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We propose a new method for the multiple attribute decision making problem. In this problem, the decision making information
assembles multiple source data. Two main advantages of this proposed approach are that (i) it provides a data fusion technique,
which can efficiently deal with the multisource decision making information; (ii) it can produce the degree of credibility of the
entire decision making. The proposed method performs very well especially for the scenario that there exists conflict among the
multiple source information. Finally, a traffic engineering example is given to illustrate the effect of our method.

1. Introduction

In the decision-making theory, many methods and their
applications have been extensively studied. Recently, multiple
attribute decision making (MADM) problems [1, 2], whose
decision making information comes from multiple source
data, receive more and more attention. Among these prob-
lems, theMADMproblemswhich have the subjective and the
objective information [1–5] at the same time, and themultiple
attribute group decision making (MAGDM) [6–9] problems
are the two hot topics in this research field.

The key to the two kinds of problems is to fuse various
pieces of information [10]. For example, the following liter-
ature is to solve the first kind of problems. The literature [3]
has proposed an optimizationmodel to deal with theMADM
problems with preference information on alternatives, which
were given by decisionmaker in a fuzzy relation.With respect
to theMADMproblems with intuitionists fuzzy information,
the literature [4] has proposed an optimization model based
on the maximum deviation method. By this model, we can
derive a simple and an exact formula for determining the
completely unknown attribute weights. The literature [5] has
proposed a linguistic weighted arithmetic averaging operator
to solve the MADM problems, where there is linguistic

preference information and the preference values take the
form of linguistic variables and so forth.

In the respect of MAGDM problems, the literature [6]
has researched the MAGDM problem with different formats
of preference information on attributes; the literature [7] has
researched the 2-tuple linguistic MAGDM problems with
incomplete weight information and established an optimiza-
tion model based on the maximizing deviation method; the
literature [8] has presented a new approach to the MAGDM
problems, where cooperation degree and reliability degree
are proposed for aggregating the vague experts’ opinions; the
literature [9] has developed a compromise ratiomethodology
for fuzzy MAGDM problems and so forth.

Through these literatures, we could find that most of the
solutions have used some subjective attitudes or information
[10, 11], which were not provided by the problem itself. This
is seriously out of line with the social needs. In order to
overcome this defect, this paper presents two methods for
the above two kinds of problems. The proposed methods
are based on strong calculation and combined with the
optimization theory [12] or the variation coefficient method
[13].

The highlights of this new method could be summarized
into two points. The first, it can efficiently deal with the
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multisource decision making information; the second, it
could provide the credibility degree of the final decisional
results.

The rest parts of this paper will be organized as follows.
In Section 2, we introduce the problems which the article
would explore; in Section 3, we introduce the main tool of
our research; in Section 4, we put forward two new decision
methods; in Section 5, an application example is presented
to illustrate the new method; in Section 6, we make some
conclusions and present some further studies.

2. Two Problems

2.1. The MADM Problems under the Condition of Information
Conflict. We will introduce this problem as follows. Let 𝑋 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
} be a discrete set of𝑚 feasible alternatives, let

𝐹 = {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
} be a finite set of attributes, and let 𝑦

𝑖𝑗
=

𝑓
𝑗
(𝑥
𝑖
) (𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛) be the values of the

alternative 𝑥
𝑖
under the attribute 𝑓

𝑗
. In this paper, we only

consider the situation that 𝑦
𝑖𝑗
is given in real numbers. The

decision matrix of attribute set 𝐹 with regard to the set 𝑋 is
expressed by the matrix

𝑌 = (

𝑦
11

𝑦
12

⋅ ⋅ ⋅ 𝑦
1𝑛

𝑦
21

𝑦
22

⋅ ⋅ ⋅ 𝑦
2𝑛

...
... d

...
𝑦
𝑚1

𝑦
𝑚2

⋅ ⋅ ⋅ 𝑦
𝑚𝑛

). (1)

For convenience, we suppose that the decision matrix 𝑌
has been normalized and denote 𝑀 = {1, 2, . . . , 𝑚}, 𝑁 =

{1, 2, . . . , 𝑛}. For specific details of standardization, please see
the literature [3, 14].

The experts have provided the subjective preference infor-
mation for the alternative set 𝑋. We denote the information
as 𝜆 = (𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑚
)
𝑇, in which 𝜆

𝑖
∈ [0, 1], 𝑖 ∈ 𝑀.

Based on the above conditions, the problem is to select
and rank the alternatives. In this paper, we mainly consider
the situation where there are serious conflicts between the
subjective information and the objective information [15].

