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Abstract

Predictive models are essential in dam safety assessment. Both deterministic and statistical
models applied in the day-to-day practice have demonstrated to be useful, although they
show relevant limitations at the same time. On another note, powerful learning algorithms
have been developed in the field of machine learning (ML), which have been applied to solve
practical problems. The work aims at testing the prediction capability of some state-of-the-
art algorithms to model dam behaviour, in terms of displacements and leakage. Models based
on random forests (RF), boosted regression trees (BRT), neural networks (NN), support
vector machines (SVM) and multivariate adaptive regression splines (MARS) are fitted to
predict 14 target variables. Prediction accuracy is compared with the conventional statistical
model, which shows poorer performance on average. BRT models stand out as the most
accurate overall, followed by NN and RF. It was also verified that the model fit can be
improved by removing the records of the first years of dam functioning from the training set.

Keywords: Dam monitoring, Dam safety, Data analysis, Boosted regression trees, Neural
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1. Introduction and background

Dam safety assessment is a complex task due to the uniqueness of each of such structures
and their foundations. It is commonly based on three main pillars: visual inspection, engi-
neering knowledge and a behaviour model. The actual response of the dam is compared with
the predictions of the model, with the aim of detecting anomalies and preventing failures.
Current predictive methods can be classified as follows [1]:

• Deterministic: typically based on the finite element method (FEM), these methods
calculate the dam response on the basis of the physical governing laws.

• Statistical: exclusively based on dam monitoring data.
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• Hybrid: deterministic models which parameters have been adjusted to fit the observed
data.

• Mixed: comprised by a deterministic model to predict the dam response to hydrostatic
pressure, and a statistical one to consider deformation due to thermal effects.

It is difficult to predict dam behaviour with high accuracy. Numerical models based
on the FEM provide useful estimates of dam movements and stresses, but are subject to
a significant degree of uncertainty in the characterisation of the materials, especially with
respect to the dam foundation. Other assumptions and simplifications have to be made,
regarding geometry and boundary conditions. These tools are essential during the initial
stages of the life cycle of the structure, provided that there are not enough data available
to build data-based predictive models. However, their results are often not accurate enough
for a precise assessment of dam safety.

This is more acute when dealing with leakage in concrete dams and their foundations,
due to the intrinsic features of the physical process, which is often non-linear [2], and re-
sponds to threshold and delayed effects [3], [4]. Numerical analysis cannot deal with such a
phenomenon, because comprehensive information about the location, geometry and perme-
ability of each fracture would be needed. As a result, deterministic models are not used in
practice for the prediction of leakage flow in concrete dams [1].

Many of the dams in operation have a large number of monitoring devices, recording the
evolution of various indicators such as movements, leakage flow or the pore water pressure,
among others. Although there are still many dams with few observed data, there is a clear
trend towards the installation of a larger number of devices with higher data acquisition
frequency [5]. As a result, there is an increasing amount of information on the dam perfor-
mance, which makes it interesting to study the ability of machine learning (ML) tools to
process them, build behaviour models and extract useful information [6].

The paper assesses the potential of some state-of-the-art ML techniques to build mod-
els for the prediction of dam behaviour. The results are compared with the conventional
statistical method.

1.1. Statistical models

The most popular data-driven approach for the prediction of dam behaviour is the
hydrostatic-seasonal-time (HST) method, characterised by taking into account three effects:

• A reversible effect of the hydrostatic load.

• A reversible seasonal thermal influence of the temperature.

• An irreversible term due to the evolution of the dam response over time.

This assumption is coherent with the observed behaviour of many concrete dams in terms
of displacements. However, it has also been applied to other variables, such as uplifts and
leakage [3]. Similar schemes have been used for rock-fill dams, although it is acknowledged
that the temperature is not relevant, and that the irreversible effect of settlements prevails
on the elastic response to hydrostatic load. Furthermore, rainfall may have a strong influence
on leakage [3].

The main drawbacks of HST and other methods based on linear regression are the fol-
lowing:
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• The functions have to be defined beforehand, and thus may not represent the true
behaviour of the structure [3].

• The governing variables are supposed to be independent, although some of them have
been proven to be correlated [7].

• They are not well-suited to model non-linear interactions between input variables [2].

