1
) > 𝑢
𝑂
(𝑘
2
) .

(8)

The type II protection-zone conflict-control model CPN
2

for 𝐺
𝐴𝑂𝐶

and 𝐺
𝐾𝑂𝐷

shown in Figure 7 can be described by
the Petri nets shown in Figure 9, where places 𝑝(𝑖)

𝐶
(1 ≤ 𝑖 ≤

6) denote the conflict-control place, whose initial markings
𝑀
𝐶0
(𝑝
(𝑖)

𝐶
) = 1 ensure that protection zones 𝐴𝑂𝐾, 𝐶𝑂𝐷,

𝐼𝑂𝐽, 𝐾𝑂𝐿, 𝐴𝑂𝐶, and 𝐵𝑂𝐷 can accommodate at most one
aircraft each; that is, 𝑀(𝑝

𝐴𝑂
) + 𝑀(𝑝

𝐾𝑂
) ≤ 1 and 𝑀(𝑝

𝑂𝐶
) +

𝑀(𝑝
𝑂𝐷

) ≤ 1, which ensure the separation requirement (1);
𝑀(𝑝
𝐴𝑂

) + 𝑀(𝑝
𝑂𝐶

) ≤ 1 and 𝑀(𝑝
𝐵𝑂
) + 𝑀(𝑝

𝑂𝐷
) ≤ 1, which

ensure the separation requirement (2);𝑀(𝑝
𝐼𝑂
) +𝑀(𝑝

𝑂𝐽
) ≤ 1

and 𝑀(𝑝
𝐾𝑂

) + 𝑀(𝑝
𝑂𝐿
) ≤ 1, which ensure the separation

requirement (3). For the purpose of clarity, the observation
places are neglected.

Suppose that the expected arrival time at waypoint 𝑂 of
aircraft 𝑎(𝑘

𝑗
), that is, the 𝑘

𝑗
th aircraft of aircraft queue in

constraint-free state transition model 𝐺𝑗, is 𝑢𝑂(𝑘𝑗), 𝑗 = 1, 2

before deconfliction; themomentwhen conflict-control place
𝑝
(𝑖)

𝐶
, 𝑖 = 1, . . . , 6, is marked is denoted by 𝑥

(𝑖)

𝐶
(𝑘
𝑗
), 𝑗 =

1, 2; and the sojourning times in places 𝑝
𝐴𝐼
, 𝑝
𝐼𝑂
, . . . , 𝑝

𝐽𝐷
for

aircraft 𝑎(𝑘
𝑗
) are 𝜏

𝐴𝐼
(𝑘
𝑗
), 𝜏
𝐼𝑂
(𝑘
𝑗
), . . . , 𝜏

𝐽𝐷
(𝑘
𝑗
), respectively.

If 𝑢
𝑂
(𝑘
1
) ≤ 𝑢

𝑂
(𝑘
2
), aircraft 𝑎(𝑘

1
) is assigned priority

to enter protection zones. Hence, the state equation can be
expressed as (4); else if 𝑢

𝑂
(𝑘
2
) < 𝑢

𝑂
(𝑘
1
), aircraft 𝑎(𝑘

2
) is

assigned priority to enter protection zones. Hence, the state
equation can be expressed as

𝑥
(1)

𝐶
(𝑘
2
) = max {𝑥(6)

𝐶
(𝑘
2
− 1) + 𝜏

𝐵𝑂
,

sel {𝑥(1)
𝐶

(𝑘2 − 1) , 𝑥
(1)

𝐶
(𝑘1 − 1)} + 𝜏𝐾𝑂,

sel {𝑥(4)
𝐶

(𝑘
2
− 1) , 𝑥

(4)

𝐶
(𝑘
1
− 1)} + 𝜏

𝐾𝑂
,

tA
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tI
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tJ
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Figure 9: Type II protection-zone conflict-control model.

sel {𝑥(3)
𝐶

(𝑘2 − 1) , 𝑥
(3)

𝐶
(𝑘1 − 1)} ,

sel {𝑥(2)
𝐶

(𝑘
2
− 1) , 𝑥

(2)

𝐶
(𝑘
1
− 1)} , 𝑢

𝑂
(𝑘
2
)}

𝑥
(2)

𝐶
(𝑘
2
) = 𝑥
(1)

𝐶
(𝑘
2
) + 𝜏
𝑂𝐷

𝑥
(3)

𝐶
(𝑘
2
) = 𝑥
(1)

𝐶
(𝑘
2
) + 𝜏
𝑂𝐽

𝑥
(4)

𝐶
(𝑘
2
) = 𝑥
(1)

𝐶
(𝑘
2
)

𝑥
(6)

𝐶
(𝑘
2
) = 𝑥
(1)

𝐶
(𝑘
2
) + 𝜏
𝑂𝐷

,

(9)

where the selection operator “sel” is defined the same as (7).
The strategic conflict-free 4D trajectories for aircraft

queues 𝐹
1
and 𝐹

2
in protection-zone conflict-control model,

that is, the adjusted arrival time at waypoint 𝑂 after decon-
fliction, can be expressed as (8).

The type III protection-zone conflict-control model
CPN
3
for 𝐺
𝐼𝑂𝐿

and 𝐺
𝐾𝑂𝐽

shown in Figure 7 can be described
by the Petri nets shown in Figure 10, where places 𝑝(𝑖)

𝐶
(1 ≤ 𝑖 ≤

6) denote the conflict-control place, whose initial markings
𝑀
𝐶0
(𝑝
(𝑖)

𝐶
) = 1 ensure that protection zones 𝐼𝑂𝐾, 𝐶𝑂𝐷,

𝐼𝑂𝐽, 𝐾𝑂𝐿, 𝐴𝑂𝐶, and 𝐵𝑂𝐷 can accommodate at most one
aircraft each; that is, 𝑀(𝑝

𝐼𝑂
) + 𝑀(𝑝

𝐾𝑂
) ≤ 1 and 𝑀(𝑝

𝑂𝐶
) +

𝑀(𝑝
𝑂𝐷

) ≤ 1, which ensure the separation requirement (1);
𝑀(𝑝𝐴𝑂) + 𝑀(𝑝𝑂𝐶) ≤ 1 and 𝑀(𝑝𝐵𝑂) + 𝑀(𝑝𝑂𝐷) ≤ 1, which
ensure the separation requirement (2);𝑀(𝑝𝐼𝑂) +𝑀(𝑝𝑂𝐽) ≤ 1

and 𝑀(𝑝𝐾𝑂) + 𝑀(𝑝𝑂𝐿) ≤ 1, which ensure the separation
requirement (3). For the purpose of clarity, the observation
places are neglected.

Suppose that the expected arrival time at waypoint 𝑂 of
aircraft 𝑎(𝑘𝑗), that is, the 𝑘

𝑗
th aircraft of aircraft queue in

constraint-free state transition model 𝐺𝑗, is 𝑢𝑂(𝑘𝑗), 𝑗 = 1, 2

before deconfliction; themomentwhen conflict-control place
𝑝
(𝑖)

𝐶
, 𝑖 = 1, . . . , 6, is marked is denoted by 𝑥

(𝑖)

𝐶
(𝑘
𝑗
), 𝑗 =

1, 2; and the sojourning times in places 𝑝
𝐼𝐴
, 𝑝
𝐼𝑂
, . . . , 𝑝

𝐷𝐽
for

aircraft 𝑎(𝑘
𝑗
) are 𝜏

𝐼𝐴
(𝑘
𝑗
), 𝜏
𝐼𝑂
(𝑘
𝑗
), . . . , 𝜏

𝐷𝐽
(𝑘
𝑗
), respectively.
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Figure 10: Type III protection-zone conflict-control model.

