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Abstract. The paper considers semi-global stereo matching in the con-
text of vision-based driver assistance systems. The need for real-time
performance in this field requires a design change of the originally pro-
posed method to run on current hardware. This paper proposes such a
new design; the novel strategy first generates a disparity map from half-
resolution input images. The result is then used as prior to restrict the
disparity search space for full-resolution computation. This approach is
compared to an SGM strategy as employed currently in a state-of-the-
art real-time FPGA solution. Furthermore, trinocular stereo evaluation
is performed on ten real-world traffic sequences with a total of 4,000
trinocular frames. An extension to the original evaluation methodology
is proposed to resolve ambiguities and to incorporate disparity density
in a statistically meaningful way. Evaluation results indicate that the
novel SGM method is up to 40% faster when compared to the previous
strategy. It returns denser disparity maps, and is also more accurate on
evaluated traffic scenes.

Keywords: Semi-global matching, driver assistance systems, coarse-to-
fine stereo.

1 Introduction

Stereo correspondence analysis by semi-global stereo matching (SGM), as pro-
posed by Heiko Hirschmiiller [7], is a popular choice for real-time applications
that require dense disparity maps at high frame rates. For example, vision-based
driver assistance systems (DAS) favour the SGM strategy; see Rabe et al. [I1].
A major constraint for real-time SGM implementation is the available mem-
ory throughput in current hardware. Because SGM integrates along multiple
1-dimensional (1D) energy paths, a large memory block needs to be updated in
off-chip memory.

Current literature on real-time SGM proposes to alter the design to the orig-
inal method for ensuring high frame rates for image resolutions equivalent to
the VGA norm (i.e. 640x480). For example, Hirschmiiller [7] recommends to
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integrate at least along eight directions to obtain satisfactory results. But Nede-
vschi et al. [5] propose to integrate only along horizontal and vertical directions,
leaving out diagonal energy paths. They justify their approach with the argu-
ment that objects recorded from a moving vehicle are usually aligned along the
main axis, such that diagonal directions do not contribute as much to the final
solution. But by omitting 50% of the accumulation procedure, the requirements
on data processing are eased and real-time performance is achieved.

A research group at Daimler A.G. uses another design concept for their FPGA
implementation that was proposed by Gehrig et al. [4]. They keep the recom-
mended eight accumulation paths, but calculate a disparity image on a down-
scaled image pair first. The result is then scaled-up to full resolution and serves
as a disparity prior. In a consecutive step they calculate a disparity map for a
specified region-of-interest with SGM on full resolution images, but using only
half of the disparity search space. They generate the final result by replacing
disparities in the prior image with disparities from the full resolution map, if the
prior suggests that a disparity lies inside the reduced search space. Otherwise
the prior disparity is taken as the final result. This is based on the argument
that sufficient disparity accuracy for close objects can be obtained when comput-
ing half-resolution disparity images only. But, as the re-projection error increases
quadratically when disparities get smaller and boundaries of objects further away
may become vague due to downscaling, it is required to calculate disparities at
full resolution to minimize distance uncertainties for those objects.

The SGM design as proposed in this paper follows the Daimler approach and
calculates a disparity prior on half-resolution images. However, in contrast we
use the prior to actively determine the search space for the full-resolution SGM,
instead of having an indication how to merge independently calculated disparity
maps. Our approach therefore follows the standard coarse-to-fine concept, where
results from lower-resolution images are used to initialize the same algorithm
operating on the next higher resolution level. Such coarse-to-fine approaches are
nowadays standard in variational motion estimation algorithms to achieve faster
convergence; see, for example, the work by Brox et al. [I] or Zach et al. [18].