2.2. The MAGDM Problems with Interval Vectors. In this
subsection, we will introduce a kind of MAGDM problems
with interval vectors. The basic concepts are the same as the
above subsection, andwe use themathematical symbols, such
as 𝑋 = {𝑥

1
, x
2
, . . . , 𝑥

𝑚
}, 𝐹 = {𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
}, 𝑦
𝑖𝑗
= 𝑓
𝑗
(𝑥
𝑖
),

𝑊 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇, and the matrix 𝑌 directly.

Here, the same as the above subsection, we suppose that
the decision matrix 𝑌 has been normalized, and we only
consider the situation that 𝑦

𝑖𝑗
is given in real numbers.

Unlike the above subsection, here, the experts do not pro-
vide the subjective preference information for the alternative
set 𝑋 but provide the weight information directly. Consider
𝐷 = {𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑡
} as the collection of experts, and denote

the weight vectors which are provided by𝐷 as

𝑊
1
= ([𝑎
11
, 𝑏
11
], [𝑎
12
, 𝑏
12
] , . . . , [𝑎

1𝑛
, 𝑏
1𝑛
])
𝑇

,

𝑊
2
= ([𝑎
21
, 𝑏
21
], [𝑎
22
, 𝑏
22
] , . . . , [𝑎

2𝑛
, 𝑏
2𝑛
])
𝑇

,

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑊
𝑡
= ([𝑎
𝑡1
, 𝑏
𝑡1
], [𝑎
𝑡2
, 𝑏
𝑡2
] , . . . , [𝑎

𝑡𝑛
, 𝑏
𝑡𝑛
])
𝑇

.

(2)

Here, 0 ≤ 𝑎
𝑘𝑗
≤ 𝑏
𝑘𝑗
≤ 1, 𝑘 = 1, 2, . . . , 𝑡, 𝑗 = 1, 2, . . . , 𝑛.

The problem is to solve the MAGDM problem with the
above conditions.

3. Main Tool of Our Research

The common character of the two problems is that they
all involve the operation of interval numbers. In addition,
we must point out that the situation we have no weight
information equals to the situation where the weight is a
variable located in the interval [0, 1]. In the following, we
would give a newmethod for operating the interval numbers.

The new method originates from the basic of strong
calculation by modern computer.

Without loss of generality, we take calculating the
distance between ([𝑎

11
, 𝑏
11
], [𝑎
12
, 𝑏
12
], . . . , [𝑎

1𝑛
, 𝑏
1𝑛
]) and

([𝑎
21
, 𝑏
21
], [𝑎
22
, 𝑏
22
], . . . , [𝑎

2𝑛
, 𝑏
2𝑛
]) as example. The detailed

procedure is illustrated as follows.

Step 1. Divide each [𝑎
𝑝𝑞
, 𝑏
𝑝𝑞
] (𝑝 ∈ {1, 2}, 𝑞 ∈ {1, 2, . . . , 𝑛})

into 𝑛∗ parts. The value 𝑛∗ depends on the demand of the
decision makers. Then, we will get a set of segmentation
points as

𝑆 = {𝑎
𝑝𝑞
, 𝑎
𝑝𝑞
+
1

𝑛∗
(𝑏
𝑝𝑞
− 𝑎
𝑝𝑞
) , 𝑎
𝑝𝑞

+
2

𝑛∗
(𝑏
𝑝𝑞
− 𝑎
𝑝𝑞
) , . . . , 𝑏

𝑝𝑞
} .

(3)

We represent each interval [𝑎
𝑝𝑞
, 𝑏
𝑝𝑞
] (𝑝 ∈ {1, 2},

𝑞 ∈ {1, 2, . . . , 𝑛}) by 𝑆. Then, we represent the two
vectors ([𝑎

11
, 𝑏
11
], [𝑎
12
, 𝑏
12
], . . . , [𝑎

1𝑛
, 𝑏
1𝑛
]) and ([𝑎

21
, 𝑏
21
],

[𝑎
22
, 𝑏
22
], . . . , [𝑎

2𝑛
, 𝑏
2𝑛
]) by two sets of real-valued vectors.

Denote the two sets as 𝑃 and 𝑄.

