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Abstract

In this paper a new frictional time integration algorithm suitable for large slip multi-
body frictional contact problems is presented. The algorithm is introduced within the simple
context of a model problem: the sliding motion of a particle onto a rough surface. Time
integration of frictional traction is performed introducing a new slip path parametrization,
which is defined independently of the local surface finite element parametrization used in the
spatial triangularization. The key point of the algorithm is that now, in presence of large
slips, problems associated with slip motions such that a full incremental slip path is not within
a single surface element, are completed bypassed. Remarkably, the algorithm is defined on
the solely basis of the unit outward normal field to the surface without any appeal to the
underlying local surface finite element triangularization. Geometrically, the assumed slip path
can be viewed as an approximation to the geodesic passing throughout the initial and final
points of each incremental slip path. The algorithm is amenable to exact linearization and
asymptotic quadratic rate of convergence can be achieved within a Newton-Raphson iterative
solution scheme. The algorithm can easily be extended to large slip multi-body frictional contact
problems, involving finite strains.

1. Introduction. Motivation and Goals.

Mathematically, the numerical analysis of frictional contact problems amounts to find
the solution of an Initial Boundary Value Problem (IBVP) within a constrained solution
space. Then a weak formulation of the IBVP leads to variational inequalities. Signifi-
cant references on variational inequalities are the books of DUVAUT & LIONS [1972] and
KIKUCHI & ODEN [1988]. A regularization of the frictional contact constraints, using
penalty or augmented Lagrangian methods, allows to bypass the need to find a solution
within a constrained solution space and provides a very convenient displacement-driven
frictional contact formulation. The penalty method can be considered as the standard reg-
ularization procedure and it has been used by ODEN & PIRES [1984], CHENG & KIKUCHI
[1985], HALLQUIST, GOUDREAU & BENSON [1985], StMO, WRIGGERS & TAYLOR [1985],
CURNIER & ALART [1988], WRIGGERS, VU VAN & STEIN (1990], BELYTSCHKO & NEAL
[1991], LAURSEN [1992], LAURSEN & SIMO [1992,1993] and AGELET DE SARACIBAR
[1995] among others. To avoid well known problems inherent to the penalty method,
such as penalty sensitivity and possible ill-conditioning of the system of equations, while
retaining his advantages, the augmented Lagrangian method has been used as an alter-
native regularization procedure. Within the frictional contact problems context, the aug-
mented Lagrangian method has been used by LAURSEN [1992], StMO & LAURSEN [1992],
LAURSEN & SiMO [1992,1994] and LAURSEN & GOVINDIEE [1994].
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A fully nonlinear kinematics formulation of frictionless contact problems, including
the derivation of the algorithmic contact operators, was developed by WRIGGERS & SIMO
[1985] for 2D linear surface elements and by PARISH [1989] for 3D linear surface elements.
An extension to frictional contact problems for 2D linear surface elements was provided
by WRIGGERS [1987]. A general fully nonlinear kinematics formulation of multi-body
frictional contact problems at finite strain, fully developed on a continuum setting for 2D
and 3D problems, was first given by LAURSEN & SIMO [1993]. A further extension to
incorporate a frictional wear model was given by AGELET DE SARACIBAR [1995].

Furthermore a displacement-driven formulation of frictional contact problems, allows
to widely exploit the framework developed for computational plasticity. See SIMO &
HUGHES [1994] and SiMO [1994] for an excellent presentation of current topics and last
developments in computational plasticity. In particular, return mapping algorithms orig-
inally developed for plasticity can be applied to integrate the frictional traction. The
lowest Backward-Difference (BD) method, the Backward-Euler (BE) method, has become
in the last years, the standard algorithm for the frictional time integration of the regu-
larized frictional constrained evolution problem. Frictional return mapping, using the BE
algorithm, have been used by WRIGGERS [1987], GIANNAKOPOULOS [1989], WRIGGERS,
VU VAN & STEIN [1990], LAURSEN & SIMO [1993,1994] and AGELET DE SARACIBAR
[1995], among others. Recently, an Implicit Runge-Kutta (IRK) method, the generalized
Projected Mid-Point (PMP) algorithm was proposed, within the context of J2 plasticity,
by SiMO [1994]. A frictional return mapping using the generalized PMP algorithm has
been proposed by AGELET DE SARACIBAR [1995].