If 𝑢
𝑂
(𝑘
1
) ≤ 𝑢

𝑂
(𝑘
2
), aircraft 𝑎(𝑘

1
) is assigned priority

to enter protection zones. Hence, the state equation can be
expressed as

𝑥
(1)

𝐶
(𝑘
1
) = max {𝑥(5)

𝐶
(𝑘
1
− 1) + 𝜏

𝐴𝑂
,

sel {𝑥(1)
𝐶

(𝑘
1
− 1) , 𝑥

(1)

𝐶
(𝑘
2
− 1)} + 𝜏

𝐼𝑂
,

sel {𝑥(3)
𝐶

(𝑘1 − 1) , 𝑥
(3)

𝐶
(𝑘2 − 1)} + 𝜏𝐼𝑂,

sel {𝑥(4)
𝐶

(𝑘
1
− 1) , 𝑥

(4)

𝐶
(𝑘
2
− 1)} ,

sel {𝑥(2)
𝐶

(𝑘
1
− 1) , 𝑥

(2)

𝐶
(𝑘
2
− 1)} , 𝑢

𝑂
(𝑘
1
)}

𝑥
(2)

𝐶
(𝑘
1
) = 𝑥
(1)

𝐶
(𝑘
1
) + 𝜏
𝑂𝐶

𝑥
(3)

𝐶
(𝑘
1
) = 𝑥
(1)

𝐶
(𝑘
1
)

𝑥
(4)

𝐶
(𝑘
1
) = 𝑥
(1)

𝐶
(𝑘
1
) + 𝜏
𝑂𝐿

𝑥
(5)

𝐶
(𝑘
1
) = 𝑥
(1)

𝐶
(𝑘
1
) + 𝜏
𝑂𝐶

,

(10)

where the selection operator “sel” is defined the same as (7).
Else, if 𝑢

𝑂
(𝑘
2
) < 𝑢
𝑂
(𝑘
1
), aircraft 𝑎(𝑘

2
) is assigned priority

to enter protection zones. Hence, the state transition equation
can be expressed as (9).

The strategic conflict-free 4D trajectories for aircraft
queues 𝐹

1
and 𝐹

2
in protection-zone conflict-control model,

that is, the adjusted arrival time at waypoint 𝑂 after decon-
fliction, can be expressed as (8).

3. Description of Air Traffic Control System

3.1. Basic Max-Plus Algebra Conflict-Control Model. To sim-
plify the protection-zone conflict-control model, max-plus
algebra was employed because it is widely used in discrete-
event dynamic system modeling and analysis. Max-plus
algebra can be defined as follows: (1) the domain of definition
ofmax-plus algebra is𝑅 = 𝑅∪{−∞}, where𝑅 denotes the real
number domain and “−∞” denotes negative infinity; (2) the

two basic operators of max-plus algebra aremax operator “⊕”
and plus operator “⊗”, where 𝑎⊕𝑏 = max{𝑎, 𝑏}, 𝑎⊗𝑏 = 𝑎+𝑏;
thus “0”, “−∞” are called the identity element and the zero
element and denoted by 𝑒 and 𝜀, respectively [24].

For a matrixA,B ∈ 𝑅
𝑚×𝑛

, then (A ⊕B)
𝑖𝑗
= (A)

𝑖𝑗
⊕ (B)
𝑖𝑗
=

max{(A)
𝑖𝑗
, (B)
𝑖𝑗
}, and for A ∈ 𝑅

𝑚×𝑟
and B ∈ 𝑅

𝑟×𝑛
, then

(A ⊗ B)𝑖𝑗 =
𝑟

∑

𝑙=1

⊕ {(A)𝑖𝑙 ⊗ (B)𝑙𝑗} = max
1≤𝑙≤𝑟

{(A)𝑖𝑙 + (B)𝑙𝑗} . (11)

Let X(𝑘) = [𝑥
(1)

𝐶
(𝑘
1
), 𝑥
(2)

𝐶
(𝑘
1
), 𝑥
(3)

𝐶
(𝑘
1
), 𝑥
(4)

𝐶
(𝑘
1
), 𝑥
(5)

𝐶
(𝑘
1
),

𝑥
(1)

𝐶
(𝑘
2
), 𝑥
(2)

𝐶
(𝑘
2
), 𝑥
(3)

𝐶
(𝑘
2
), 𝑥
(4)

𝐶
(𝑘
2
), 𝑥
(6)

𝐶
(𝑘
2
)]
T, U(𝑘) =

[𝑢
𝑂
(𝑘
1
), 𝑢
𝑂
(𝑘
2
)]
T, Y(𝑘) = [𝑦

𝑂
(𝑘
1
), 𝑦
𝑂
(𝑘
2
)]
T. For the three

protection-zone conflict-control models described above,
the state and output equations can be expressed in a linear
form under the definition of max-plus algebra:

X (𝑘) = A (𝑠) ⊗ X (𝑘 − 1) ⊕ B (𝑠) ⊗ U (𝑘)

Y (𝑘) = C (𝑠) ⊗ X (𝑘) ,

(12)

where the state, input, and output matrices are not constant
but depend on expected arrival times 𝑢𝑂(𝑘𝑗) of aircraft queue
queues 𝐹1 and 𝐹2.

For the type I protection-zone conflict-controlmodel, the
state, input, and output matrices are described as follows.

If 𝑢
𝑂
(𝑘
1
) ≤ 𝑢
𝑂
(𝑘
2
),

A (𝑠) =

{{{{{{{

{{{{{{{

{

[

[

a
1
𝜀

𝜀 𝜀

]

]

, 𝑢
𝑂
(𝑘
1
− 1) ≥ 𝑢

𝑂
(𝑘
2
− 1)

[

[

𝜀 a
1

𝜀 𝜀

]

]

, 𝑢𝑂 (𝑘1 − 1) < 𝑢
𝑂
(𝑘
2
− 1) ,

B (𝑠) = [
b
1

𝜀

] ,

C (𝑠) = [
c
1

𝜀

]

T

;

(13)

else, if 𝑢
𝑂
(𝑘
2
) < 𝑢
𝑂
(𝑘
1
),

A (𝑠) =

{{{{{{{

{{{{{{{

{

[

[

𝜀 𝜀

a
2
𝜀

]

]

, 𝑢
𝑂
(𝑘
2
− 1) ≥ 𝑢

𝑂
(𝑘
1
− 1)

[

[

𝜀 𝜀

𝜀 a
2

]

]

, 𝑢𝑂 (𝑘2 − 1) < 𝑢𝑂 (𝑘1 − 1) ,

B (𝑠) = [
𝜀

b
2

] ,

C (𝑠) = [
𝜀

c
2

]

