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Abstract.
This paper introduces a novel method to create an interval field based on measurement

data. Such interval fields are typically used to describe a spatially distributed non-deterministic
quantity, e.g., Young’s modulus. The interval field is based on a number of measurement points,
i.e., control points, expended throughout the domain by a set of basis functions. At the control
point the non-deterministic quantity is known and bounded by an interval. However, at these
measurement points information about the gradients might also be available. In addition, the
non-deterministic quantity might be described better by estimating the gradients based on the
other measurements.

Hence, the proposed interval field method allows to incorporate this gradient information.
The method is based on Inverse Distance Weighing (IDW) with an additional set of basis func-
tions: one set of basis functions interpolates the value, and the second set of basis functions
controls the gradient at the control points. The additional basis functions can be determined in
two distinct ways: first, the gradients are available or can directly be measured at the control
point, and second, a weighted average is taken with respect to all control points within the
domain. In general, the proposed interval field provides a more versatile definition of an interval
field compared to the standard implementation of inverse distance weighting. The application of
the interval field is shown in a number of one-dimensional cases where a comparison with stan-
dard inverse distance weighting is made. In addition, a case study with a set of measurement
data is used to illustrate the method and how different realisations are obtained.

1 INTRODUCTION

In common engineering practice the main goal is to provide or validate component designs
that should perform under a wide range of circumstances, e.g., extreme weather, impact loads,
and sometimes even in space or at other planets. To ensure the performance of these compo-
nents, engineers often use numerical methods to approximate the set of differential equations
governing the physical behavior of the component under investigation. However, this can be a
daunting task as the parameters governing these equations are often only know vaguely, as they
are inherent variable, or only limited knowledge about these quantities is available, as direct
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measurement is not possible, or a combination of both [1]. Hence, during the last decades a
number of techniques are introduced that aim to quantify these non-deterministic quantities. In
general, these techniques are categorized as probabilistic [2] and possibilistic approaches such as:
intervals [3], fuzzy sets [4], and imprecise probabilities [5]. Where probabilistic methods describe
non-determinism as the likelihood that parameters assume a value via a joint probability density
function, possibilistic methods as, i.e. interval methods, consider non-deterministic quantities
to be bounded.

In a number of cases these quantities, e.g., wind loads, Young’s modulus, dielectric constants,
experience a spatial or temporal dependency, which is difficult to consider within the classic
interval method as described by R.E. Moore [6]. Therefore, the framework of interval fields was
introduced [7], which is capable of providing the spatial or temporal dependency structure by a
set of basis functions. Hence this method can be seen as a possibilistic counterpart to random
fields [8]. In the last decade a number of researchers have introduced different basis functions
that model the dependence structure, which can be based on inverse distance weighting [9, 10],
affine arithmetic [11, 12, 13], radial basis functions [14], a spatial averaging method [15], or
set-theoretical approaches [16, 17]. The basis functions that are introduced in this paper are
an extension to the existing technique of inverse distance weighting, which was introduced by
Sheppard [18].

In this work the focus lies on interval fields defined trough Inverse Distance Weighting (IDW),
which is a very convenient way of constructing an interval field. The idea behind IDW is that the
non-deterministic quantity is known or measured at independent locations within the physical
domain. It is then assumed that the weight of this information decreases proportional to the
inverse of the distance moving further from this measurement point, which is referred to as a
control point. Although this technique is successfully applied in a number of cases it has a
number of shortcomings [10], and one of such shortcomings is that the maximum value of the
interval field can never exceed the maximal value placed at a control point. This property is
attributed to the definition of the basis functions, which will always have a zero gradient at each
of the control points. Hence, this paper proposes an interval field based on two independent
sets of basis functions at each control point, where one will interpolate the value of the control
points and the second set of basis basis functions will control the gradients at the control point.
In general this information about the gradients may not always be available. Therefore, two
methods are proposed to determine the gradients at the control points: a first method that uses
direct measurement, and second a technique to estimate the gradients based on the observed
trend of the data. This paper is structured as follows: in Section 2 the interval field is introduced,
and in Section 3 the application of this interval field is compared with the standard technique.
Finally, Section 4 illustrates a real case study and conclusions are made in section 5.