Fig. 1. Disparity results from the new SGM design (left) and the standard SGM de-
sign (right). The new design is 60% faster and is much denser especially inside the
challenging road area.
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To the best of our knowledge, no coarse-to-fine concept as described in the
previous paragraph has been proposed so far in combination with SGM, and
therefore has not been evaluated either. For the evaluation we propose an ex-
tension to an existing methodology [9] that can be used for stereo performance
evaluation in the absence of ground truth and employ it on a reasonably large
database of real-world traffic sequences. Of course, coarse-to-fine strategies are
already employed to improve the performance of stereo matching algorithms in
general. For example, a recent publication by Sizintsev and Wildes [14] employs
a coarse-to-fine strategy to a block-matching algorithm. Also, in the original
SGM design by Hirschmiiller [7], a coarse-to-fine strategy is used, but only to
support the mutual information (MI) cost function. The author recommends to
calculate the disparities with SGM at each pyramid level from scratch. So, the
prior information is just used to improve the quality of the MI cost function
and not to improve the run-time performance of SGM. This defines the place
where this paper is positioned, namely somewhere between the original SGM [7]
and the SGM design proposed by Gehrig et al. [4]. We use design considerations
from the latter work to select a method to be compared with our novel strategy,
because of the shared goal to improve the run-time performance of SGM while
maintaining stereo accuracy on real-world traffic scenes.

The rest of this paper is organized as follows. In Section [, relevant details of
the SGM algorithm are recalled and parameter settings of the used implementa-
tion are given. We present the design consideration as proposed by Gehrig et al.,
followed by our proposed coarse-to-fine approach. We also provide a discussion
about run-time performance. The trinocular evaluation concept as proposed by
Morales and Klette [9] is outlined in Section B} we propose alterations and fur-
ther extensions to the original method. In Section [4] we present ten real-world
sequences, each of 400 trinocular frames, and outline the methodology of our
experiments using trinocular evaluation. The results of this study are discussed
in detail in Section Bl The paper concludes with a summary in Section [6l

2 Semi-Global Matching

We first recall the SGM algorithm and explain our alterations to the original
configuration as reported in [7]. We then compare two SGM design consideration
of this reference implementation. The first, called SG Mg, is our implementation
following the design concept as proposed by Gehrig et al. [4], and this serves as
the method of comparison. The second implements our coarse-to-fine approach.
We discuss the run-time and disparity analysis performance of both methods.

Cost Accumulation and Cost Function. We introduce the notation for defin-
ing the cost accumulation procedure. For a cost accumulation path L, with di-
rection a, processed between image border and pixel p, we consider the segment
Do, P1, - - -, P Of that path, with pg on the image border, and p,, = p. The cost at
pixel position p for a disparity d € {0,...,D} C N on the path L, is recursively
defined as follows, for i =1,2,...,n:

La(pi7 d) :C(pu d) + Mz - mAIH La(Pz‘—h A) (1)
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with
La(pi—1,d)
La(pi—lad_ 1) +c1 (2)
La(pi—1,d+ 1)+ 1
mina La(pi—1, A) + c2(pi)

M, =min

where C(p, d) is the similarity cost of pixel p for disparity d, and ¢; and co are the
penalties of the smoothness term. The second penalty ¢, is individually adjusted
at each pixel p; to ca(p;). The magnitude of the forward difference in direction
a scales the penalty for each p; with

[ (pi—1) — 1(ps)]

where I(-) refers to the intensity at a pixel. For disparities d = 0 and d = D,
the terms La(pi—1,d — 1) + ¢1 and La(pi—1,d + 1) + ¢; are removed from M,
respectively.

The standard SGM algorithm uses eight paths for accumulation (up, down,
left, right, and the four in-between angles). To enforce uniqueness, two disparity
maps are calculated to perform a left-right consistency check. A disparity passes
this test if corresponding disparities do not deviate by more than one disparity
level. To identify an occlusion or mismatch, a unique invalid label is assigned to
pixels whose disparities failed this test. Disparities are calculated with sub-pixel
accuracy using the equiangular interpolation method proposed by Shimizu and
Okutomi [13]. The penalties are set to ¢; = 30 and ¢z = 150 for an intensity
domain of [0,255]. The input images are smoothed with a small 3 X 3 mean
kernel. As similarity cost, we employ the census cost function which is based on
the census transform. Several studies [8I6] found that this function is very ‘de-
scriptive’ and robust, even under strong illumination variations, which is crucial
for real-world applications.