T

,

(14)
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where each element in submatrix 𝜀 is 𝜀, and submatrices a
𝑖
,

b
𝑖
, and c

𝑖
, (𝑖 = 1, 2) are listed as follows:

a
1
=

[
[
[
[
[
[
[
[

[

𝜏𝐴𝑂 𝑒 𝜏𝐼𝑂 𝑒 𝜏𝐴𝑂

𝜏
𝐴𝐶

𝜏
𝑂𝐶

𝜏
𝐼𝐶

𝜏
𝑂𝐶

𝜏
𝐴𝐶

𝜏𝐴𝑂 𝑒 𝜏𝐼𝑂 𝑒 𝜏𝐴𝑂

𝜏
𝐴𝐿

𝜏
𝑂𝐿

𝜏
𝐼𝐿

𝜏
𝑂𝐿

𝜏
𝐴𝐿

𝜏
𝐴𝐶

𝜏
𝑂𝐶

𝜏
𝐼𝐶

𝜏
𝑂𝐶

𝜏
𝐴𝐶

]
]
]
]
]
]
]
]

]

,

b
1
=

[
[
[
[
[
[
[
[

[

𝑒 𝜀

𝜏
𝑂𝐶

𝜀

𝑒 𝜀

𝜏
𝑂𝐿

𝜀

𝜏
𝑂𝐶

𝜀

]
]
]
]
]
]
]
]

]

,

c
1
= [𝑒, 𝜀, 𝜀, 𝜀, 𝜀, 𝜀, 𝜀, 𝜀, 𝜀, 𝜀]

T

(15)

a
2
=

[
[
[
[
[
[
[
[

[

𝜏
𝐵𝑂

𝑒 𝑒 𝜏
𝐾𝑂

𝜏
𝐵𝑂

𝜏
𝐵𝐷

𝜏
𝑂𝐷

𝜏
𝑂𝐷

𝜏
𝐾𝐷

𝜏
𝐵𝐷

𝜏
𝐵𝐽

𝜏
𝑂𝐽

𝜏
𝑂𝐽

𝜏
𝐾𝐽

𝜏
𝐵𝐽

𝜏
𝐵𝑂

𝑒 𝑒 𝜏
𝐾𝑂

𝜏
𝐵𝑂

𝜏
𝐵𝐷

𝜏
𝑂𝐷

𝜏
𝑂𝐷

𝜏
𝐾𝐷

𝜏
𝐵𝐷

]
]
]
]
]
]
]
]

]

,

b
2
=

[
[
[
[
[
[
[
[

[

𝜀 𝑒

𝜀 𝜏
𝑂𝐷

𝜀 𝜏𝑂𝐽

𝜀 𝜀

𝜀 𝜏
𝑂𝐷

]
]
]
]
]
]
]
]

]

,

c
2
= [𝜀, 𝜀, 𝜀, 𝜀, 𝜀, 𝑒, 𝜀, 𝜀, 𝜀, 𝜀]

T
.

(16)

For the type II protection-zone conflict-control model,
the state, input, and output matrices are described in (13) and
(14), and the submatrices a

1
, b
1
, and c

1
are the same as the

type I protection-zone conflict-control model in (15), while
the submatrices a

2
, b
2
, and c

2
are listed as follows:

a
2
=

[
[
[
[
[
[
[
[

[

𝜏
𝐾𝑂

𝑒 𝑒 𝜏
𝐾𝑂

𝜏
𝐵𝑂

𝜏𝐾𝐷 𝜏𝑂𝐷 𝜏𝑂𝐷 𝜏𝐾𝐷 𝜏𝐵𝐷

𝜏
𝐾𝐽

𝜏
𝑂𝐽

𝜏
𝑂𝐽

𝜏
𝐾𝐽

𝜏
𝐵𝐽

𝜏𝐾𝑂 𝑒 𝑒 𝜏𝐾𝑂 𝜏𝐵𝑂

𝜏
𝐾𝐷

𝜏
𝑂𝐷

𝜏
𝑂𝐷

𝜏
𝐾𝐷

𝜏
𝐵𝐷

]
]
]
]
]
]
]
]

]

,

b
2
=

[
[
[
[
[
[
[
[

[

𝜀 𝑒

𝜀 𝜏
𝑂𝐷

𝜀 𝜏
𝑂𝐽

𝜀 𝜀

𝜀 𝜏
𝑂𝐷

]
]
]
]
]
]
]
]

]

,

c
2
= [𝜀, 𝜀, 𝜀, 𝜀, 𝜀, 𝑒, 𝜀, 𝜀, 𝜀, 𝜀]

T
.

(17)

For the type III protection-zone conflict-control model,
its state, input, and output matrices are described in (13) and
(14), and the submatrices a

2
, b
2
, and c

2
are the same as the

type II protection-zone conflict-control model in (17), while
the submatrices a

1
, b
1
, and c

1
are listed as follows:

a1 =

[
[
[
[
[
[
[
[

[

𝜏
𝐼𝑂

𝑒 𝜏
𝐼𝑂

𝑒 𝜏
𝐴𝑂

𝜏
𝐼𝐶

𝜏
𝑂𝐶

𝜏
𝐼𝐶

𝜏
𝑂𝐶

𝜏
𝐴𝐶

𝜏
𝐼𝑂

𝑒 𝜏
𝐼𝑂

𝑒 𝜏
𝐴𝑂

𝜏
𝐼𝐿

𝜏
𝑂𝐿

𝜏
𝐼𝐿

𝜏
𝑂𝐿

𝜏
𝐴𝐿

𝜏
𝐼𝐶

𝜏
𝑂𝐶

𝜏
𝐼𝐶

𝜏
𝑂𝐶

𝜏
𝐴𝐶

]
]
]
]
]
]
]
]

]

,

b
1
=

[
[
[
[
[
[
[
[

[

𝑒 𝜀

𝜏𝑂𝐶 𝜀

𝑒 𝜀

𝜏
𝑂𝐿

𝜀

𝜏
𝑂𝐶

𝜀

]
]
]
]
]
]
]
]

]

,

c
1
= [𝑒, 𝜀, 𝜀, 𝜀, 𝜀, 𝜀, 𝜀, 𝜀, 𝜀, 𝜀]

T
.

(18)

3.2. Synthesized Air Traffic Control Model. There may be var-
ious conflicts in an airspace (e.g., the terminal control area),
and, hence, it is necessary to develop a synthesizedmodel that
includes all possible basic protection-zone conflict-control
models, which can be represented by the graphic symbols
shown in Figure 11.

Consider the two aircraft queues 𝐹
1
from airport 𝐴

1
and

𝐹
2
from airport 𝐴

2
crossing vertically at waypoint 𝑃

1
and

following at waypoint 𝑃
2
, as shown in Figure 12.