2 INTERVAL FIELD ANALYSIS

In this section a brief description of the interval field analysis is provided, for a more detailed
description the reader is referred to [9]. The following definitions will be used in this paper:
interval parameters are indicated using apex I: xI ; a vector is indicated as lower-case boldface
character x; matrices are expressed as upper-case boldface charactersX, and interval parameters
are either represented using the bounds of the interval xI = [x;x] where x stands for the lower
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bound and x stands for the upper bound, or by their centre point x̂ = x+x
2 and the radius

∆x = x−x
2 . An interval is closed when both the upper and lower bounds are a member of the

interval. The domain of real-valued intervals is denoted as IR.

2.1 Explicit interval fields

The definition of the proposed explicit interval field is given in Equation (1) where, opposed
to the literature in [7], a second set of basis functions ϕi is added. The new interval field consists
of the superposition of two times nb ∈ N independent basis functions ψi + ϕi. Here, the range
of the interval is interpolated by ψi : Ω 7→ R, and similar the gradients are determined by
ϕi : Ω 7→ R. Both of these basis functions are defined over the geometrical domain Ω ⊂ Rt,
where t is defined as the physical dimension of the problem. These basis functions describe the
spatial nature of the non-deterministic parameter, distributed along the coordinate r ∈ Ω. An
interval field is created by scaling both these basis functions ψi, ϕi with independent interval
scalars αI

i , β
I
i ∈ IR. This interval field is formally defined as:

xI(r) = x̂+

nb∑
i=1

[ψi(r)α
I
i + ϕi(r)β

I
i ], (1)

with x̂ ∈ R the midpoint of the interval field. Note that the existing IDW framework for interval
fields is a special case where βIi = 0. When Ω is discretised into k finite elements, these base
functions ψi and ϕi interpolate the independent interval scalars α

I
i and β

I
i to dependent intervals

for each element in the domain Ω. Hence, the size of the bounded uncertain input space is 2nb,
which can be reduced when only the range or the gradient at a control point is considered, i.e.,
∆xi = 0 while the gradient leis between [0 1]. Nevertheless, in general this means that the
input space dimension can be reduced if 2nb < k, which is double the amount compared to the
standard method of Inverse Distance weighting (IDW).

2.2 Interval finite element analysis

A numerical model M(x) parameterised by a parameter vector x(r) ∈ X ⊂ Re is considered,
with X the set of physically admissible parameters and e ∈ N. This vector x(r) contains for
instance constitutive material parameters, inertial moments or clamping stiffness that are a
function of the spatial coordinate r over the model domain. Solving the numerical model M(x)
corresponds to transforming the parameter vector x(r) through a set of function operators
mi : Rk 7→ R to a vector of responses y(r) ∈ Y ⊂ Rd, with Y the set of admissible model
responses and d ∈ N, denoted as:

M(x) : yi(r) = mi(x(r)) i = 1, . . . , d (2)

The dependence of y on r is only applicable for responses at the nodal or element level, which
is not the case for, e.g. dynamical eigenfrequencies.

The main goal of the interval field finite element method is to find the uncertain solution
set of system responses ỹ, which describes a multidimensional manifold in Rd. Computing the
exact solution is very hard as in general this manifold is non-convex. Thus, the exact solution
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set ỹ is usually approximated by an uncertain realisations set ỹs defined as:

ỹs = {ysj |ysj = mi(xj(r));xj(r) ∈ xI(r); j = 1, . . . , q}. (3)

The set ỹs is typically constructed by q deterministic solutions ysj of the numerical model M(x),
where ysj a vector containing the d deterministic responses of the jth solution. For each of these
q solutions, the interval field realisations xI

j (r) are generated by sampling the interval field.
Such samples can for instance be generated by an optimisation algorithm that actively looks
for the bounds in ỹ. Furthermore, the exact solution can be obtained for monotonic models
when sampling the vertices of the hypercubic input space, requiring exactly 2nj evaluations [19],
referred to as the vertex method. Note, that for the interval field introduced in this paper
nj = 2nb, as both interval scalars are independent. However, more advanced strategies to
approximate the exact solution set ỹ are available, which can be found in [9].