Step 2. Take any element 𝑝 from 𝑃 and take any element 𝑞
from 𝑄; according to the formula

𝑊
𝑖
−𝑊
𝑗



= √(𝑤
𝑖1
− 𝑤
𝑗1
)
2

+ (𝑤
𝑖2
− 𝑤
𝑗2
)
2

+ ⋅ ⋅ ⋅ + (𝑤
𝑖𝑛
− 𝑤
𝑗𝑛
)
2

,

(4)

we could calculate the distance. By doing so, we could get
(𝑛
∗
)
2𝑛 distances.Then, we calculate the average value of these

distances and denote the average value as 𝑑.

Step 3. Increase the value 𝑛∗ gradually and repeat the above
steps. When the value 𝑑 holds steady to two digits after the
decimal point, end the procedure and see the final result 𝑑∗ as
the distance between ([𝑎

11
, 𝑏
11
], [𝑎
12
, 𝑏
12
], . . . , [𝑎

1𝑛
, 𝑏
1𝑛
]) and

([𝑎
21
, 𝑏
21
], [𝑎
22
, 𝑏
22
], . . . , [𝑎

2𝑛
, 𝑏
2𝑛
]).

Obviously, the main advantage of this method is that the
calculation procedure is in an objective, consistent way, and
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there is no subjective information involved in the calculation
procedure.

4. Decision Methods

At the beginning of this section, we would introduce a
method called the simple additive weighting method [1].
Now, we consider a problem in hypothetical situation, where
we have known the weight vector 𝑊 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇

and the attribute values. In this situation, we could get the
comprehensive attribute value 𝑍

𝑖
(𝑖 = 1, 2, . . . , 𝑚) by

𝑍
𝑖
(𝑊) =

𝑛

∑

𝑗=1

𝑤
𝑗
𝑦
𝑖𝑗

(𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁) . (5)

Obviously, the bigger 𝑍
𝑖
(𝑊) leads to the more excellent

𝑥
𝑖
. Therefore, we could accomplish the process of getting the

best alternative and ranking all of the alternatives by (5),
and we could see that the determination of the weight vector
𝑊 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the core of the MADM problem in

general conditions.

4.1. Decision Method 1. In this paper, we only consider the
situation where there is significant difference among these
weight vectors; that is, the Kendall consistence [13] of the
above weight vectors is imperfect.

The following, we present a new decisionmakingmethod
for solving the problems of subsection 2.1. The characteristic
of our method is that it could provide the credibility of the
decision maker for the subjective information as well as the
entire decisional results. Specific decision steps are as follows.

Step 1. Solve the single objective programming model

max 𝑍
𝑖
=

𝑛

∑

𝑗=1

𝑤
𝑗
𝑦
𝑖𝑗
,

s.t. 𝑤
𝑗
≥ 0, 𝑗 ∈ 𝑁,

𝑛

∑

𝑗=1

𝑤
𝑗
= 1,

(6)

and denote the result of model (6) as 𝑍max
𝑖

(𝑖 ∈ 𝑀), and
𝑍
max
𝑖

is the ideal value of the comprehensive attribute value
of 𝑥
𝑖
(𝑖 ∈ 𝑀).

Solve the single objective programming model

min 𝑍
𝑖
=

𝑛

∑

𝑗=1

𝑤
𝑗
𝑦
𝑖𝑗
,

s.t. 𝑤
𝑗
≥ 0, 𝑗 ∈ 𝑁,

𝑛

∑

𝑗=1

𝑤
𝑗
= 1,

(7)

and denote the result of model (7) as 𝑍min
𝑖

(𝑖 ∈ 𝑀), and
𝑍
min
𝑖

is the negative ideal value of the comprehensive attribute
value of 𝑥

𝑖
(𝑖 ∈ 𝑀).

Step 2. Denote

𝜆
∗

𝑖
=

𝑍
𝑖
− 𝑍

min
𝑖

𝑍
max
𝑖

− 𝑍
min
𝑖

, (8)

and establish one single objective optimal model

min 𝜆
∗
− 𝜆



2

=

𝑚

∑

𝑖=1

𝜆
∗

𝑖
− 𝜆
𝑖



2

,

s.t. 𝑤
𝑗
≥ 0, 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁,

𝑛

∑

𝑗=1

𝑤
𝑗
= 1.

(9)

Step 3. Solve the model (9), and we would get the weight
vector 𝑊∗ = (𝑤

∗

1
, 𝑤
∗

2
, . . . , 𝑤

∗

𝑛
)
𝑇. Up to this point, we could

calculate the comprehensive attribute values of each 𝑥
𝑖
(𝑖 ∈

𝑀) by (5). Then, we could rank the alternatives and get the
optimal alternative 𝑥∗.