They are supposed to depart from 𝐴
1
and 𝐴

2
at U
0
=

[𝑢
𝐴
1

𝑃
2

(𝑘
1
), 𝑢
𝐴
2

𝑃
2

(𝑘
2
)]
T, the flight durations from 𝐴

1
and 𝐴

2
to

𝑃
1
are D

1
= [𝜏

𝐴
1

𝑃
1

(𝑘
1
), 𝜏
𝐴
2

𝑃
1

(𝑘
2
)]
T, and the flight durations

from 𝑃
1
to 𝑃
2
are D

2
= [𝜏

𝑃
1

𝑃
2

(𝑘
1
), 𝜏
𝑃
1

𝑃
2

(𝑘
2
)]
T. Without loss

of generality, denote the state, input, and output matrices of
the first vertical crossing conflict-control model as A1, B1,
and C1, and denote those of the second horizontal following
conflict-control model as A2, B2, and C

2
. Obviously, the

following relationships hold:

U
1
= U
0
⊗D
1

U2 = Y1 ⊗D2.
(19)

Incorporating the above equations into the two pro-
tection-zone conflict-control models, the state and output
equations for synthesized air traffic model can be rewritten
as

X1 (𝑘) = A
1 ⊗ X1 (𝑘 − 1) ⊕ B

1 ⊗D1 ⊗ U0
Y
1 (𝑘) = C

1
⊗ X
1 (𝑘)

X
2 (𝑘) = A

2
⊗ X
2 (𝑘 − 1) ⊕ B

2
⊗D
2
⊗ C
1

⊗ [A
1
⊗ X
1 (𝑘 − 1) ⊕ B

1
⊗D
1
⊗ U
0
]

Y
2 (𝑘) = C

2
⊗ X
2 (𝑘)

(20)
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(a) Horizontal following conflict (b) Horizontal crossing conflict (c) Horizontal converging conflict

(d) Vertical crossing conflict

Figure 11: Graphic symbols for basic protection-zone conflict-control models.

u
A2
P2

u
A1
P2

P1 P2

yP2

Figure 12: Synthesized two departing air traffic models.

which can be rewritten as

[
X
2 (𝑘)

X1 (𝑘)
] = [

A
2
B
2
⊗D
2
⊗ C
1
⊗ A
1

𝜀 A1
]

⊗ [
X
2 (𝑘 − 1)

X1 (𝑘 − 1)
]

⊕ [
B
2
⊗D
2
⊗ C
1
⊗ B
1
⊗D
1

B
1
⊗D
1

] ⊗ U0

[
Y
2 (𝑘)

Y
1 (𝑘)

] = [
C
2 𝜀

𝜀 C
1

] ⊗ [
X
2 (𝑘)

X
1 (𝑘)

] .

(21)

By analogy, if 𝑛 conflict-control models are connected in
series (without fork and join), the synthesized departing air
traffic model can be described uniformly as

[X𝑛 (𝑘) ,X𝑛−1 (𝑘) , . . . ,X1 (𝑘)]
T

= A ⊗ [X
𝑛 (𝑘 − 1) ,X𝑛−1 (𝑘 − 1) , . . . ,X1 (𝑘 − 1)]

T

⊕ B ⊗ U
0

[Y
𝑛 (𝑘) ,Y𝑛−1 (𝑘) , . . . ,Y1 (𝑘)]

T

= C ⊗ [X
𝑛 (𝑘) ,X𝑛−1 (𝑘) , . . . ,X1 (𝑘)]

T

(22)

and the state, input, and output matrices of the synthesized
model are

A =

[
[
[
[
[
[

[

A𝑛 B𝑛 ⊗D𝑛 ⊗ C𝑛−1 ⊗ A𝑛−1 B𝑛−1 ⊗D𝑛−1 ⊗ C𝑛−2 ⊗ A𝑛−2 ⋅ ⋅ ⋅ A1
𝜀 A

𝑛−1
B
𝑛−1

⊗D
𝑛−1

⊗ C
𝑛−2

⊗ A
𝑛−2

⋅ ⋅ ⋅ A
1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

𝜀 𝜀 𝜀 ⋅ ⋅ ⋅ A
1

]
]
]
]
]
]

]

B =

[
[
[
[
[
[

[

B
𝑛
⊗D
𝑛
⊗ C
𝑛−1

⊗ B
𝑛−1

⊗D
𝑛−1

B
𝑛−1

⊗D
𝑛−1

⊗ C
𝑛−2

⊗ B
𝑛−2

⊗D
𝑛−2

⋅ ⋅ ⋅ B
1
⊗D
1

𝜀 B𝑛−1 ⊗D𝑛−1 ⊗ C𝑛−2 ⊗ B𝑛−2 ⊗D𝑛−2 ⋅ ⋅ ⋅ B1 ⊗D1
.
.
.

.

.

.
.
.
.

.

.

.

𝜀 𝜀 ⋅ ⋅ ⋅ B
1
⊗D
1

]
]
]
]
]
]

]

C =

[
[
[
[
[
[

[

C
𝑛
𝜀 ⋅ ⋅ ⋅ 𝜀

𝜀 C
𝑛−1

⋅ ⋅ ⋅ 𝜀

.

.

.
.
.
.

.

.

.
.
.
.

𝜀 𝜀 ⋅ ⋅ ⋅ C
1

]
]
]
]
]
]

]

.

(23)
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It can be inferred from the above equations that, given
the departure times of an aircraft queue, that is, the initial 4D
trajectories before deconfliction and flight durations between
two conflicting waypoints, their adjusted arrival time at any
conflicting waypoints after deconfliction, that is, conflict-free
4D trajectories, can be obtained by a linear calculation under
the definition of max-plus algebra.

4. Strategic Deconfliction of 4D Trajectory

4.1. Deconfliction Based on Arrival-Time Adjustment. In the
protection-zone conflict-control model for waypoint 𝑖, 1 <

𝑖 ≤ 𝑛, if an aircraft 𝑎(𝑘) is expected to arrive at 𝑢
𝑖
(𝑘) and

postponed to arrive at 𝑦
𝑖
(𝑘), then 𝑦

𝑖
(𝑘) ≥ 𝑢

𝑖
(𝑘) must be

satisfied. Therefore, the aircraft must slow down or hold for
𝑤
𝑖
(𝑘) = 𝑦

𝑖
(𝑘)−𝑢

𝑖
(𝑘) to avoid potential conflicts at conflicting

waypoint 𝑖. The flight delay for the kth aircraft caused by
arrival-time adjustment in segment 𝑖 − 1, 𝑖 corresponding
to the 𝑖th conflict-control model, can be converted into a
difference of input vectors: Û𝑖(𝑘) = U𝑖(𝑘) + W𝑖, where the
decision variables W

𝑖
= [𝑤
𝑖
(1), 𝑤

𝑖
(2), . . . , 𝑤

𝑖
(𝐾)]

T represent
the flight delay vector in 𝑖th conflict-control model, which
are treated as integer in practical application. Assuming that
the number of following conflict-control models is 𝑛 − 𝑖, the
impact on the following aircraft can be described as

[X𝑛 (𝑘) , . . . ,X𝑖+1 (𝑘) ,X𝑖 (𝑘)]
T

= A ⊗ [X
𝑛 (𝑘 − 1) , . . . ,X𝑖+1 (𝑘 − 1) ,X𝑖 (𝑘 − 1)]

T

⊕ B ⊗ Û𝑖

[Y
𝑛 (𝑘) , . . . ,Y𝑖+1 (𝑘) ,Y𝑖 (𝑘)]

T

= C ⊗ [X𝑛 (𝑘 − 1) , . . . ,X𝑖+1 (𝑘 − 1) ,X𝑖 (𝑘 − 1)]
T
.