In the general fully nonlinear formulation of multi-body frictional contact problems,
fully developed on a continuum setting and then discretized, given by LAURSEN & SiMo
[1993], as well as in previous formulations developed on a discrete setting for particular
cases, the frictional behavior is characterized by the local parametrization induced by the
Finite Element (FE) triangularization of the contact surfaces. Within a FE context the
lsoparametric map arises naturally as the local parametrization to be used. Due to the
local character of the parametrization, the frictional time integration becomes useless when
the incremental slip path involves several surface elements, i.e. when it is not within
the domain of the local parametrization of a single surface element of the finite element
triangularization.

These situations have been resolved by a projection of the slip path over an extrap-
olated surface of a single surface element, defined through an extended parametrization
domain. This procedure allows to use a single local parametrization (within an extended
domain) where a slip path belongs to different surface elements, each one described with a
local parametrization. Such procedures, although usually not addressed in the literature,
can be considered as a standard practice in several computer codes as DYNA or FEAP,
for example.

Some of the drawbacks of these projection procedures are the following:

i. The projected slip path amounts to find a projection lying outside the limits of the
local parametrization domain. Note that, the orientation preserving map induced by the
local parametrization, is guaranteed to exist only within the underlying domain. Then,
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situations may arise in which the projection points are located in areas with negative or
zero jacobian, leading to a useless algorithm.

ii. The slip amount is one of the main parameters for the characterization of wear
phenomena in multi-body frictional wear contact problems. See, for example, AGELET DE
SARACIBAR [1995] for a numerical model of multi-body frictional wear contact problems.
Projection of slip path can lead to an inportant underevaluation of the slip amount, and
hence, to an underevaluation of frictional traction, frictional dissipation and wear estimate.

The above considerations have motivated the need to get a new frictional time inte-
gration algorithm suitable for large slip multi-body frictional contact problems. This new
algorithm must be equipped with the following features:

i. Slip path projection-based procedures must be avoided, due to the drawbacks
mentioned above.

ii. Use of local surface elements parametrization must be avoided.

ili. A new slip path parametrization suitable for large slips must be introduced.

iv. The new frictional time integration algorithm must be amenable to an exact
linearization, to preserve quadratic asymptotic rate of convergence typical of a Newton-
Raphson solution scheme.

With these considerations in mind, a new algorithm for the time integration of fric-
tional traction is proposed. To introduce the main idea of the new algorithm it suffices to
consider a simple model problem: the sliding motion of a particle onto a rough surface.

The remaining of the paper is as follows. Section 2 deals with the set up of the model
problem. Holonomic and non-holonomic constraints are introduced and the regularized
problem is considered. Use of a product formula algorithm and an operator split motivates
the subsequent numerical integration of the constrained evolution problem. In Section 3,
the new frictional time integration algorithm, suitable for large slip multi-body frictional
contact problems, is introduced within the simplest context of the model problem. Section
4 deals with representative numerical simulations and some concluding remarks are given
in Section 5 . The extension of the algorithm for a general fully nonlinear multi-body
frictional contact problems is included in Appendix A and the exact linearization of the
new frictional time integration algorithm is given in Appendix B.

2. A Model Problem: Sliding Motion of a Particle onto a Surface.

The main aspects involved in the new frictional time integration algorithm of the con-
strained frictional evolution problem, can conveniently be introduced within the framework
of a simple model problem: the dynamic motion of a particle sliding onto a rigid rough
surface.

The kinematic of the sliding motion of a particle onto a rigid rough surface constitutes
an example of motion of a particle subjected to holonomic and non-holonomic constraints.
Kinematic holonomic constraints on the particle arises from the condition to lie onto the
rigid surface. Non-holonomic constraints arises from the frictional conditions on the sur-
face.