2.3 Definition of the basis functions

The definition of an interval field, as presented in Equation (1) takes two basis functions, the
first interpolates the range of the interval field from the control points ψi, and the second basis
function ϕi controls the gradients. Through the definition of these basis functions the spatial
dependence of the non-deterministic quantity of interest is modeled throughout the domain Ω.
An important property of these basis functions is that they should be self-complementary, i.e.∑nb

i=1 ψi(rj) = 1 ∀ rj ∈ Ω. Furthermore, they should behave as unit vectors at the control points
to ensure that independent intervals are retained (see [20] for a more thorough discussion). An
intuitive definition of basis functions that comply with these requirements is provided by means
of Inverse Distance Weighting (IDW) interpolation, as applied in [21], which is also used to
interpolate the range at the control points to the domain Ω in this paper.

2.3.1 Basis functions for the range

The first set of basis functions is the standard IDW approach where basis functions are defined
for each control point ri. This is accomplished by a normalisation of weight functions wi(r) ∈ Ω,
denoted as:

ψi(r) =
wi(r)∑nb
j=1wj(r)

, (4)

with i = 1, . . . , nb. The weight functions wi are inversely proportional with the Euclidean
distance measure d(·) measured between the control point ri and other coordinates r in the
domain:

wi(r) =
1

[d(ri, r)]p
. (5)

Herein, the power p ∈ R+ allows the analyst to influence the rate of decay of the weight function.
Note that for a power p < 1 no derivative of the basis function exists at the control points, while
in the case that p > 2 the basis functions flatten and higher gradients at the transitions are
obtained. Empirical evidence suggests that in general p = 2 is a good starting point [21], if no
further information about the spatial nature is available. The distance measure d(·) is measured
in Euclidean space, defined as:

d(ri, r) = ∥ri − r∥2 , (6)
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with ∥·∥2 denoting the L2 norm.

2.3.2 Basis functions for the gradient

The second set of basis functions is constructed in a similar manner as the IDW basis functions
and identical weight functions are used, as they assign a higher weight to points in r closer to a
control point ri. These basis functions are defined as:

ϕi(r) =
wi(r)δi(r)∑nb
j=1wj(r)

, (7)

with δi : R 7→ R a factor to set the gradients at the control points ri, which is defined as:

δi = Ai(r− ri)

[
Ri

Ri + d(ri, r)

]
, (8)

here Ai ∈ R+ represents the desired gradient at the control point and the constant Ri ∈ R+ is
a scaling factor, defined as:

Ri =
v(max(x̂i)−min(x̂i))

Ai
, (9)

where the parameter v ∈ R+ is a parameter that bounds the effect of the gradient terms on
the final interpolated value, and should be defined by the user. The value |δi(r)| that is added
by these basis functions ϕi causes the derivatives to be ∂δi

∂r = Ai. This is only valid at the
control points as the value of ϕi(r) for consecutive points moving away from ri as the factor
Ri/ [Ri + d(ri, r)] will go from 1 to behaving like d(ri, r)

−1 for large d(·). In addition, note that
δi(ri) = 0 thus keeping the independence of the basis functions at the control points, which can
therefore be scaled by independent interval scalars while retaining the self-complementary basis
and the independency of the intervals scalars at the control points. However, note that these
basis functions are not self complementary beyond the control points.

The only remaining parameter is the constant Ai which will be the gradient at the control
point. Depending on the available data two distinct ways of calculating Ai are presented. The
first method is to directly calculate the constant based of points close to ri, defined as:

Ai =
(x̂j − x̂i)(ri − rj)

d(ri, rj)2
, (10)

here the index j is given to a neighbouring point ri±j used to calculate the constant Ai. Depend-
ing on the side and the distance the result of equation (10) can differ, in this case the maximal
value is taken. In this case the assumption is made that there is more information available
around the control points, which may not be the case in general.