(24)

Therefore, the total flight delay 𝑊 for aircraft queue can
be calculated as

𝑊 =

𝐾

∑

𝑘=1

[𝑦
𝑛 (𝑘) − 𝑢𝑛 (𝑘)] . (25)

From the perspectives of reducing flight delay and
improving the rate of flight punctuality, strategic deconflic-
tion based on arrival-time adjustment can be achieved by
solving the following integer linear programming under the
definition of Max-plus algebra:

min {
1

𝐾

𝐾

∑

𝑘=1

[𝑦𝑛 (𝑘) − 𝑢
𝑛 (𝑘)]}

s.t. [X
𝑛 (𝑘) , . . . ,X𝑖+1 (𝑘) ,X𝑖 (𝑘)]

T

= A

⊗ [X
𝑛 (𝑘 − 1) , . . . ,X𝑖+1 (𝑘 − 1) ,X𝑖 (𝑘 − 1)]

T

⊕ B ⊗ Û𝑖

[Y
𝑛 (𝑘) , . . . ,Y𝑖+1 (𝑘) ,Y𝑖 (𝑘)]

T

= C

⊗ [X
𝑛 (𝑘 − 1) , . . . ,X𝑖+1 (𝑘 − 1) ,X𝑖 (𝑘 − 1)]

T

Û
𝑖 (𝑘) = U

𝑖 (𝑘) +W
𝑖

Wmin
𝑖

≤ W𝑖 (𝑘) ≤ Wmax
𝑖

,

(26)

where the last constraint represents the admissible flight delay
range determined by the speed limitations of aircraft 𝑎(𝑘).

4.2. Deconfliction Based on Departure-Time Adjustment. To
alleviate the increase of air traffic controllers’ workload for
frequent speed adjustments or air holding, the air traf-
fic flow management department intends to adjust flight
departure times to avoid strategic conflicts. Assume that the
initial departure-time vector for aircraft queue 𝐹 is U

0
=

[𝑢
0(1), 𝑢0(2), . . . , 𝑢0(𝐾)]

T, and the adjusted departure-time
vector is Û

0
= U
0
+ ΔU

0
, where decision variables ΔU

0
=

[Δ𝑢
0
(1), Δ𝑢

0
(2), . . . , Δ𝑢

0
(𝐾)]

T represent the initial departure
delay vector, which are treated as integer in practical applica-
tion. Assume further that there are 𝑛 consecutive conflicting
waypoints in conflict-control models. The impact on the set
of aircraft can be described as follows:

[X
𝑛 (𝑘) ,X𝑛−1 (𝑘) , . . . ,X1 (𝑘)]

T

= A ⊗ [X
𝑛 (𝑘 − 1) ,X𝑛−1 (𝑘 − 1) , . . . ,X1 (𝑘 − 1)]

T

⊕ B ⊗ Û0

[Y
𝑛 (𝑘) ,Y𝑛−1 (𝑘) , . . . ,Y1 (𝑘)]

T

= C ⊗ [X𝑛 (𝑘) ,X𝑛−1 (𝑘) , . . . ,X1 (𝑘)]
T
.

(27)

To avoid conflicts and reduce adjustments to departure
time as much as possible, strategic deconfliction based on
departure-time adjustment can be achieved by solving the
following integer linear programming under the definition of
Max-plus algebra:

min {
1

𝐾

𝐾

∑

𝑘=1

[𝑦
𝑛 (𝑘) − 𝑢

𝑛 (𝑘)]}

s.t. [X
𝑛 (𝑘) ,X𝑛−1 (𝑘) , . . . ,X1 (𝑘)]

T

= A

⊗ [X
𝑛 (𝑘 − 1) ,X𝑛−1 (𝑘 − 1) , . . . ,X1 (𝑘 − 1)]

T

⊕ B ⊗ Û
0

[Y
𝑛 (𝑘) ,Y𝑛−1 (𝑘) , . . . ,Y1 (𝑘)]

T

= C ⊗ [X
𝑛 (𝑘) ,X𝑛−1 (𝑘) , . . . ,X1 (𝑘)]

T

Û0 = U0 + ΔU0.

(28)
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5. Conflict-Free 4D Trajectory
Perturbation Analysis

5.1. Perturbation of 4D Trajectories and Its Propagation. For
various reasons arising from navigation errors, meteoro-
logical influences, and human factors, the departure time
and flight duration of an aircraft may be perturbed, which
implies that the planned strategic conflict-free 4D trajectories
may not be executed strictly. As a result, the robustness of
these trajectories becomes very important for dealing with
perturbations. To evaluate the robustness of the planned
strategic conflict-free 4D trajectories, two types of virtual
perturbations are introduced: a departure-time perturbation
and a flight duration perturbation between two conflicting
waypoints.

Suppose that the departure-time perturbation of aircraft
𝑎(𝑘) is Δ𝑢(𝑘); then the departure-time perturbation vector
is ΔU

0
= [0, 0, . . . , Δ𝑢(𝑘), . . . , 0]

T. Let Û
0

= U
0
⊗ ΔU

0
;

then the propagation of the departure-time perturbation
can be analyzed using (16), and the total arrival-time delay
perturbation for aircraft queue can be calculated as ΔY𝑛(𝑘) =
Y󸀠
𝑛
(𝑘) − Y𝑛(𝑘).
Suppose that the flight duration perturbation for aircraft

𝑎(𝑘) in segment 𝑖 is Δ𝑑𝑖(𝑘); then the flight duration per-
turbation vector ΔD

𝑖
= [0, 0, . . . , Δ𝑑

𝑖
(𝑘), . . . , 0]

T. Let Û
𝑖
=

Y
𝑖−1

(𝑘) ⊗ D
𝑖
(𝑘) ⊗ ΔD

𝑖
(𝑘); then the propagation of the flight

duration perturbation can similarly be analyzed by the max-
plus algebra equation (19). Hence, the total arrival-time delay
perturbation for aircraft queue can be calculated as ΔY𝑛(𝑘) =
Y󸀠
𝑛
(𝑘) − Y𝑛(𝑘).

5.2. Slack Time Analysis of Conflict-Free 4D Trajectories.
Given the total arrival-time delay perturbation ΔY

𝑛
(𝑘) for

aircraft queue 𝐹, the metric of total flight delay for aircraft
queue 𝐹 can be obtained by

𝐶
𝐾
(Δ𝑢 (𝑘) , Δ𝑑𝑖 (𝑘)) = 𝛽 ⋅ [ΔY𝑛 (𝑘)]

T

=

𝐾

∑

𝑘=1

𝛽
𝑘
⋅ Δ𝑦
𝑛 (𝑘) ,

(29)

where 𝛽 = [𝛽1, 𝛽2, . . . , 𝛽𝐾] is a weight vector for total
flight delay of each aircraft. Hence, the sensitivity of this
metric to departure-time perturbation and flight-duration
perturbation can be calculated as

𝛼Δ𝑢(𝑘) =
𝜕𝐶
𝐾
(Δ𝑢 (𝑘) , Δ𝑑𝑖 (𝑘))

𝜕Δ𝑢 (𝑘)

𝛼
Δ𝑑
𝑖
(𝑘) =

𝜕𝐶𝐾 (Δ𝑢 (𝑘) , Δ𝑑𝑖 (𝑘))

𝜕Δ𝑑
𝑖 (𝑘)

.