1.2. Advanced data analysis in dam monitoring

The examples of application of innovative techniques to improve the results of HST are
becoming more frequent in recent years. As an example, Bonelli and Radzicki [8] used an
impulse-response function for predicting the pore pressure in the dam body. The method pro-
vided accurate results in the test cases, showing the hysteresis effect by which the pore pres-
sure is lower during filling than it should be in a stationary state, and vice versa. Nonetheless,
given that it makes a strong assumption on the characteristics of the phenomenon, it is re-
stricted to specific processes.

Li et al. [9] proposed a method to improve HST based on cointegration theory. They
tested the stationarity of the monitoring data series before fitting a multi-linear regression
(MLR) model.

One obvious weakness of linear regression is that it cannot reproduce nonlinear relations
between variables. This problem is typically overcome by introducing higher order terms of
the covariates. Neural networks (NN) constitute a powerful alternative to solve this issue.
Their flexibility and capability to adapt to highly complex interactions have made them
popular in several fields of engineering, including dam monitoring (see for example [3], [10],
[11], and [12]).

However, it should be noted that NN have some drawbacks:

• The result depends on the initialisation of the weights.

• The best network architecture (number of hidden layers and neurons in each layer) is
not known beforehand.

• The model is prone to over-fitting.

• The training process may reach a local minimum of the error function.

Several techniques have been developed to overcome these shortcomings, which in general
lead to an increase in the computational cost [13]. In spite of this, NN stand out as the most
popular ML tool in dam engineering, and the results are promising [3]. Further models have
been also applied to dam monitoring, such as ANFIS (adaptive network-based fuzzy inference
system) models [14], principal component analysis [6], NARX (nonlinear autoregressive with
exogenous input) models [15] or K-nearest neighbours [16]. However, these tools are rarely
used in practice, where HST still prevails. Moreover, most of the previous studies are
limited to one single variable of specific dams [11], [12]. Hence, the results are not generally
applicable.
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1.3. Objectives

The study aims to assess the prediction accuracy of some ML tools, most of which have
been seldom used in dam engineering. Specifically, the algorithms selected are: random
forests (RF), boosted regression trees (BRT), support vector machines (SVM) and multi-
variate adaptive regression splines (MARS). Both HST and NN were also used for comparison
purposes. Similar analyses have been performed in other fields of engineering, such as the
prediction of urban water demand [17].

A further singularity of dams is that the early years of operation often correspond to a
transient state, non-representative of the quasi-stationary response afterwards [18]. In such
a scenario, using those years for training a predictive model would be inadvisable. This
might lead to question the optimal size of the training set in achieving the best accuracy.
De Sortis [19] ran a sensitivity analysis and concluded that at least 10 years were needed
to obtain acceptable predictions. However, his study was limited to the prediction of the
radial displacement in one particular location of a specific dam by using HST. A similar
work was performed by Chouinard and Roy [2]. This paper seeks to extend such studies to
other learning algorithms and output variables.

2. Case study and variable selection

The data used for the study correspond to La Baells dam. It is a double curvature
arch dam, with a height of 102 m, which entered into service in 1976. The monitoring
system records the main indicators of the dam performance: displacement, temperature,
stress, strain and leakage. The data were provided by the Catalan Water Agency (Agència
Catalana de l’Aigua, ACA), the dam owner, for research purposes. Among the available
records, the study focuses on 14 variables: 10 correspond to displacements measured by
pendulums (five radial and five tangential), and four to leakage flow. Several variables of
different types were considered in order to obtain more reliable conclusions. Table 1 shows
some statistics of the target variables, whereas the location of each monitoring device is
depicted in Figure 1.

P1D-4

AFMD50PR

AFMI90PR
550 m.a.s.l.

590 m.a.s.l.

610 m.a.s.l.

AFTOTMD AFTOTMI

P5D-1P1D-1P6I-1

P2I-4

628 m.a.s.l.

Figure 1: Geometry and location of the monitoring devices in La Baells Dam. Left: view from downstream.
Right: highest cross-section.