Therefore, a second approach is to determine the constants Ai as a weighted average of the
control points rj ∈ ri, defined as:

Ai =

∑nb
j wi

(x̂j−x̂i)(ri−rj)
d(ri,rj)2∑nb

j wj
, (11)
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where the weights wj are defined as in equation (5), which assigns less weight to control points
far from ri. Furthermore, in this work Ai is determined based on the midpoint x̂ of the intervals,
which will give an average gradient that is acceptable for a large number of cases. However, it
is easy to define a case with increasing non-determinism with a zero midpoint, thus depending
on the case better results can be obtained by changing this to the interval radius ∆x, or the
extremes of the interval xi, xi. Using these basis functions will ensure that the desired derivatives
Ai are obtained at each control point ri.

One of the important things to note here is that the basis functions ϕi of the gradients add a
value |δi(r)| to the standard IWD basis functions ψi. This value of |δi(r)| is zero at the control
points, and can be changed between the control points this by setting the parameter v, which
changes the value of |δi| as:

|δi(r)| ≤ v[max(∆xi±j)−min(∆xi±j)], (12)

with the index j ∈ ri ± r. The implication of using the basis functions ϕi that the maximum
value of the interval field is no longer restricted to the location of a control point and can be
anywhere within the domain Ω.

3 ILLUSTRATION OF INTERVAL FIELDS WITH LOCAL GRADIENT CON-
TROL

The following cases compare and illustrate the use of the novel interval technique. First a
comparison is made with the existing IDW technique, second the two different strategies for
calculating are explored, and the third case is about extracting samples and the possibilities
towards dependence structures between αI and βI .

3.1 Comparison between IDW with and without gradient control

To demonstrate the additional value of incorporating gradient information in the basis func-
tions a case is considered where only limited information about a set of measurements is available.
This set A represents the true underlying spatial non-determinism for a parameter, e.g., used
in the finite element method. The measurements are made at the points [0.01, 0.15, 0.8], which
are therefore also used as the control points ri of the interval field. In order to calculate the first
basis functions that will interpolate the range at the control points ψi, the parameter p is set to
p = 2. figure 1a illustrates the basis functions that are obtained, which are 1 at the location of
the control point.

The second set of basis functions ϕi provides the desired spatial gradients at the control
points, which are calculated exactly from the midpoint x̂i of the set A. The motivation is
that these points represent a small group of measurements or this can be based on engineering
judgement. Hence, the basis functions are calculated following equation (7) where the spatial
gradients are taken from equation (10). In this case the parameter v is set at 10, which is an
arbitrary choice. The obtained basis functions are shown in Figure 1b, where these are zero at
the control points. Note that these basis functions are not self complementary

∑nb
1 ϕi ̸= 1 ∀ i

outside the control points. In Figure 1c the sum of these basis functions is given with the interval
scalars set at one αI

i , β
I
i = 1.
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(a) Basis functions for the interval
field value

(b) Basis functions for the deriva-
tive

(c) Sum of the basis functions
without scalars

Figure 1: Basis functions obtained by exact calculation of the derivatives, as indicated by
equation (10)

Figure 2a illustrates the outer realisations, in red and blue lines, and the vertex realisations,
in dashed lines, of the interval scalar αI . Hence, we are only considering the combinations of
different values without different gradients, as indeed βI can also vary between [−1 1] causing
the gradients to lie within the interval [−Ai Ai]. Therefore, the illustrations in this case and the
following case are limited to βI = 1, which will set the gradients at the control points equal to
the calculated values of Ai.

(a) Interval field using the derivatives (b) Interval field using IDW

Figure 2: Vertex realisations of an interval field based on IDW (b) and one using the information
about the derivatives (a); the dash-dotted line indicates the unknown underlying uncertainty

In Figure 2b a similar plot is made with the standard IDW basis functions, which are identical
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to ψi. A comparison between Figure 2a and 2b shows that the proposed method is capable of
capturing the gradients and thus provides a better estimation of the set A. In addition, one can
see that the maximum value of the interval field based on IDW is located at the control point
where in Figure 2a this is located between r2 and r3, which is an intuitive location based on the
gradient information at the control points.