The regularized problem leads to a very convenient displacement-driven formulation.
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Within the context of the product formula algorithm, an operator split of the regular-
ized problem, motivates the following numerical integration of the constrained evolution
equations.

One of the key points of the new algorithm lies on the computation of the slip amount.
Our goal here is to be able to compute the slip amount within a typical time interval, in
terms of just the placement of the particle and the unit outward normal to the surface
at the beginning and the end of the time interval. To avoid any reference to the local
parametrization in the slip amount computation is crucial when large slips, implying trav-
eling throuhout several surface elements, are present.

2.1. Description of the problem.

Let 2 < ng4im < 3 be the space dimension and I := [0,7] C R4 the time interval of
interest. Let X be the reference placement of a particle P constrained to lie onto a rigid
rough smooth surface I'. Denote by ¢ : P x I — IR™ ™ the motion map of the particle P,
with material velocity V' := 8,¢. For each time ¢ € I, the mapping t € I — ¢, := (. 1)
represents a one-parameter family of configurations indexed by time ¢, which maps the
reference placement of the particle P onto its current placement. The current placement
of the particle at time ¢t € I will be denoted as z := wu(X) = p(X,1).

Let I" be an oriented smooth rigid surface defined as the set
I:={Y e R™" : gn(Y) =0} (2.1)
with unit outward normal v € S? defined as
v(Y):= =Vgn(Y)/||Vgn(Y)| (2.2)

where 5% := {v € R™™ : ||v|| = 1} is the unit sphere.

The dynamics of a particle sliding onto a rigid rough surface provides an example of
motion of a particle subjected to holonomic and non-holonomic constraints. FIGURE 2.1
shows the description of the model problem to be considered.

(A) Holonomic unilateral constraints. The holonomic unilateral constraints arises
from the fact that the motion of the particle is constrained by the rigid surface.

i. Impenetrability constraint. The presence of the rigid surface acting as an obstacle
to the free motion of the particle induces an impenetrability constraint leading to an holo-
nomic unilateral constraint on the admissible configurations of the particle. Without loose
of generality, we will assume that the motion of the particle P with reference placement
X at any time ¢ € I is constrained by the following holonomic unilateral condition

gn o p(X,t) <0 (2.3)

ii. Non-adhesion constraint. When the particle is on the surface, interacting tractions
arises due to the impenetrability constraint and to the roughness of the surface. The
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FIGURE 2.1. Description of the model problem: Sliding motion of a particle
over a rough surface.

reaction arising from the impenetrability constraint is always normal to the surface. On
the other hand the roughness of the surface induces a friction traction on the particle,
always tangent to the surface and opposite to the sliding motion of the particle on the
surface.

Denoting by t(X,t) the reaction on the particle, we define the normal reaction value
tn(X,t) as the projection of ¢(X,t) onto the unit outward normal to the surface v, and
consider the following split into normal and tangent components:

t(X,1) :=tn(X,t) vop(X,t) + P, t(X,1) (2.4)

With the preceding definitions the unilateral non-adhesion constraint implies that the
normal reaction value must be non-negative when the particle is on the surface and zero
otherwise. Mathematically, this condition takes the form:

IN(X,1) 20 if gnop(X,t) =0

2.5
tn(X,t)=0 if gnop(X,1)<0 (28)

iii. Contact persistency condition. This condition requires that the rate of sepa-
ration of the particle of the surface must be zero for positive contact normal traction.
Mathematically, this persistency condition takes the form:

tn(X,1) Van o (X, t) - V(X,t) = 0 (2.6)
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Using the definition of the unit outward normal given by (2.2), this persistency condition
can be written as

tn(X,t) V(X ,t) - vop(X,t)=0 (2.7)

and states that the normal component of the velocity of the particle must be zero for
non-zero (positive) contact normal traction.