Step 4. If the optimal solution 𝑥
∗ is consistent with the

subjective decision information 𝜆, we consider it as the final
optimal solution of the entire decision making process, and
consider

𝜂
1
= 1 − √(𝑤

∗

1
−
1

𝑛
)

2

+ (𝑤
∗

2
−
1

𝑛
)

2

+ ⋅ ⋅ ⋅ + (𝑤∗
𝑛
−
1

𝑛
)

2

⋅ (√
𝑛 − 1

𝑛
)

−1

(10)

as the degree of believing for the subjective information.
In (10), the value √(𝑛 − 1)/𝑛, which is obtained by

optimization theory is the max Euclidean distance between
((1/𝑛), (1/𝑛), . . . , (1/𝑛))

𝑇 and any possible weight vector
𝑊
∗. The value 𝜂

1
reflects the similarity scale of 𝑊∗ and

((1/𝑛), (1/𝑛), . . . , (1/𝑛))
𝑇. From the aspect of set-valued

statistics, the bigger the 𝜂
1
is, the more support would be got

from the data of the objective information.
Because there is coordination between the subjective

and objective information, and they all support the optimal
alternative 𝑥∗, we set the credibility of the entire decision as
1.

Step 5. If the optimal solution 𝑥
∗ is inconsistent with the

subjective decision information 𝜆, we would believe that the
subjective information has got no support from the objective
information. Here, we correct the value 𝜂

1
and set 𝜂

1
as zero.

Define

�̃�
𝑝
= max {𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑚
} , (11)

and define 𝑥 as the alternative corresponding to the index
�̃�
𝑝
. Obviously, the alternative 𝑥 could represent the subjective

information to some extent.

Step 6. We use the parameter 𝜂
2
to represent the credibility

of the entire decisional results. In this step, we assume that
the MADM problems have the alternative set of {𝑥∗, 𝑥} only.
Because the weight information is unknown, we consider the
weight vector as random element in weight space

𝑉 = [0, 1] × [0, 1] × ⋅ ⋅ ⋅ × [0, 1] , (12)

and the random element follows a uniform distribution.
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Step 7. By using the main tool of our research, which has
been introduced in Section 3, we compare the advantages
of the alternative 𝑥∗ with the alternative 𝑥 and calculate the
credibility of them. By (5), every element of𝑉 would support
one optimal alternative. Based on this, each alternative would
be supported by a region of hypercube 𝑉, and the ranking of
all alternatives could be solved by comparing the regions of
hypercube 𝑉. The result of this regions comparison could be
got by the technique of numerical simulation [16].

It’s worth mentioning that if the sum of the weight vector
is not one, by normalization, it is equivalent to a weight vector
with the sum one.

4.2. DecisionMethod 2. Now,we present a newdecisionmak-
ing method for solving the problem of subsection 2.2. In this
paper, we only consider the situationwhere there is significant
difference among these weight vectors 𝑊

1
,𝑊
2
, . . . ,𝑊

𝑡
; that

is, the Kendall consistence [13] of the above weight vectors
is imperfect.

For convenience, we denote the expert weight vector of
set𝐷 as

�̃�
∗
= (𝑤
∗

1
, 𝑤
∗

2
, . . . , 𝑤

∗

𝑡
) . (13)

Obviously, the relative attribute weights of the set 𝐹 could
be got by

𝑊 = (𝑤
∗

1
, 𝑤
∗

2
, . . . , 𝑤

∗

𝑡
)

×(

[𝑎
11
, 𝑏
11
] [𝑎
12
, 𝑏
12
] ⋅ ⋅ ⋅ [𝑎

1𝑛
, 𝑏
1𝑛
]

[𝑎
21
, 𝑏
21
] [𝑎
22
, 𝑏
22
] ⋅ ⋅ ⋅ [𝑎

2𝑛
, 𝑏
2𝑛
]

...
... d

...
[𝑎
𝑡1
, 𝑏
𝑡1
] [𝑎
𝑡2
, 𝑏
𝑡2
] ⋅ ⋅ ⋅ [𝑎

𝑡𝑛
, 𝑏
𝑡𝑛
]

) .

(14)

The result of the formula [13] is one interval number
column vector; we denote it as

𝑊 = ([𝑎
1
, 𝑏
1
], [𝑎
2
, 𝑏
2
] , . . . , [𝑎

𝑛
, 𝑏
𝑛
])
𝑇

. (15)

In the following, we would present the new decision
making method.