The data acquisition frequency is of the order of one record per week. The measurement
error of the devices is ±0.1mm for displacements, and negligible for leakage flows (measured
using the volumetric method). The series span from 1979 to 2008. In all cases, approximately
40% of the records (from 1998 to 2008) were left out as the testing set. This is a large
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Target # Observations Type units Mean Min. Max.
P1DR1 1,194 Radial displ. mm -10.75 -20.6 2.1
P1DR4 1,194 Radial displ. mm -9.88 -16.8 0.0
P2IR4 1,191 Radial displ. mm -7.77 -17.5 1.3
P5DR1 1,193 Radial displ. mm -6.37 -14.8 1.9
P6IR1 1,198 Radial displ. mm -9.24 -17.5 0.1
P1DT1 1,194 Tangential displ. mm 2.36 0.0 3.9
P1DT4 1,194 Tangential displ. mm -0.32 -1.5 0.3
P2IT4 1,191 Tangential displ. mm -1.56 -2.7 -1.1
P5DT1 1,193 Tangential displ. mm -0.09 -1.8 1.6
P6IT1 1,199 Tangential displ. mm -2.04 -4.2 0.1

AFMD50PR 1,016 Leakage l/min 5.05 0.0 27.3
AFMI90PR 994 Leakage l/min 0.63 0.0 3.0
AFTOTMD 1,064 Leakage l/min 7.30 0.1 35.8
AFTOTMI 1,014 Leakage l/min 2.89 0.1 12.4

Table 1: Target variables considered in the comparative study

proportion compared with previous studies, which typically leave 10-20 % of the available
data for testing [14], [12], [16]. A larger test set was selected in order to increase the reliability
of the results.

Four different training sets were chosen to fit each model, spanning five, 10, 15 and 18
years of records. In all cases, the training data used correspond to the closest time period
to the test set (e.g. periods 1993-1997, 1988-1997, 1983-1997, and 1979-1997, respectively).

Other environmental variables are recorded at the dam site, and were considered as
inputs: air temperature, reservoir level and rainfall (Figure 2). Although the latter has no
influence on displacements, it has been included to test whether the methods analysed can
handle noisy or non-influential inputs without decreasing prediction accuracy.

Some derived variables were also calculated, namely:

• Average velocity of reservoir level variation in different periods prior to the measure-
ment (10, 20 and 30 days).

• Accumulated rainfall over various periods (30, 60, 90 and 180 days) prior to the reading.

• Moving averages of reservoir level and air temperature over seven, 14, 30, 60, 90 and
180 days before the record.

Finally, the year, number of days from the first record, and month were also considered as
explanatory variables up to 25.

The variable selection was performed according to dam engineering practice. Both dis-
placements and leakage are strongly dependant on hydrostatic load. Air temperature is well
known to affect displacements, in the form of a delayed action. It is not clear whether it
strongly influences leakage or not. Whereas Seifart et al. [20] reported that leakage in the
Itaipú Dam follows a seasonal cycle “due clearly to the thermal effect on the opening and
closure of joints”, other studies showed no dependency [3]. Both the air temperature and
some moving averages were included in the analysis.
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Figure 2: Time series of environmental variables at La Baells dam site. From top to bottom: water level,
air temperature and daily rainfall. The vertical dashed line marks the division between training and test
periods.

Hydrostatic load induces an almost immediate response of the dam, although some studies
suggest that there may be also a delayed effect, specially for leakage [11], [21]. Moving
averages of reservoir level were considered to capture it. The velocity of variation of reservoir
level over different periods was also included, following studies that suggest the existence of
an influence in dam displacements [22].

In order to account for the temporal drift of the structure, both the year and the number
of days from the first record were also added.

A relatively large set of predictors was used to capture every potential effect, overlook-
ing the high correlation among some of them. In addition, the comparison sought to be
as unbiased as possible, thus all the models were built using the same inputs3. While it

3with the exceptions of MARS and HST, as explained in sections 3.5 and 3.6 respectively
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is acknowledged that this procedure may favour the techniques that better handle noisy
or scarcely important variables, theoretically all learning algorithms should discard them
automatically during the model fitting.

3. Methods

In this section, the algorithms chosen to build the prediction models are briefly described.
Although the detailed mathematical description is beyond the scope of the paper, a short
description, the most relevant features, and some key references are included. All the models
were built by using the language/programming environment R [23] and some of its packages,
which are cited in each section.

The objective is to predict an output variable Y ∈ R based on the value of a set of
predictors X ∈ Rp, i.e. Y ≈ Ŷ = F (X). The observed values are denoted as (xi, yi), i =
1, ..., N , where N is the number of observations. Note that each xi is a vector with p
components, each of which is referred to as xji , when necessary. Similarly, Xj, j = 1, ..., p
stands for each dimension of the input space.