The above constraints set of impenetrability of the rigid obstacle, non-adherence to
the surface and contact persistency, can be expressed in the form of Kuhn-Tucker comple-
mentarity conditions as:

(

( (2.8)
tN(Xat) gN © CP(

(

tn(X,t) Vgn o p(X,1) -V

(B) Non-holonomic frictional constraints. The frictional behavior due to the asperities
of the rough surface, induces non-holonomic constraints on the admissible configurations
of the particle.

Consider the following split of the velocity V(X ,?) of the particle sliding onto the
surface:

V(X,t):=Vn(X,t) vop(X,t)+ Vp (2.9)

where Vy(X,t) is the projection of the velocity onto the unit outward normal, i.e. the
rate of separation of the particle, and Vp := IP,V is the projection of the velocity onto
the tangent plane to the surface.

As it was shown above, the contact persistency condition leads to the requirement
that the rate of separation of the particle of the surface must be zero for positive contact
normal traction. Using (2.7) and (2.9) this condition leads to the constraint

V=0 if tn(X,t)>0 (2.10)

and then
Ve =P, V=V if tn(X,t)>0 (2.11)

The one-form associated to the slip velocity will de denoted as Vjt’,.

Let t7(X,t) be defined as minus the projection of the frictional contact traction onto
the tangent plane, as:

tr(X,t) = —IP,¢(X,1) (2.12)

such that, using (2.4), the frictional contact traction on the particle can be written as:
t(X,t) :=tn(X,t) vop(X,t)—tr(X,1) (2.13)

while the one-form associated to the frictional contact traction will de denoted as #°.
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With the above notation in hand, the non-holonomic frictional constraints are intro-
duced as follows:

i. Slip function. Admissible tractions space. We define a slip function & : T, S? x
IR; — IR such that (t},tx5) € T,52 x R, are constrained to lie in the closed set of
admissible tractions defined as

IE; = {(th,tn) € T,S? x Ry : $(th,tn) < 0} (2.14)

In particular, for the classical Coulomb friction law the admissible traction space is defined
by the slip function:

O(ty,tn) = ||zl — p tn (2.15)
where || - || denotes the norm of its argument and p is the Coulomb friction coefficient.

ii. Slip rule. The slip rule is defined as follows

VA(X,t):=0 if @(th,tn) <0 (2.16)
VH(X,t):=vypr i B(thtn) =0 |
where pl, := i &(th,tn) and v € R, is the non- negative slip consistency factor. For

the frictional Coulomb law pT is the normalized one-form frictional traction defined as
b
PT A= tT/ Ht I

. Slip consistency condition. The slip consistency condition states that the rate of
change of the slip function must be zero for positive values of the slip consistency factor.
Mathematically this condition is expressed as

0% @(fT,tN) =0 (2.17)

The above constraints set leads to the following non-holonomic constraint

VAX,1) = 7 pl, (2.18)

subjected to the following Kuhn-Tucker complementarity and consistency conditions

(tTatN) <0

>0

(tT: )_
(tTatN) =

(2.19)

2.2. The regularized problem.

The solution of the dynamics of a particle subjected to holonomic and non-holonomic
constraints given by (2.8), (2.18) and (2.19) amounts to finding a solution within a con-
strained solution space. Different methods have been used to bypass this difficulty. Here
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we will restrict to one of these methods, based on the regularization or penalization of the
constraints.

(A) Regularized holonomic unilateral constraints. The holonomic unilateral con-
straints arising from the impenetrability, non-adherence and contact persistency, are reg-
ularized introducing a normal penalty parameter en and substituting the Kuhn-Tucker
complementarity conditions given in (2.8) by the following constitutive-like equation for
the normal reaction:

tn(X, 1) = enlon o 9(X, 1)) (2.20)

where (-) is the Macauley bracket, representing the positive part of its operand. Expres-
sion (2.20) can be viewed as a Yosida regularization of the Kuhn-Tucker complementarity
conditions given by (2.8), providing a constitutive-like equation for the normal reaction
and leading to a convenient displacement-driven formulation.

Comparison of (2.20) with (2.8) reveals that now a (hopefully small) violation of the
constraints is allowed, and that the constraints will be exactly satisfied as ey — oo.