Step 1. Denote the weight vectors which are provided by
experts 𝑑

𝑖
and 𝑑

𝑗
as

𝑊
𝑖
= (𝑤
𝑖1
, 𝑤
𝑖2
, . . . , 𝑤

𝑖𝑛
) ,

𝑊
𝑗
= (𝑤
𝑗1
, 𝑤
𝑗2
, . . . , 𝑤

𝑗𝑛
) .

(16)

Thedistance between𝑊
𝑖
and𝑊

𝑗
would be got by themain

tool of our research, which has been introduced in Section 3.
The computation follows the formula [5].

Step 2. By formula [5], denote

𝐴
1
=

𝑡

∑

𝑘=1

𝑊1 −𝑊𝑘


=

𝑡

∑

𝑘=1

√(𝑤
𝑘1
− 𝑤
11
)
2

+ (𝑤
𝑘2
− 𝑤
12
)
2

+ ⋅ ⋅ ⋅ + (𝑤
𝑘𝑛
− 𝑤
1𝑛
)
2

,

𝐴
2
=

𝑡

∑

𝑘=1

𝑊2 −𝑊𝑘


=

𝑡

∑

𝑘=1

√(𝑤
𝑘1
− 𝑤
21
)
2

+ (𝑤
𝑘2
− 𝑤
22
)
2

+ ⋅ ⋅ ⋅ + (𝑤
𝑘𝑛
− 𝑤
2𝑛
)
2

,

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐴
𝑡
=

𝑡

∑

𝑘=1

𝑊𝑡 −𝑊𝑘


=

𝑡

∑

𝑘=1

√(𝑤
𝑘1
− 𝑤
𝑡1
)
2

+ (𝑤
𝑘2
− 𝑤
𝑡2
)
2

+ ⋅ ⋅ ⋅ + (𝑤
𝑘𝑛
− 𝑤
𝑡𝑛
)
2

.

(17)

Step 3. Take

𝑊
∗
= (

1

𝐴
1

,
1

𝐴
2

, . . . ,
1

𝐴
𝑡

)

𝑇

, (18)

then standardize 𝑊∗. We would get the weight vector for
experts of set𝐷. Denote𝑊∗ = (𝑤∗

1
, 𝑤
∗

2
, . . . , 𝑤

∗

𝑡
)
𝑇.

Step 4. Divide each [𝑎
𝑗
, 𝑏
𝑗
] (𝑗 ∈ {1, 2, . . . , 𝑛}) into 𝑛∗ parts.

The value 𝑛∗ depends on the demand of decision makers.
Then, we will get a set of segmentation points as

𝑆
𝑗
= {𝑎
𝑗
, 𝑎
𝑗
+
1

𝑛
∗
(𝑏
𝑗
− 𝑎
𝑗
) , 𝑎
𝑗
+
2

𝑛
∗
(𝑏
𝑗
− 𝑎
𝑗
) , . . . , 𝑏

𝑗
} .

(19)

Step 5. Represent each interval [𝑎
𝑗
, 𝑏
𝑗
] (𝑗 ∈ {1, 2, . . . , 𝑛}) by

set 𝑆
𝑗
, and represent the vectors𝑊 by one set of real-valued

vectors, which would be denoted as �̌�∗ here. It is easy to see
that the element number of the set𝑊 is (𝑛∗)𝑛.

Step 6. Take any element𝑊 from �̌�
∗, take any 𝑖 from𝑀, and

denote

𝑍
𝑖
= (𝑦
𝑖1
, 𝑦
𝑖2
, . . . , 𝑦

𝑖𝑛
) ⋅ 𝑊. (20)

According to comparing each 𝑍
𝑖
(𝑖 ∈ 𝑀), any element 𝑊

from �̌�
∗ will support one alternative.Thus, the set �̌�∗ would

be divided into 𝑖 subsets. We denote the element number of
these subsets as 𝑛

1
, 𝑛
2
, . . . , 𝑛

𝑚
and denote the support degree

for each 𝑥
𝑖
(𝑖 ∈ 𝑀) as 𝜂

𝑖
= (𝑛
𝑖
/𝑛
∗
).

Step 7. Increase the value 𝑛∗ gradually and repeat the above
steps. When the value 𝜂

𝑖
(𝑖 ∈ 𝑀) holds steady to two digits
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after the decimal point, the procedure is ended and the final
result 𝜂

𝑖
(𝑖 ∈ 𝑀) is seen as the support degree for each 𝑥

𝑖
(𝑖 ∈

𝑀).