3.1. Random forests (RF)

An RF model is a group of regression (or classification) trees [24], trained on altered
versions of the training set. Given that its output is the average of the prediction of each
individual tree, it is an ensemble method. Since RF were first introduced by Breiman [25],
they have become highly popular as a method to build predictive models [26]. The training
process has two random components:

• Only a random subset of the input variables is considered to perform each division of
the input space.

• Each tree is built using a different training set, obtained from the original data via
random sampling with replacement.

The aim of adding randomness is to generate substantially different trees, so that the en-
semble captures as many patterns in the training set as possible. Other interesting features
of RF are the following:

• They can easily handle continuous, discrete and categorical inputs, as well as missing
values.

• They can naturally model non-linear interactions.

• They avoid the need to perform cross-validation, because an unbiased estimate of the
generalisation error is computed during the training process (out-of-bag (OOB) error).

Two parameters can be tuned for building an RF model: the number of covariates to consider
at each split (mtry), and the total number of trees in the forest. Neither has significant
influence on the results, according to the majority of published authors (e.g. [25], [26]).

The default value of mtry for regression is p/3, with p being the number of covariates.
An RF model was fitted with the default mtry, and then it was increased and decreased to
find the value that gives the minimum OOB error. The function tuneRF of the R package
“randomForest” [27] was used.

All RF models entailed 500 trees, with it being checked that the OOB error is stable
with that size.
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3.2. Boosted regression trees (BRT)

Boosting is a general scheme to build ensemble prediction models [28]. Although various
methods can be selected to form the ensemble, regression trees are frequently chosen, and
were used in this work.

The idea is to build an ensemble so that each single model (often referred to as base learn-
ers), is fitted to the residual of the previous ensemble. The overall prediction is calculated
as the weighted sum of the outputs of the base learners (unlike RF, where the prediction of
the ensemble is the average).

The algorithm includes two ingredients to avoid over-fitting:

• Each learner is trained on a random subset (without replacement) of the training set.
This also decreases the computational cost.

• A regularisation (shrinkage) parameter ν ∈ (0, 1) is applied.

Some empirical analyses show that relatively low values of ν (below 0.1) greatly improve
generalisation capability [28]. The optimal value depends on the number of base learners.
In practice, it is common to set the regularisation parameter and calculate a number of trees
such that the training error stabilises [29]. Subsequently, a certain number of terms are
“pruned” by using for example cross-validation. The library used [29] allows choice of the
number of trees by different methods. The value ν = 0.001 was considered and the number of
trees was selected by means of five-fold cross-validation. The process was repeated by using
trees of depth 1 and 2 (interaction.depth), and the most accurate for each target selected.

3.3. Neural networks (NN)

NN models have been applied to solve a wide variety of problems. Among the different
types of NN found in the literature [13], the multilayer perceptron (MLP) was selected for
this work. An MLP is formed by a number of single units, called perceptrons, organised
in different layers. The simplest architecture of an MLP was used, which involves three
layers: input, hidden and output. Each perceptron in the hidden layer applies a nonlinear
transformation to the inputs, and yields a response, which is later combined to compute the
model output. Thus, NN are appropriate to model non-linear input-output relations.

NN stand out as one of the most popular machine learning techniques for civil engineers.
Some previous applications to dam monitoring have been mentioned in section 1.2.

The package “nnet” [30] was used, which allows tuning the NN models by setting several
parameters. The size (number of perceptrons in the hidden layer) and the decay (regularisa-
tion parameter) are the most influential in the results [31]. All the possible combinations of
three, 12 and 25 perceptrons (size) with decay of 0.1, 0.01 and 0.001 were tried, and the pair
of values which showed the minimum error via five-fold cross-validation was chosen. For each
fold, 15 NN with different initialisations were fitted, and the average error was compared.
Thus, the accuracy of every combination of parameters was computed on the basis of 75 NN.