(B) Regularized non-holonomic frictional constraints. The regularization of the non-
holonomic frictional constraints defined by (2.18) and (2.19) is defined introducing a tan-
gential penalty parameter er playing the role of constitutive parameter in the slip velocity
evolution equation. Then the regularized non-holonomic frictional constraints take the
form:

1
VA(X,t) =7y pr+ ;LVTt'f)p (2.21)

subjected to the (non-regularized) Kuhn-Tucker complementarity conditions:

(2.22)

Here, Ly, t) is the Lie derivative of the frictional tangent traction along the flow induced
by the slip velocity Vr.

Comparison of (2.21) with (2.18), reveals that the frictional constraints are exactly
satisfied as ey — oo, in which case the (plastic) slip rate v is equal to the norm of the
slip velocity V,_I‘l. Otherwise, it is assumed that the slip velocity can be decomposed into
an elastic or recoverable part and a plastic or irreversible part. Introduction of the Lie
derivative in the regularized slip velocity, maintains frame indifference of the frictional
evolution equations.

(C) Frictional operator split. As we have seen above, the regularization of the con-
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strained frictional problem leads to the following constrained frictional evolution equations:

Lypth = er (Vg —n BtsT.@(th,tN)]
S(tr,tn) <0, 720, 75 &(th,ty)=0 (2.23)
Within the context of the product formula algorithms, a frictional operator split of

the constrained evolution problem can be introduced by means of a trial state, defined by
freezing the irreversible (plastic) slip response, i.e. setting v = 0, as follows

Problem 1: Trial state Problem 2: Return mapping
EVTt‘a" = €T VTE ‘CVTt?T =t Y atgé(t?l"tN) (2 24)
unconstrained QS(t?r,tN) <0,v>0,~ @(t%,,tN) =0 .

Problem 1 is defined by an unconstrained evolution equation for the frictional traction,
with initial conditions the same initial conditions of the original problem. Solution of
Problem 1 leads to the trial state. Problem 2 is defined by a constrained evolution equation
for the frictional traction, with initial conditions given by the solution of Problem 1.

Note, that problems associated to the choice of a local parametrization of the slip
path, arise only in the ¢rial state obtained as the solution of the Problem 1 induced by the
operator split. To get the final state, obtained as the solution of problem 2, a straight-
forward return mapping algorithm can be applied. Then, the focuss of the new frictional
integration algorithm is placed on the solution of Problem 1, the trial state.

Problem 2 can be integrated using for example, a BD algorithm, i.e. the standard BE
algorithm, or alternatively using an IRK algorithm such as the generalized PMP algorithm,
proposed by SIMO [1994]. An application of the generalized PMP algorithm to frictional
problems can be found in AGELET DE SARACIBAR [1995].

2.3. Slip path definition. Computation of slip amount.

Time integration of the unconstrained evolution equations of Problem 1 given by
(2.24), arising from an operator split and a product formula algorithm, involves the com-
putation of the slip amount of the sliding particle onto the rigid surface. The key point of
the new frictional time integration algorithm lies on the way in which Problem 1 is inte-
grated and the slip amount is computed. Our goal here is to be able to compute the slip
amount within a typical time interval, in terms of just the current placement of the particle
and the unit outward normal to the surface at the beginning and at the end of the time
interval. To avoid to compute the slip amount in terms of a local surface parametrization
Is a crucial point, when large slips are present and eventually the initial and final points
of the slip path belongs to different local parametrization domains.

The main idea underlying the new frictional time integration algorithm is the follow-
ing. The sliding velocity of the particle onto the rigid surface is integrated over a typical
time interval, to get the incremental slip amount. This integration is performed by building
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an assumed slip path, carefully defined locally by the current placement of the particle and
the unit outward normal to the surface at the beginning and at the end of the time step.
Geometrically, this assumed slip path can be viewed as a second order approximation to
the geodesic defined by these two points and their unit normals to the surface. Remark-
ably, the slip path is parametrized and the slip amount is computed without making any
appeal to the underlying local surface parametrization, allowing large slip computations.