Step 8. By comparing each 𝜂
𝑖
(𝑖 ∈ 𝑀), we could sort and

select the optimal alternatives.

5. An Application Example

In this section, we would present an example to illustrate our
proposed methodology. Because the first method is relatively
complex, and the two methods are similar, we only give an
example to verify the first method.

This example is coming from the traffic engineering. In
this example, 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

5
} is the set of alternatives,

𝐹 = {𝑓
1
, 𝑓
2
, 𝑓
3
, 𝑓
4
} is the set of attributes, and all attributes

are of benefit types. Consider 𝑊 = (𝑤
1
, 𝑤
2
, 𝑤
3
, 𝑤
4
)
𝑇 as the

weight vector of all attributes. Here, we have no information
about𝑊. The standardized decision matrix is given as

[
[
[
[
[

[

0.50 0.80 1.00 0.50

0.70 1.00 0.70 0.90

0.60 0.90 0.60 1.00

0.30 0.90 0.30 0.70

1.00 0.80 0.40 0.80

]
]
]
]
]

]

. (21)

The evaluation vector, which is given towards the set
{𝑥
1
, 𝑥
2
, . . . , 𝑥

5
} and determined by the decision maker, is

𝜆 = (0.45, 0.34, 0.27, 0.25, 0.25) . (22)

Now we seek to rank these alternatives and find the most
desirable one.

Firstly, according to the method proposed in this paper,
we build one optimal decision model as follows:

min 𝑊
∗
= (𝜆
∗

1
− 0.45)

2

+ (𝜆
∗

2
− 0.34)

2

+ (𝜆
∗

3
− 0.27)

2

+ (𝜆
∗

4
− 0.25)

2

+ (𝜆
∗

5
− 0.25)

2

s.t. 𝑤
𝑗
≥ 0,

4

∑

𝑗=1

𝑤
𝑗
= 1,

(23)

in which

𝜆
∗

1
=
(0.50𝑤

1
+ 0.80𝑤

2
+ 1.00𝑤

3
+ 0.50𝑤

4
− 0.50)

(1.00 − 0.50)
,

𝜆
∗

2
=
(0.70𝑤

1
+ 1.00𝑤

2
+ 0.70𝑤

3
+ 0.90𝑤

4
− 0.70)

(1.00 − 0.70)
,

𝜆
∗

3
=
(0.60𝑤

1
+ 0.90𝑤

2
+ 0.60𝑤

3
+ 1.00𝑤

4
− 0.60)

(1.00 − 0.60)
,

𝜆
∗

4
=
(0.30𝑤

1
+ 0.90𝑤

2
+ 0.30𝑤

3
+ 0.70𝑤

4
− 0.30)

(1.00 − 0.30)
,

𝜆
∗

5
=
(1.00𝑤

1
+ 0.80𝑤

2
+ 0.40𝑤

3
+ 0.80𝑤

4
− 0.40)

(1.00 − 0.40)
.

(24)

Next, by solving the model (23), we would get

𝑊 = (0.0955, 0.0319, 0.5276, 0.3450)
𝑇
. (25)

Afterwards, by using the simple additive weighting
method [1], the vector of comprehensive attribute values of
each alternative could be obtained and it is

(0.7734, 0.7786, 0.7476, 0.4571, 0.6081)
𝑇
. (26)

Obviously we can conclude that 𝑥
2
would be the optimal

alternative and it is inconsistent with the subjective decision
information 𝜆. Thus, we set the degree of believing for the
subjective information as 0.

Then, we use the method of hypercube segmentation [16]
as a tool to compare the advantages of alternative 𝑥

1
and

alternative 𝑥
2
. Results show that 𝑥

2
comes to be the best

alternative, and its credibility is 98.7654%.
In a word, there are conflicts between the subjective

and objective decision-making information in this case.
According to our method, 𝑥

2
is the best alternative, with the

reliability 0 for the subjective information and the reliability
98.7654% for the entire decision.

6. Conclusions

Firstly, from the above example, it could be found that the
uncertainty of the multisource decision making information
has been studied and fused, and the process of the given
method is objective, with no subjective factors. This is the
highlight of our new method.

Secondly, though our two methods are all based on
the new algorithms of interval numbers, they also have the
diversity. The first method combines with the optimization
theory, and the second method combines with the principle
that the minority is subordinate to the majority.

Thirdly, from the example it can be seen that it is easy and
convenient to use the two new methods, and the numerical
example illustrates that our proposed method can deal with
the multisource decision-making information well.

So, the proposed method may have a higher availability
and a better application prospect.
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