The census transform [16] assigns to each pixel in the left and right image a
signature vector, which is stored as a bit string (i.e. as an integer). This trans-
formation is performed once prior to cost calculation, and signatures are stored
in an integer matrix of the dimension of the image. The signature sequence is
generated as follows:

c2(pi) 3)

censussig = |¥(Li; > Iita,jty) (oen’ (4)
where ¥(-) returns 1 if true, and 0 otherwise. A denotes a neighbourhood (e.g.
8-neighbourhood) centred at the origin.

The census cost is the Hamming distance of two signature vectors and can
be calculated very efficiently [I5]. In fact, the cost of calculating the Hamming
distance is proportional to the actual Hamming distance and not to the length
of the signature string. This is useful in GPU implementations: calculating the
cost from scratch is here cheaper than accessing the global memory [3].

Design Considerations. First we introduce some terminology. A standard
SGM implementation was described in the previous subsection. We now describe
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the design consideration reported by Gehrig et al. [4], denoted by SGMg. Our
new approach is denoted by SGMz, where subscript F stands for ”fast”.

Both programs, SGMg and SGM £, calculate a dense disparity map applying
standard SGM on half-resolution input images. The images were scaled down
using a 5 x 5 Gauss kernel with ¢ = 1. The half-resolution disparity maps
are scaled up; in-between pixels are linearly interpolated if both neighbours
have a valid disparity assigned to them. When identifying (by the left-right
consistency check) a case of occlusion or mismatch, we assign an invalid label to
the corresponding 3 x 3 neighbourhood. This calculated half-resolution disparity
map P serves in both methods as prior for subsequent calculations.

In case of SGMg, a second disparity map F' is calculated on full-resolution
input images. However, the maximum disparity D is reduced to D/2 to reduce
the memory to be processed. The final disparity map R is created as follows

R .= Pi; it Pi; > D/2-1
I F; ; otherwise

()

In case of SGM £, the prior P is used to define the search space for every in-
dividual pixel. For a valid disparity ¢ in P, we process Equation (II) not for
de{0,...,D} CNbutonlyforde {6 —4,6—3...,6+3,6+4} CN.

In other words we restrict the disparity search space to nine pixels around the
prior. In case of disparities close to 0 or D, we do not reduce the search space but
shift it accordingly. In case of invalid pixels we simply assign the default search
space which would be d € {0,...,D} C N, to allow for all possible disparities.

Run-Time Performance. We analyse the approximate run-time performance
on images with resolution WxH. We assume that the maximum possible dispar-
ity is D. This means that a memory block of WxHxD has to be processed, which
resides in off-chip memory. Because one individual integration step consists of
a constant number of operations [see Equation ()], the run-time performance
can be related to the size of the memory that needs to be processed. The ad-
vantage of this model is its independence from any hardware consideration or
implementation.

The memory block used in standard SGM serves as reference to define a
coefficient px that indicates the ratio of memory needed in SGMyx. Without
alterations, we have ps = 1 in standard SGM.

In case of SGMg, we have to process a memory block of size W/2xH/2xD/2
for the half resolution image, and WxHxD/2 for the full resolution image.
Adding those two quantities results in ngxHxD, which gives a coefficient

0 = Z. We can now measure the performance gain of SGMg compared to
standard SGM, taking into account that
o _ 3

1- = _=375% 6

0s 8 (6)

In case of SGM £, the individual run-time depends on the density of the half-
resolution disparity map, because the whole search space is considered at occlu-
sions in the full-resolution run. We denote the density of this map by ¢. The
total memory to be processed equals
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[W/2 x H/2 x D/2]+ [W/2 x H/2x (99 + (1 — 9)D)] = 0 x W x H x D (7)

A few algebraic operations lead to
9 D-9

eFr=g=9% g (8)
The gain compared to SGMg equals
oF 819 D-9
1— =1- — 9
06 5 {8 ’ D ©)

We see that in case of the new design, the run-time performance can actually
be worse compared to the standard SGM in cases where the prior disparity map
is very sparse. However, in practice this is almost never the case; if it occurs
then full-resolution SGM is well justified (i.e. the stereo data is ‘challenging’).
Consider on the other hand a perfectly dense prior map (i.e. ¢ = 1). To obtain
the same run time as with SGMg, the minimum disparity range has to be at
least D = 18. As ¢ = 1 is also unlikely, the performance advantage only occurs
for larger values of D. For example, a common value such as D = 128 defines
a possible run-time gain of up to 68%. We measure performance advantages
in our experiments by applying Equation ([@). Results below show an expected
performance gain of about 40%.