The selected parameters were applied to train 20 NN models over the whole training
set with the function avNNet, from the R package “caret” [32]. The final prediction was
computed as the average of the 20 NN.
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3.4. Support vector machines (SVM)

This learning algorithm is based on a non-linear transformation of the predictor variables
to a higher dimensional space (often referred to as feature space), and a linear regression on
these transformed variables. The mathematical development of the method is complex and
beyond the scope of the paper. Detailed and rigorous descriptions can be found in [33] and
[34], and a recent application in predicting dam behaviour is reported in [35]. The method
uses an ε-insensitive error function that neglects errors below the threshold ε. The algorithm
searches for a trade-off between the minimum error and the smoothness of the approximating
function. The library “e1071” within the R environment [36] was used, which allows tuning
the most important parameters [37] of an SVM model:

• The “cost” parameter, C. Values of 10, 100 and 500 were tested.

• The width of the ε-insensitive error function, ε. The default value (0.1) was chosen.

• The kernel function, which defines the mapping from the input to the feature space.
A radial basis function was considered: K (xi, X) = e−γ|xi−X|

2

• The γ parameter of the kernel. Values of 1, 0.1, 0.01, 0.001 and 0.0001 were tried.

The 15 possible combinations of C and γ were applied to fit SVM models on the training
data. Four-fold cross-validation was performed to obtain the best values. Each fold and
combination of parameters was repeated five times to account for randomness, and the one
with the lowest average error was selected to train an SVM model over the whole training
set.

3.5. Multivariate adaptive regression splines (MARS)

MARS is an adaptive algorithm originally proposed by Friedman [38]. It is based on the
combination of elementary piecewise linear functions, which definition depends on the data.
As an example, an input data xjj = k defines a pair of basic functions of the form (Xj − k)+
and (k − Xj)+. The subscript “+” stands for the positive part, i.e.: (Xj − k)+ = Xj − k
if Xj > k ; 0, otherwise [31]. The algorithm starts with a constant value and adds pairs
of functions as long as the training error decreases above a given threshold. This is the
forward pass. At the end of this step, the resulting model typically over-fits the data. Then
a “pruning” process is followed, during which some of the functions are eliminated according
to the generalised cross validation (GCV) criterion. GCV is a modification of the residual
sum of squares (RSS) which takes into account the number of parameters of the model [31].
In practice, the method searches for a trade-off between the reduction in the training error
and the complexity of the model.

MARS models are well suited to non-linear problems, as well as easily interpretable.
Furthermore, the algorithm implicitly performs variable selection, given that the functions
in the final ensemble depend only on the most relevant predictors Xj.

The work was performed using the library “earth” [39], and the parameter tuned was the
maximum number of terms in the final model (nprune). Five-fold cross-validation was run,
repeated five times (nfold = 5 and ncross = 5 in the earth function). In principle, the model
with the highest coefficient of determination (RSq) should be selected. However, the results
of some preliminary tests showed that in most cases the RSq rose sharply after adding the first
few terms, and remained almost constant afterwards. For the sake of model simplicity and

9



generalisation capability, the lower value of nprune with RSq ≥ mean(RSq) − SD(RSq)
was selected, a criterion similar to the 1 SE rule proposed by Breiman et al. [40]. The
same tests also revealed that the models with one or more time-dependant functions in the
final ensemble (i.e. considering the year and/or the day since the first record) had poor
generalisation ability. Therefore, both inputs were removed from the set of predictors.

3.6. HST

A conventional HST model was also built, in order to compare the results with current
engineering practice. The most typical form was chosen:

Ŷ = F (t, h, s) = a0 + a1h+ a2h
2 + a3h

3 + a4h
4 + a5h

5

+a5e
−t + a6t+ a7cos(s) + a8sen(s)

+a9sen
2(s) + a10sen(s)cos(s)

s =
d

365, 25
2π

where d is the number of days since 1 January, t is the elapsed time (years), h is the reservoir
level, and a1, a2, ..., a10 are the coefficients to fit.

3.7. Measures of accuracy

The accuracy of regression models is frequently measured via the mean absolute error
(MAE), computed as:

MAE =

∑N
i=1 |yi − F (xi)|

N

where N is the size of the training (or test) set, yi are the observed outputs and F (xi) the
predicted values. Given that MAE is measured in the same units as the target variable, it
provides a useful indication of prediction accuracy. However, it takes into account neither
the mean value of the output, nor its deviation. Moreover, it is not appropriate to compare
results correspondent to outputs of a different nature (e.g. displacements vs flows). To
overcome these drawbacks, the study is mostly based on the average relative variance (ARV)
[41]:

ARV =

∑N
i=1(yi − F (xi))

2∑N
i=1(yi − ȳ)2

=
MSE

σ2

where ȳ is the output mean. Given that ARV denotes the ratio between the mean squared
error (MSE) and the variance (σ2), it accounts both for the magnitude and the deviation of
the target variable. Furthermore, a model with ARV=1 is as accurate a prediction as the
mean of the observed outputs.