3.2 Determination of the gradient from other control points

In the previous case the gradients are directly calculated at the control points, which requires
additional information at the control points, which may not be available. Therefore, a different
approach is considered where the constants Ai are calculated based on a weighted average of
the midpoints, as described in equations (11). The basis functions that are obtained in this way
are given in Figure 3 where the first illustration 3a is identical to this in 1a. However, looking
at the basis functions of the gradients ϕi it show a gradient close to zero for the third control
point r3, which is attributed to the distance and the small relative change of midpoint at these
locations.

(a) Basis functions for the interval
field value

(b) Basis functions for the deriva-
tive

(c) Sum of the basis functions
without scalars

Figure 3: Basis functions based on the derivatives calculated from the information at the other
control points, as described by (11)

In Figure 4 the realisations of this interval field are given, which have a higher maximum
value compared to the previous case without changing the value of v. This effect is also seen
in the basis function in Figure 3b, which have a maximal value almost double as high as the
previous basis functions. This is caused by the larger difference in the values that are used to
calculate the constants, which is described by (12) and can be changed by selecting a different
value v.

3.3 Interval field realisations

As described in the first case, each of the realisations until here are given with vertex samples
from αI , while βI = 1 is kept constant. However, this interval field consists of a two-dimensional
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Figure 4: Realisations case 1

uncertain input space at each control point. Thus, a full vertex analysis consists out of 22nb

samples. In addition, it is up to the analysis to determine the range of the gradients as these
can vary between [−Ai Ai] illustrated in Figure 5a where the sign of the gradient is unknown
at the control points and there are a large number of possible realisations. It is also possible to
limit the values in βI from [0 Ai] as shown in Figure 5b where the gradients are equal to Ai or
smaller.

(a) Vertex realisation for both αI , βI ∈ [−1 1] (b) Vertex realisation for αI ∈ [−1 1] and βI ∈ [0 1]

Figure 5: two realisations of an interval field representing the envelope A
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It is clear from Figure 5a that the possible values of the gradients should be limited in this
case as a large number of realisations leis outside the data A. Although, limiting βI to lie within
an interval [Ai 0] it should be noted that more complex dependency structures could be defined,
as described in [9]. Nevertheless, one should always define an interval for βI as keeping βI at a
fixed value will fully couple the value at a control point with the gradient, which is not the case
in general.

4 CASE STUDY

In this final case study the method is applied to capture the non-determinism of a set of
stress-strain curves. The objective is to represent the set of measurements with an interval field,
and each sample of this interval field should represent a feasible stress-strain curve. To obtain
the stress-strain curves provided in Figure 6a three samples have been printed and tested under
uni-axial tension, in accordance with ASTM D638.

(a) (b)

Figure 6: Measured stress-strain curves (a) and the interval field representation (b); the dashed
line represents the envelope Asamples

To illustrate the additional value of the method only two control points are placed, one at the
origin and one at r = 0.07. The constant Ai are in this case calculated at each point directly,
following Equation (10), based on the interval radius ∆x of Asamples. The resulting interval
field shown in Figure 6b in only sampled at βI1 = 0,−0.5,−0.5,−1 and αI

2 = 0.8, 0,−0.8, 0.7
labeled realisations 1, 2, 3 and 4, respectfully. Thus, the non-deterministic measurement set is
represented only using the gradient at the first control point and the value at the second control
point, which could be regarded as sampling the initial stiffness of the material and the yield
strength.

This case is used as an example where the parameters and control points are set by hand. In
a more comprehensive study to find the optimal interval field to represent a set of measurements
optimisation approaches can be used, as in [22]. Furthermore, detailed investigations into the
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set of admissible realisations need to be made.

5 CONCLUSIONS

In this paper an extension to the existing framework of interval fields is presented. This
extension allows for the incorporation of information about gradients at the control points. It is
shown that this method is better capable in representing a spatially distributed non-deterministic
quantity compared with the existing technique. Even without explicit information about the
gradients at the control points better agreement is obtained by making an estimation about
these gradients. The control the effects a parameter v is introduced that allows the user to
adjust the realisations of the interval field by tuning the influence of the gradients on the final
result. In addition, a case study is conducted with a set of real measurements, which could be
represented using only the gradient information in one control point and the range at the other
control point. Further research will focus on the application of admissible set decomposition,
which allows for dependency structures within the interval framework.
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