3 Trinocular Stereo Evaluation

A predicted-error technique was first employed by Morales and Klette [9] for
evaluating stereo analysis on long real-world stereo sequences. It requires at
least stereo triples of the same scene, recorded at the same time instance by three
calibrated cameras. Two of the three images (i.e reference and match image) are
used to calculate a disparity map by the stereo matching algorithm of choice.
Each pixel of the reference image is then projected into the position in which it
would be located in the third (i.e. control) image C. This virtual image V is then

compared to the control image C' by calculating the normalized cross-correlation
(NCC) index as follows:

[oAval
(i,))€R2 vee

where py and pe denote the means, and oy and o¢ the standard deviations of
the control and virtual images, respectively. The domain {2 contains only non-
occluded pixels (i.e. pixels which are successfully mapped from the reference
image to the virtual image domain).

Generating the Virtual Image. In the original work by Morales and Klette [9]
it is proposed to use a forward mapping to generate the virtual image. In other
words, intensities of the reference image are mapped to positions in the control
image and assigned to the closest pixel position. The problem here is that dur-
ing the mapping process more than one intensity value may be mapped to the



A Coarse-to-Fine Strategy for Fast Semi-global Stereo Matching 401

same pixel location. Discarding any of these mappings would cause a bias in the
evaluation, as the final index is affected by removing potentially wrong or correct
disparities. To avoid this bias we do not calculate a virtual image but rather cal-
culate a control intensity by means of bilinear lookup from the calculated position
in the control image that is compared with the intensity of the reference image.

To make this process as easy as possible and to avoid any bias from an oth-
erwise required de-rectification step, we recorded with a horizontally aligned
trinocular camera system and rectified the images with respect to the left-most
camera. This way we obtain three rectified images where corresponding epipolar
lines in all three images are running along the same image row. Thus, a pixel
position in the control image has the same y-coordinate as the corresponding
pixel in the reference image.

v control camera

50 cm
baseline

virtual image disparity map

Fig. 2. Setup for the trinocular stereo experiment in this paper, showing one example
frame from the experimental database

The z-coordinate is then calculated as the current location in the reference
image plus an offset, which is the product of the current disparity and the ratio
of the baselines from the reference image to the control and to the match image.
Figure 2 shows the setup in our experiments. The stereo camera has a 30 cm
baseline and a disparity map is calculated with the centre image as reference.
Then the virtual image is generated and compared with the control image. The
scale factor to multiply the disparities with is here 28. Remember that in practice
we warp the control image to the image plane of the reference camera as discussed
before, but we will stick with the previous terminology as it makes it easier when
proposing the following alteration to the original index.

Comparing Two Stereo Algorithms. The basic idea of trinocular stereo
evaluation is, of course, to have a quality measure to compare the performance of
different stereo algorithms in the absence of ground truth. Following the original
approach, the difference of the NCC index at each frame for each stereo algorithm
is evaluated. In case of only two stereo algorithms, we introduce a measure
ANCC that calculates the signed difference of two indices. This makes it easy
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to compare very similar results as the sign already gives an indication which
algorithm performs better.

However, there is a bias in this evaluation. The density of a disparity map
is not reflected. Therefore, a sparse stereo algorithm that calculates disparities
only at pixels that respond to a robust feature detector would very likely perform
much better in this index than a dense algorithm which also assigns disparities
in case of weak confidence. The question is how to incorporate the density in the
index in a meaningful way. For that, we first introduce some further notation.

We think of images as being random variables X and Y that take intensity
values as events. The NCC value can be interpreted as the correlation coefficient
PXY = COU(X, Y)/(O’Xo'y) with

Cov(X,Y) = E[(X — EX)(Y — EY)] (11)

So the index reflects a mean of some distribution, and it is possible to calculate
the standard deviation of it, referred to by Cov, (X,Y).