4. Results and discussion

Models for 14 targets, with six learning algorithms, trained over four different training
sets were fitted, i.e. 14 × 6 × 4 = 336 models. Due to space constraints, only one plot is
presented in Figure 3 as an example. It shows the predictions of the BRT model trained over
the whole training set, in comparison with the measured data for three targets of different
kind (P1DR1, P1DT1 and AFMD50PR). It provides an intuition on the goodness of fit
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achieved, and highlights how the ARV allows comparison of the accuracy between different
targets. Although the highest MAE corresponds to P1DR1, it yields the lowest ARV at the
same time, because of its higher variance.
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Figure 3: Measured data (circles) versus predictions of the BRT model (lines) for the test period. The
residuals between them are included below each plot. From top to bottom: P1DR1, P1DT1 and AFMD50PR.

It is commonly accepted that increasing the amount of training data leads to a better
model performance. Although this may not be the case of dams, in general the statistical
models for dam monitoring are fitted using all the available data. Table 2 shows the MAE
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Type Target RF BRT NN SVM MARS HST

Radial (mm)

P1DR1 1.70 0.93 0.58 0.75 2.32 1.35
P1DR4 1.05 0.71 0.68 0.76 1.50 1.37
P2IR4 0.94 0.97 1.02 1.05 0.85 1.12
P5DR1 0.86 0.70 0.64 1.35 0.89 0.88
P6IR1 1.47 0.69 0.72 0.60 1.67 0.91

Tangential (mm)

P1DT1 0.24 0.25 0.52 0.35 0.55 0.47
P1DT4 0.15 0.15 0.18 0.19 0.22 0.20
P2IT4 0.13 0.11 0.13 0.12 0.14 0.10
P5DT1 0.40 0.22 0.19 0.38 0.47 0.18
P6IT1 0.28 0.27 0.39 0.94 0.39 0.51

Leakage (l/min)

AFMD50PR 1.24 0.90 2.11 4.25 1.74 2.24
AFMI90PR 0.18 0.15 0.07 0.33 0.25 0.28
AFTOTMD 1.82 1.60 3.04 5.38 1.85 2.60
AFTOTMI 0.91 0.42 0.83 1.49 1.49 1.11

Table 2: MAE for each output and model, fitted on the whole training set (18 years). The values within
10% from the minimum are highlighted in bold, and the minimum MAE are also underlined. The results
correspond to the test set.

for each target and model, fitted on the whole training set, i.e., 18 years.
It can be seen that models based on ML techniques mostly outperform the reference

HST method. NN models yield the highest accuracy for radial displacements, whereas BRT
models are better on average both for tangential displacements and leakage flow. It should
be noted that the MAE for some tangential displacements is close to the measurement error
of the device (±0.1mm).

Figure 4 shows the results in terms of ARV for each model and type of output. It should
be remembered that models with ARV > 1 can be considered as being of little use. The error
is lower for radial displacements, whereas there is not a great difference between the ARV for
leakage flow and tangential displacements. These results are in accordance with engineering
knowledge: the prediction of tangential displacements is more difficult because the signal-to-
noise ratio is lower than for radial displacements (while the measurement error is the same,
the standard deviations are highly different, as shown in Table 1). The measurement error
for leakage flow is negligible, but it is governed by a more complex physical process, which
makes it harder to predict.

The study was repeated with each technique, using different training set sizes, namely
five, 10 and 15 years. The results were compared to those obtained previously, with 18 years.
The test set was the same as before (1998-2008). Figure 5 shows the results. An important
decrease in error is observed in most cases between models trained on five and 10 years.
This decrease is dramatic for HST (note that some of the results for HST and five years lie
outside the vertical limit of the plots).