Consider the time interval of interest I = [0,7] discretized into a series of non-
overlapping subintervals I := UTI:’:O[tn,th]. Following a standard convention, we shall
denote by either (), or (-)n41 the algorithmic approximations at times ¢, and t,4; to the
continuum (time dependent) variable (-);.

A step-by-step description of the slip path parametrization and the incremental slip
amount computation within a typical subinterval [t,,t,41], is as follows:

Step 1. Geometrical data. Consider given as initial conditions at time tn, the current
placement of the particle on the surface Y, := ¢(X,%,) and the unit outward normal
Vn:=vop(X,t,). Within the motion-driven framework, consider a prescribed motion of
the particle from time t,, to ¢,41, leading to its current placement on the surface denoted as
Y.i1:= ¢(X,tr41) and current unit outward normal denoted as Uny1:=v0op(X,thy1).

Step 2. Definition of the local orthonormal frames attached to Y,, and Y. +1, induced
by the slip path. The crucial point of the new time integration algorithm lies on the
construction and parametrization of the slip path as a second order approximation to the
geodesic curve through the points Y, and Y, of the surface. Attached to the points
Y, and Y,;; and induced by the slip curve, we define the set of orthonormal frames
defined by the basis vectors {v,,, 7, } and {Vnt1sTa, i ts With @ = 1,2, Here v, € S?
and v, , € 5 are the unit outward normals to the surface at the points Y, and Y, 4,
respectively, 7o, € T, 5% and 7,,, € T),,,S? for a = 1,2 are unit tangent vectors to the
surface at the points Y, and Y, 41, respectively, and #;, € T, S? and 1w €Ty, ,, 5% are
defined in such a way that they are tangent to the slip curve at the points ¥, and Y. 41,
respectively.

The definition of the local orthonormal frames (7, , %, ,v,) and (Prusr> T2040) Unt1)
attached to the points ¥, and Y4, respectively, is as follows. Consider the Euclidean

distance vector d between the points Y, and Y, ,, with Euclidean distance norm d := Id||
and unit vector m defined as
d= Yn+] = Yn, d= Hd”, m = d/d (225)

Using the unit outward normals v, and v,4; and the unit vector m defined above, we
construct two orthonormal frames as follows:

R Vp X . -
T2, ‘= *”1/ » 7n||’ T1, ‘= T2, XVUgp
n
(2.26)
X m
'FZ,L.H = Pt ) ‘;.ln-}-l = 1‘-211-}-1 X Vnt1
[Vn+1 x m|

A geometrical interpretation of the definition of the local orthonormal frames attached to
the initial and final slip path points is shown in FIGURE 2.2.
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FIGURE 2.2. Definition of local orthonormal frames attached to initial and
final incremental slip path points. Parametrization of incremental slip path.

Step 8. Slip path parametrization. Using the set of orthonormal frames defined above,
we define the slip path as a second order approximation to the geodesic curve, via the map:

_ - d —
(€[-1,41) > Y (¢) := H'(C) Yn + '(¢) .,
2cos O,
d (2.27)
2 —9 X
+H(() Yogr + D cos @n+1H (€) Tluga
where
cosOn =Ty, -m
(2.28)

cosOnyy 1= T1,,, - m

and Hy, Ho, @ = 1,2 are the Hermite shape functions defined in the isoparametric domain
[—1,1] as

M) = (24 )1 — € /4 i S i (2.29)

HA(C) = (2 ¢)(1 +¢)°/4, (€)=-(1-¢1+¢)*/4

Step 4. Slip amount computation. The computation of the slip amount I'*"? is as
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follows. The tangent map to the curve defined by (2.27) takes the form:

d =1 .
mVH (¢) 7.,

+VH(C) Yogs + — o URE(C) £y

(e[-1,41] = Yr(() := VH'(() Y +
(2.30)

2c0s O, 41 m

where VHA({) := dHA(¢)/d¢ and VHA(() := dHA(C)/d¢ for A =1,2.