We consider two disparity images D; and D5 that generate two virtual images
V1 and V3, respectively, both to be compared with a control image C. For the
evaluation we consider all pixels of the domain 21 U 25. The total number of
this domain is n = |2, U {22|. We determine for each disparity image the number
of invalid pixels as k1 = n — |21\ (21 N §22)| and ky = n — |22\ (21 N 29)].
We propose for [ = {1,2} the following index for the comparison of two stereo
algorithms:

! K {kl k2 Noe - Covy) (12)

NCC, = +
"\ Lopea 70

where K = [V (4, j) — pv][Ci (4, §) — pe]. We omit the arguments (V;, C) in NCCy,
NCC, and Cov, for better readability.

The index works as follows. Consider 21 = {25, which results in k1 = ko = 0.
In this case this index will be identical to the original NCC index as proposed in
Equation (I0). Now consider the symmetric case that k1 > k2 and Cov, (V1,C) =
Cov,(Va,C) = v. Again, the index will be identical, because we only add terms
that correspond to the pre-calculated mean. However, since we can assume that
v > 0, we add terms such that the final index decreases. If the first term is
identical for both images, the index that corresponds to the denser disparity
map increases. If, on the other hand, v; > va, k1 = ko and the first term is again
identical in both cases, then the index that corresponds to the smaller standard
deviation wins. This is reasonable, as we can assume that a smaller standard
deviation refers to a ‘more consistent’ disparity result.

To summarize, with Equation (I2) we proposed an alteration to the original eval-
uation index. It slightly adjusts the original index such that a higher disparity den-
sity has a positive impact on the index. We propose to use the standard deviation
of the covariance for the index adjustment. This is useful because it relates to the
underlying data and therefore gives also an additional quality measure (see eval-
uation below). But, the main motivation is that it can annihilate the benefit of a
higher disparity density in case that ‘additional’ disparity values, which do not
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positively contribute to the index, increase the standard deviation and therefore
have a negative affect on the final result. Thus, we regulate the NCC adjustment
by two parameters, which can have a compensating or amplifying effect.

4 Evaluation Methodology and Datasets

We evaluate on ten trinocular sequences that show urban and rural environ-
ments. Fach sequence consists of 400 frames. Figure Bl shows some frame sam-
ples. We refer to them by numbers only as we do not discuss them in the context
of the scene they are showing, but the sample frames may help to ‘read’ Table [Tl

Fig. 3. From left to right: Example frames of sequence, 3, 5, 9, 10, 6

We evaluated SGMz and SGMg on each frame of all sequences using the
trinocular evaluation as proposed in Section Bl We calculated the signed differ-
ence of several values except the performance where values relating to SGM g
constitute the first summand. This list describes the results provided in Tab. [Tk

ANCC: difference of the original index.

ANCC, : difference of the adjusted index.

Ao difference of calculated Cov,

Adensity: difference of the disparity density over the whole image.
perf. gain: the run-time gain of SGMr compared to SGMg.

Table 1. Table of evaluation results

Seq. # A NCC A NCC, Ao A density  perf. gain
1 0.73 033 213 129 -16.0 830 3.70 1.82 49.2 5.20
2 0.24 014 0.79 0.27 3.79 3.80 6.69 1.79 50.5 2.58
3 0.20 0.38 1.00 0.40 4.75 2.11 6.37 0.65 35.8 2.58
4 048 042 1.62 0.80 6.06 4.19 795 083 314 6.72
5 1.14 0.46 3.19 1.20 -6.42 8.93 4.66 0.62 44.1 4.37
6 0.25 040 -0.04 039 876 470 3.19 119 421 294
7 0.32 0.13 1.40 0.73 -3.63 197 825 1.73 589 1.64
8 0.24 023 154 117 -2.17 549 6.99 3.25 40.7 8.90
9 0.10 0.22 040 0.49 0.37 3.28 4.38 251 484 7.19
10 0.85 0.21 5.79 139 -12.7 853 14.8 2.01 45.6 1.60

Mean 046 0.27 178 0.81 -1.71 5.13 6.70 1.64 44.7 4.37
StdDev 0.34 0.15 1.67 042 815 262 3.34 0.85 7.81 2.54
Median 0.28 0.28 1.47 0.77 -0.9 445 6.53 1.76 449 3.67
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Fig. 4. Results of Sequence 8. Top: ANCC and Ac. Bottom: ANCC,, and Adensity.