(30)

A typical metric for total flight delay curve is shown in
Figure 13. Clearly, there are several perturbation intervals
[Δ𝑢

min
1

(𝑘), Δ𝑢
max
1

(𝑘)], [Δ𝑢min
2

(𝑘), Δ𝑢
max
2

(𝑘)], and [Δ𝑢
min
3

(𝑘),
Δ𝑢

max
3

(𝑘)] satisfying 𝛼
Δ𝑢(𝑘)

= 0, whereas 𝛼
Δ𝑢(𝑘)

> 0 for
other intervals. For strategic conflict-free 4D trajectories, if
a departure-time perturbation interval [Δ𝑢min

(𝑘), Δ𝑢
max

(𝑘)]

satisfies 𝛼
Δ𝑢(𝑘)

= 0, that is, the total flight delay for aircraft
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Figure 13: Total flight delay metric for a departure-time perturba-
tion.

queue 𝐹 is not affected by the departure-time perturbation
interval, the interval can be called a slack departure-time
interval. Similarly, if a flight-duration perturbation interval
[Δ𝑑

min
𝑖

(𝑘), Δ𝑑
max
𝑖

(𝑘)] in segment 𝑖 (𝑖 < 𝑛) satisfies 𝛼
Δ𝑑
𝑖
(𝑘)

= 0,
which means that the total flight delay of aircraft queue 𝐹 is
not affected by the flight duration perturbation interval, this
interval can be called a slack flight duration interval.

Obviously, the span of the slack departure time interval
and the slack flight duration interval reflects the robustness
of 4D conflict-free trajectory. Given an initial departure-
time vector U0, the robustness index of the planned strategic
conflict-free 4D trajectoriesY𝑖(𝑘) can be expressed as follows:

R (U
0
) = min{ 1

𝐾

⋅

𝐾

∑

𝑘=1

𝛽
𝑘
⋅ [Δ𝑢

max
(𝑘) − Δ𝑢

min
(𝑘)] ,

1

𝐾

⋅

𝐾

∑

𝑘=1

𝛽
𝑘
[Δ𝑑

max
𝑖

(𝑘) − Δ𝑑
min
𝑖

(𝑘)] , 𝑖 ≤ 𝑛} .

(31)

If there exist two initial departure time vectors U(1)
0

and
U(2)
0
, and the robustness index satisfiesR(U(1)

0
) = 0, then the

planned strategic conflict-free 4D trajectoriesY(1)
𝑖
(𝑘) derived

from the initial departure-time vector U(1)
0

are not robust at
all. If the robustness index satisfies R(U(1)

0
) > R(U(2)

0
) > 0,

then the planned strategic conflict-free 4D trajectoriesY(1)
𝑛
(𝑘)

derived from the initial departure-time vector U(1)
0

are more
robust than those derived from U(2)

0
.

6. Simulation and Discussion

6.1. Simulated Case Study. Using the departing air traffic flow
of the Shanghai terminal control area as our case study, as
shown in Figure 14, all conflicts can be divided into three
categories: vertical crossing conflicts at POMOK, DADAT,
and EKIMU between the aircraft queue from ZSSS airport
and ZSPD airport to PIKAS, AND, and VMB, respectively;
horizontal converging conflicts at waypoints OLGAP and
NINAS from ZSSS airport and ZSPD airport to SX and
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Figure 14: Departing air traffic model of the Shanghai terminal
control area.

RUXIL; and horizontal following conflicts at waypoints SX,
PIKAS, ALDAP, AND, RUXIL, and VMB.

The departing air traffic model can be synthesized as
shown in Figure 15, where directional solid lines connecting
two basic protection-zone conflict-control models denote
the flight duration 𝜏

𝑖,𝑗
from waypoint 𝑖 to waypoint 𝑗,

whereas directional dashed lines denote only connecting
relationships.

Aircraft queue 𝐹
1
departing from ZSSS and 𝐹

2
departing

from ZSPD to PIKAS via POMOK in Shanghai terminal area
were chosen as the case study. This case includes two types
of conflict-control models: the converging conflict-control
model for POMOK and the vertical crossing conflict-control
model for PIKAS, as shown in Figure 15.

First, flight information for aircraft queues 𝐹1 (14 aircrafts
departing from ZSSS) and 𝐹2 (14 aircrafts departing from
ZSPD) in two hours was extracted from flight plans of
Shanghai terminal control area, as shown in Table 1.

The converging conflict-control model for POMOK and
the vertical crossing conflict-control model for PIKAS both
can be treated as a special case of type I horizontal crossing
protection zone that 𝛼 = 0, 𝛽 = 0, 𝜃 = 𝜋, and 𝛿 = 𝜋. Let the
minimum requirement of separation be 𝑑(1)min = 10 km and
𝑑
(2)

min = 6 km; thus the parameters of two special cases of type
I horizontal crossing protection zone are listed in Table 2.

For simplicity, suppose that the ground speed of aircraft
queues 𝐹1 and 𝐹

2
arriving at POMOK and PIKAS is about

VPOMOK = 450 km/h and VPIKAS = 540 km/h, respectively.
Hence, the sojourning time in the places of POMOK and
PIKAS protection-zone conflict-control model are shown in
Table 3.

Table 4 lists the 4D trajectories calculated from air-
craft performance before deconfliction, where U0 represents
departure time of aircraft queues 𝐹1 and 𝐹2 and D1 and D2
represent the flight duration from departure to POMOK and
the flight duration from POMOK to PIKAS. Suppose that
the minimum unit of departure time and flight delay is one
second; we develop a Java based solver to solve the opti-
mization problem (26) and problem (28), which overloads
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Figure 15: Synthesized departing air traffic model of the Shanghai
terminal area.
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Figure 16: Separation between two adjacent aircrafts arriving at
POMOK.

operators “+” and “∗,” and Branch and Bound method is
employed to optimize flight delay vector and initial departure
delay vector.The flight delay vectorW

1
based on arrival-time

adjustment strategy and the adjusted departure time Û0 based
on departure-time adjustment strategy are shown in Table 4.
Y1 andY2 represent the adjusted arrival time at POMOK and
at PIKAS, respectively, for the synthesized departing air traffic
model of POMKO and PIKAS after deconfliction, as shown
in Table 4.

The separations between two adjacent aircrafts arriving at
POMOKand PIKAS before and after deconfliction are shown
in Figures 16 and 17, respectively. According to Figures 16
and 17, the separation for pairs of aircrafts (A0003, A0004),
(A0005, A0006), (A0009, A0010), and (A0024, A0025) before
deconfliction is less than the minimum separation require-
ments. After deconfliction, the departure times or arrival
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Table 1: Flight information for aircraft queues in two hours.