Although some previous studies offered similar results [19], in this case such effect may
be more pronounced due to the fact that the reservoir level remained high in the 1993-1998
period (Fig. 2). Models fitted on those years have no information on the dam behaviour
when the reservoir is at low levels, and therefore the prediction of the dam response in such
situations may be highly inaccurate.
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Figure 4: ARV for each target and model, fitted on the whole training set (18 years). Models with ARV > 1.0
are less accurate than the sample mean. The average values for each technique and type of output are plotted
with black dots. Note the logarithmic scale of the vertical axis. The results correspond to the test set.

When increasing the training set up to 15 and 18 years, the variation is either negligible
(i.e. BRT models for leakage, Figure 5, bottom), or there is a small decrease in error (i.e.
NN models for radial displacements, Figure 5, top). In some cases, the error even increases,
such as in HST models for radial displacements (Figure 5, top). Some techniques do not
show a clear trend, such as MARS models for tangential displacements (Figure 5, bottom).

Table 3 compares the best models overall with those trained on the entire training set
(18 years). Although the use of the whole training set is optimal for six out of 14 targets,

Target Best model MAE Best model MAE Best training MAE
18 years 18 years overall overall size (years) reduction (%)

P1DR1 NN 0.58 - - - -
P1DR4 NN 0.68 MARS 0.60 5 13.3
P2IR4 MARS 0.85 MARS 0.81 15 4.7
P5DR1 NN 0.64 - - - -
P6IR1 SVM 0.60 SVM 0.53 10 11.7
P1DT1 RF 0.24 BRT 0.22 10 8.3
P1DT4 RF/BRT 0.15 BRT 0.14 10 6.7
P2IT4 HST 0.10 - - - -
P5DT1 HST 0.18 - - - -
P6IT1 BRT 0.27 MARS 0.23 5 14.8
AFMD50PR BRT 0.90 BRT 0.89 15 1.1
AFMI90PR NN 0.07 - - - -
AFTOTMD BRT 1.60 BRT 1.57 15 1.9
AFTOTMI BRT 0.42 - - - -

Table 3: Comparison between the best models fitted using the whole training set and the best overall. Empty
rows correspond to outputs for which no improvement is achieved by using a smaller training set. The results
correspond to the test set.

significant improvements are reported in some cases by eliminating some of the early years.
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Figure 5: ARV for each model and training set size. Top: radial displacements. Middle: tangential displace-
ments. Bottom: leakage flow. Some HST models trained over 5 years are out of the range of the vertical
axis, thus highly inaccurate. The results correspond to the test set.

Surprisingly, for two of the outputs, the lower MAE corresponds to a model trained over five
years, which in principle was assumed to be too small a training set. MARS is especially
sensitive to the size of the training data. The MARS models trained on five years improve
the accuracy for P1DR4 and P6IT1 by 13.3 % and 14.8 % respectively.

These results strongly suggest that it is advisable to select carefully the most appropriate
training set size. This should be done by leaving an independent validation set.
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5. Summary and conclusions

It was found that the accuracy of currently applied methods for predicting dam behaviour
can be substantially improved by using ML techniques.

The sensitivity analysis to the training set size shows that removing the early years of
dam life cycle can be beneficial. In this work, it has resulted in a decrease in MAE in some
cases (up to 14.8%). Hence, the size of the training set should be considered as an extra
parameter to be optimised during training.

Some of the techniques analysed (MARS, SVM, NN) are more susceptible to further tun-
ing than others (RF, BRT), given that they have more hyper-parameters. As a consequence,
the former might have a larger margin for improvement than the latter.

A more careful selection of variables could also improve the fit. It should be noted,
though, that variable selection is an issue in itself, and will be the subject of further work.
It may not only decrease the error, but also help to build more understandable models.

However, both detailed tuning and careful variable selection increase the computational
cost and complicate the analysis. If the objective is the extension of these techniques for the
prediction of a large number of variables of many dams, the simplicity of implementation is
an aspect to be considered in model selection.

In this sense, BRT showed to be the best choice: it was the most accurate for five of the 14
targets; easy to implement; robust with respect to the training set size; able to consider any
kind of input (numeric, categorical or discrete), and not sensitive to noisy and low relevant
predictors.

However, none of the algorithms provides the highest accuracy in all cases. Therefore, if
the main objective is to achieve the best possible fit, the analysis should not be limited to a
single technique.
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