The left entry for each item is the mean over the whole image sequence; the
right entry is the standard deviation. At the bottom of the table, mean standard
deviation and median are given for each item. A positive value favours SGMx
except for Ao where a negative A, defines ‘better’.

Highlighted entries show relatively better performances for SGMg (red / se-
quence 6), and for SGM# (green / sequence 10). For a more detailed illustration
of one sequence, see frame-by-frame results for Sequence 8 in Fig. [& values for
this sequence are close to medians and thus ‘kind of representative’

Disparities of these images increase to up to 84, but we decided to run the
algorithms on D = 128, for two reasons: First, this disparity limit is the current
standard for real-time DAS stereo systems; second, the fact that this way most
of the disparity map is taken from the full resolution disparity image in case
of SGMg is considered beneficial according to Gehrig et al. (page 136,[4]) who
state that ”Ideally, SGM would be computed everywhere at full resolution”.

5 Results

Looking at performance indices ANCC and ANCC,, at Tab.[la clear tendency in
favour for SGM £ is obvious. All index differences are positive with one exception
in Sequence 6. However, since these values refer to percentage point differences,
the performance quality of both methods is very similar. But this result comes
with a mean run-time improvement of 40% over all sequences for SGM . Along
with that the new design return 5% to 6% denser disparity maps than SGMg.
To summarize, our compressed results over 4000 real-world traffic stereo frames
suggest that we get slightly denser disparity maps and a positive tendency in stereo
performance with a run time improvement of 40% over the method of comparison,
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which already has a run-time advantage of 37.5% to the standard SGM design. As
we already mentioned, we defined the disparity range D = 128 but find actual
disparities only up to 84. Therefore, the major part of the disparity map generated
by SG Mg consists of the full resolution SGM. Thus, qualitative conclusion most
likely hold against the standard SGM design. Different configurations and designs
will be evaluated in the future, the scope of this paper only allows to introduce the
new design and compare it with one design that follows a similar approach and is
state-of-the-art.

We can also use the table to check the new evaluation index for consistency. See
Sequence 6, where SG Mg performs best w.r.t. the new index. In this sequence we
also have a low density advantage for SG Mz which is well below the mean and we
have a very high Cov,. These three values are consistent with our motivation for
this index. Also, Sequence 10 where SG M £ performs best has a very low Cov, and
a high disparity density compared to SGMg. This also supports our argument.

For further analysis and to give an example, we picked sequence 8. for frame-
by-frame analysis. We choose this sequence as it is close to the median perfor-
mance (compare with final row of Tab.[I]). The graphs for the first four evaluation
differences of Tab. [[] can be seen in Fig. [l

Consider the part from Frame 1-150. The old and the new index follow the
same pattern, but the new index pushes SGM# on a higher index level. Looking
at Ao and Adensity we get the explanation. We have a much higher density
and lower Cov, than SGMg. Here both factors work in combination. Between
Frames 150 and 250 the original index stays constant and even increases a little.
The new index however, slightly decreases. Looking again to the right side of the
figure we see that also the density decreases and the C'ov, increases. Again, this
effect is visible in the new index. Between Frame 250 and 350 we have a positive
impact for the method of comparison. The Ao is here in favour for SGMg. There
is a slightly higher disparity density for SGM that has a small compensation
affect. However, this again shows, that the new index works as intended and that
results are conform with the expectations. We could not find an example in our
results that has a contradicting tendency.

6 Conclusions

We proposed a new design for SGM that employs a coarse-to-fine strategy to
reduce computational complexity. We compared this new method to a design
that follows a similar approach but with a very different implementation. The
common goal of both designs is to reduce the run-time of the algorithm while
keeping the quality of results of the original algorithm. We evaluated both de-
signs on 4,000 real-world traffic sequences. For the evaluation we extended an
existing trinocular evaluation approach. Our experiments support that the pro-
posed design results in a slightly higher density, has an overall tendency to more
accurate results and also has an average run-time advantage of 40% over the
other method. Furthermore, we evaluated a novel evaluation index and found
that results are conform with out motivation for defining this index. This new
index is of benefit for stereo evaluation when ground truth is missing.
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