Aircraft number Flight number Aircraft type Departure time Departure airport Arrival airport
A0001 CSH9363 B738 14:02 ZSPD ZHHH
A0002 CES5147 B737 14:08 ZSSS ZBTJ
A0003 CSN6534 A319 14:09 ZSPD ZYTL
A0004 JAL8878 B763 14:11 ZSSS ZBTJ
A0005 CES5403 A320 14:14 ZSPD ZUUU
A0006 CES5113 A321 14:17 ZSSS ZBAA
A0007 CES5633 B738 14:21 ZSSS ZWWW
A0008 CDG4662 B738 14:24 ZSSS ZSQD
A0009 CSH9201 B738 14:25 ZSPD ZLXY
A0010 CES5553 A321 14:27 ZSSS ZBSJ
A0011 CES5605 A319 14:27 ZSPD ZYTX
A0012 CSH9197 B738 14:37 ZSSS ZSQD
A0013 CES2287 B733 14:40 ZSSS ZSWH
A0014 CSH9129 B738 14:47 ZSSS ZBTJ
A0015 CSH9183 B738 15:00 ZSPD ZYTX
A0016 CCA1558 B772 15:04 ZSSS ZBAA
A0017 CSH9543 B738 15:04 ZSPD ZUUU
A0018 CDG1164 B738 15:11 ZSSS ZSJN
A0019 CES5625 A320 15:12 ZSPD ZYTL
A0020 CES522 A320 15:14 ZSPD ZLXY
A0021 CES5649 A320 15:31 ZSSS ZSWH
A0022 CCA1949 A319 15:31 ZSPD ZUUU
A0023 CSN6524 A321 15:35 ZSPD ZYTL
A0024 CQH8850 A320 15:43 ZSPD ZYTX
A0025 CSH9105 B763 15:45 ZSSS ZBAA
A0026 CSN6506 A320 15:51 ZSPD ZYTX
A0027 CSH823 B752 15:52 ZSSS ZBAA
A0028 CES2506 B738 15:57 ZSPD ZHHH

Table 2: Parameters of two special cases of type I horizontal crossing protection zone.

Horizontal crossing protection zone 𝑑
𝐴𝑂

, 𝑑
𝐵𝑂

(km) 𝑑
𝑂𝐶
, 𝑑
𝑂𝐷

(km) 𝑑
𝑂𝐼
, 𝑑
𝑂𝐽

(km) 𝑑
𝑂𝐾

, 𝑑
𝑂𝐿

(km)
POMOK 10 10 6 6
PIKAS 10 10 6 6

Table 3: The sojourning times in the places of two protection-zone conflict-control models.

Protection-zone
conflict-control
model

𝜏
𝐴𝑂

, 𝜏
𝐵𝑂

(s) 𝜏
𝐼𝑂
, 𝜏
𝐾𝑂

(s) 𝜏
𝑂𝐶
, 𝜏
𝑂𝐷

(s) 𝜏
𝐼𝐶
, 𝜏
𝐾𝐷

(s) 𝜏
𝐴𝐶
, 𝜏
𝐵𝐷

(s) 𝜏
𝑂𝐿
, 𝜏
𝑂𝐽

(s) 𝜏
𝐼𝐿
, 𝜏
𝐾𝐽

(s) 𝜏
𝐴𝐿
, 𝜏
𝐵𝐽
(s)

POMOK 80 48 80 128 160 48 96 128
PIKAS 66.7 40 66.7 106.7 133.3 40 80 106.7

times at POMOK for A0003, A0006, A0009, A0011, A0016,
A0020, and A0024 aircraft are delayed by 38 s, 83 s, 4 s, 55 s,
85 s, 5 s, 40 s, and 42 s to avoid conflicts, respectively; thus, the
separation between each pair of adjacent aircrafts satisfies the
minimum separation requirements, which demonstrates that
the planned strategic deconfliction based on both departure-
time adjustment strategy and arrival-time adjustment strat-
egy could avoid potential conflicts effectively.

In addition, to analyze the robustness of the planned
strategic conflict-free 4D trajectories, the departure-time
perturbation analysis with two different minimum require-
ments of separation settings was investigated, where the first
separation setting was 𝑑

(1)

min = 10 km and 𝑑
(2)

min = 6 km
and the second was 𝑑

(1)

min = 15 km and 𝑑
(2)

min = 9 km.
The slack departure-time intervals for the aircraft queue
are shown in Figure 18. Hence, the robustness index of
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Table 4: Parameters of synthesized converging and following conflict-control models.

Aircraft number U
0
(s) D

1
(s) U

1
(s) D

2
(s) U

2
(s) W

1
(s) Û

0
(s) Y

1
(s) Y

2
(s)

A0001 120 489 609 457 1066 0 120 609 1066
A0002 480 330 810 461 1271 0 480 810 1271
A0003 540 499 1039 443 1484 38 578 1077 1520
A0004 660 321 981 453 1434 0 660 981 1434
A0005 840 495 1335 443 1778 0 840 1335 1778
A0006 1020 328 1348 453 1848 83 1103 1431 1884
A0007 1260 327 1587 464 2051 4 1264 1591 2055
A0008 1440 327 1767 464 2231 0 1440 1767 2231
A0009 1500 489 1989 457 2465 55 1555 2044 2501
A0010 1620 328 1948 453 2401 0 1620 1948 2401
A0011 1620 499 2119 443 2562 85 1705 2204 2647
A0012 2220 327 2547 464 3011 0 2220 2547 3011
A0013 2400 323 2723 461 3184 0 2400 2723 3184
A0014 2820 327 3147 464 3611 0 2820 3147 3611
A0015 3600 489 4089 457 4546 0 3600 4089 4546
A0016 3840 340 4180 455 4635 5 3845 4185 4640
A0017 3840 489 4329 457 4786 0 3840 4329 4786
A0018 4260 327 4587 463 5050 0 4260 4587 5050
A0019 4320 495 4815 443 5258 0 4320 4815 5258
A0020 4440 495 4935 443 5378 40 4480 4975 5418
A0021 5460 334 5794 453 6247 0 5460 5794 6247
A0022 5460 499 5959 443 6402 0 5460 5959 6402
A0023 5700 489 6189 443 6632 0 5700 6189 6632
A0024 6180 495 6175 443 7124 42 6222 6717 7160
A0025 6300 321 6621 453 7074 0 6300 6621 7074
A0026 6660 495 7155 443 7598 0 6660 7155 7598
A0027 6720 309 7029 465 7494 0 6720 7029 7494
A0028 7020 489 7509 457 7966 0 7020 7509 7966
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Figure 17: Separation between two adjacent aircrafts arriving at
PIKAS.

the planned strategic conflict-free 4D trajectories can be
calculated as R(Û

0
) = 134.1 s and R(Û󸀠

0
) = 73.4 s using

(31), respectively. R(U
0
) > R(U󸀠

0
) shows that increasing the

minimum requirement of separation will reduce the slack
departure-time interval for the aircraft queue, which implies
that increasing the safety margin may lead to the reduction
of the robustness of the planned strategic conflict-free 4D
trajectories so that setting reasonable minimum requirement
of separation can also balance the safety margin and the
stability of air traffic flow.

In addition, we developed an Air Traffic Control and
Automation Simulating System (ATCASS) to refine and
validate the planned strategic conflict-free 4D trajectory. By
loading the planned strategic 4D conflict-free trajectories,
ATTSS can sample the 4D trajectory with any given sam-
pling period and generate 4D conflict-free trajectory points
according to airway model, aircraft performance model, and
aircraft speed profile. As shown in Figure 19, up to 280
aircrafts departing from or landing at ZSSS and ZSPD in
2 hours were simulated. We employed the arriving time
adjustment strategy to plan the conflict-free trajectory and set
the sampling period as 4 s.

To investigate the relationship between the number of
aircrafts in queues and the performance of deconfliction, we
simulated three scenarios using ATCASS. The first scenario
loaded only the planned strategic 4D conflict-free trajectories
for the first 200 aircrafts, the second loaded that for the first
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Figure 18: Slack departure-time intervals with two different minimum requirements of separations.

Figure 19: 4D trajectory simulating for Shanghai terminal control area.

240 aircrafts, and the third loaded that for all 280 aircrafts.
We recorded and analyzed the mean value and the standard
deviation of separation between the two adjacent aircrafts in
landing and departing aircraft queues, as shown in Figure 20.
In addition, we calculated the mean flight delay for aircraft
landing at ZSPD and ZSSS and departing from ZSPD and
ZSSS, respectively, as shown in Figure 21.

The simulated results show that the mean value and stan-
dard deviation of separation between two adjacent aircrafts
in landing and departing aircraft queues decrease with the
increasing number of aircrafts, and the mean flight delay
increases with the increasing number of aircrafts, which
implies that the distribution of separation between two
adjacent aircrafts becomes smoother after deconfliction; thus,
the efficiency of airspace can be improved to some extent.

Moreover, the number of conflicts and total flight delay are
obviously positively related, but strategic deconfliction of 4D
based on arriving time adjustment strategy is not very helpful
for reduction of flight delay.

6.2. Computational Complexity Analysis. As mentioned, the
computational complexity of departure-time adjustment
strategy based on constraint programming proposed by
Barnier [13] is related to the total number of aircrafts 𝑛

𝐴
and

the number of sampling points 𝑛
𝑃
in each trajectory. In this

optimizationmethod, the trajectories are pairwise probed for
couples of conflicting waypoints; hence the computational
complexity for conflict detection should be𝑂(𝑛2

𝐴
⋅ 𝑛
2

𝑃
), where

𝑛
2

𝐴
represents the complexity of probing whether aircrafts
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Figure 20: Statistics of separation for three scenarios.
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Figure 21: Statistics of flight delay for three scenarios.

conflict with each other and 𝑛
2

𝑃
represents the complexity of

probing two sampling points from each potential trajectory.
During conflict resolution, the branching scheme of search
strategy is employed, whose computational complexity is
𝑂(2
𝑛
𝐶), where 𝑛𝐶 represents the number of conflicts.
The computational complexity of mixed-integer nonlin-

ear programming for deconfliction based on speed regulation
proposed in reference [18] is related to the number of time
horizons 𝑛𝐻, the number of conflicting zones 𝑛𝑍, and the
radius of the circle representing the considered airspace 𝑅.
The conflicting zone lies around the center of the circle
where aircrafts are placed, and aircrafts may be in conflict
with each other. Hence, the computational complexity for
conflict probing should be 𝑂(𝑛

𝐻
⋅ 𝑛
𝑍
⋅ 𝑛
𝑅
(𝑛
𝑅
− 1)/2) =

𝑂(𝑛
𝐻

⋅ 𝑛
𝐴

⋅ (𝑛
𝑅
− 1)/2), where 𝑛

𝑅
= 𝜌𝜋𝑅

2 represents
the number of aircrafts in conflicting zone, 𝑛

𝑅
(𝑛
𝑅
− 1)/2

represents the number of potential conflicts in conflicting
zone, and 𝑛

𝐴
= 𝑛
𝑍
⋅𝑛
𝑅
represents the total number of aircrafts.

During conflict resolution using spatial Branch and Bound
algorithm, the computational complexity is 𝑂(𝑛

𝐻
⋅ 2
𝑛
𝑅𝐶),

where 𝑛𝑅𝐶 represents the number of conflicts in conflicting
zone.

According to (22), the computational complexity of
the proposed strategic conflict-free 4D trajectory planning
method is related to the number of conflicting waypoints
𝑛
𝑊

and the number of aircrafts 𝑛
𝑄
in the queue. Because

the stated equation is a linear equation under the defini-
tion of max plus algebra, the computational complexity for
conflict detection is 𝑂(𝑛

𝑊
⋅ 𝑛
𝑄
(𝑛
𝑄
− 1)/2), where 𝑛

𝑄
(𝑛
𝑄
−

1)/2 represents the possible queue sequencings according to
their arrival time at a conflicting waypoint. During conflict
resolution using optimization problems (26) and (28), the
computational complexity is 𝑂(2

𝑛
𝑄𝐶) and 𝑂(𝑛

𝑊
⋅ 2
𝑛
𝑄𝐶),

respectively, where 𝑛
𝑄𝐶

represents the number of conflicts in
the queue.

Table 5 shows a comparison of computational complex-
ities of constraint programming, mixed-integer nonlinear
programming, and max-plus algebra planning. It shows that
𝑛
𝐶

≫ 𝑛
𝑅𝐶

> 𝑛
𝑄𝐶

and 𝑛
𝑊

⋅ 2
𝑛
𝑄𝐶 < 𝑛

𝐻
⋅ 2
𝑛
𝑅𝐶 ≪ 2

𝑛
𝐶

for strategic deconfliction of trajectory with large number
of potential conflicts, further demonstrating that max-plus
algebra is more suitable for deconfliction of 4D trajectory
with random sampling period in fix air route.

7. Conclusions and Future Work

In this paper, to resolve potential conflicts during strategic 4D
conflict-free trajectory planning, a protection-zone conflict-
control model was established according to air traffic con-
trol separation constraints. Relationships between expected
arrival time and adjusted arrival time at conflictingwaypoints
for aircraft queue were built and transformed into dynamic
linear equations under the definition ofmax-plus algebra. On
this basis, a strategic deconfliction of 4D trajectory method
was proposed using two strategies: arrival time adjustment
and departure time adjustment. Perturbations in departure
time and flight duration were introduced to analyze the
robustness of the adjusted 4D trajectory, and a robustness
index for conflict-free 4D trajectory was proposed as well.

Results from the simulated case with a real air traffic
flight plan show that the separation between each pair of
adjacent aircrafts satisfies the minimum separation require-
ments, which demonstrated that the planned strategic decon-
fliction based on both departure time adjustment strategy
and arrival time adjustment strategy can avoid potential
conflicts effectively. In addition, perturbation analysis shows
that increasing the minimum requirement of separation
will reduce the slack departure time interval for aircraft
queues. Computational complexity analysis demonstrated
that deconfliction by max-plus algebra planning is more
suitable for deconfliction of 4D trajectory with random
sampling period in fix air route.
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Table 5: Comparison of computational complexities of different methods.

Method Conflict detection Conflict resolution
Constraint programming 𝑂(𝑛

2

𝐴
⋅ 𝑛
2

𝑃
) 𝑂(2

𝑛𝐶)

Mixed-integer programming 𝑂(𝑛
𝐻
⋅ 𝑛
𝐴
⋅ (𝑛
𝑅
− 1)/2) 𝑂(𝑛

𝐻
⋅ 2
𝑛𝑅𝐶)

Max-plus algebra planning 𝑂(𝑛
𝑊
⋅ 𝑛
𝑄
(𝑛
𝑄
− 1)/2) 𝑂(2

𝑛𝑄𝐶) or 𝑂(𝑛
𝑊
⋅ 2
𝑛𝑄𝐶)

In this research, it has been assumed that all conflict-
control models are connected in a series (without fork and
join), and, therefore, the synthesized air traffic model can be
described uniformly and calculated recursively. However, for
an actual complex airspace, conflict-control models could be
cross-connected. Such problems will be tackled in our future
work.
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