Using the tangent map defined above, the slip curve length can be computed as the
integral, over the parametrization domain, of the Euclidean norm of the tangent map, as

et = / 1¥2(0)] d¢ (231)

This integral can be numerically evaluated using a quadrature rule, leading to an

expression of the form
anl

I =% Wi |¥r(¢) (2.32)
IT=]

where (; € [—1,+1] are the positions of the integration points in the isoparametric domain
[~1,41], W, are the integration weights and N;,,; is the number of integration points to
be used in the quadrature rule.

3. A New Time Integration Algorithm for the Non-holonomic Frictional Con-
strained Evolution Problem.

In this section we present a new frictional time-stepping algorithm for the time inte-
gration of the non-holonomic frictional constrained evolution problem. To focuss on the
main idea of the algorithm, it will be introduced within the context of the simple model
problem described in Section 2. The algorithm is amenable to exact linearization, leading
to an asymptotic quadratic rate of convergence when used within an iterative Newton-
Raphson solution scheme. The algorithm is suitable for large slip multi-body frictional
contact problems.

As we have seen above, the new frictional time integration algorithm focussed on
the solution of Problem 1, arising from the operator split (2.24), while Problem 2 can be
integrated using a frictional return mapping algorithm.

The main idea underlying the new integration algorithm is the following. The sliding
velocity of the particle is integrated to get the slip amount. The procedure to define the
slip path parametrization and the algorithm used to compute the slip amount has been
shown in Section 2.3. As mentioned earlier, this is the key point of the new frictional
time integration algorithm. On the other hand, the Lie derivative along the flow induced
by the slip velocity, arising in Problem 1 in (2.24), is integrated by means of a shifter or
orthogonal parallel transport, along the slip path, operator.
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Integration of the constrained evolution equations (2.24) in Problem 2, which takes
place at a fixed configuration, is performed by a straightforward application of a frictional
return mapping algorithm. As this integration takes place at a fixed configuration, the
local surface parametrization can be used.

Consider the time interval of interest I = [0,T] discretized into a series of non-
overlapping subintervals I := UnN=0[tn,tn+1]. The incremental solution to the frictional
constrained evolution problem defined by (2.23), is obtained applying a time stepping al-
gorithm to integrate the evolution equations within a typical time step [tn,tny1] with given
states variables, as initial conditions, at time ¢,,.

Following a standard convention, we shall denote by either (), or (:)n+1 the algo-
rithmic approximations at times ¢,, and tnt1 to the continuum (time dependent) variable
(-)z-

A step-by-step description of the new frictional time integration algorithm is as follows:

Step 1. Initial conditions at time t,: Database. Consider given as initial conditions
at time ¢, the frictional traction tl}", the placement of the particle on the surface Y, :=
¢(X,t,) and the unit outward normal v,, := v o (X ,t,). Within the motion-driven
framework, consider a prescribed motion of the particle from time ¢, to t,4;, leading to
its current placement on the surface denoted as Y, a1 1= ©(X,tn41) and current unit
outward normal denoted as v,,11 := v o o(X,thy1).

Step 2. Definition of the local orthonormal frames attached to Y, and Y, .., induced
by the slip path. Using the unit outward normals v, € 5% and V11 € 5% and (2.25) we
define the unit tangent vectors #, € T, S? and Tapss € Tv,y, S? given by (2.26). The unit
outward normals together with the unit tangent vectors define two set of orthonormal basis

(Vn,T1,,T2,) € S X T,,8% x T,,S5* and (Vn+1’721u+n'?'2u+1) € 8% x Tvu+152 X Tun+152’
attached to the points Y, and Y41, respectively.

Step 3. Slip path parametrization and slip amount computation. Using the set of
orthonormal basis defined above, we define a slip path via the map (2.27). The tangent map
(2.30) is used to define the slip amount given by (2.31). Slip amount can be numerically
computed, using a quadrature rule to integrate (2.31), leading to the expression (2.32).

Step 4. Trial frictional traction. The trial frictional traction can be computed in a
two-stages algorithm:

i. Parallel transport of the frictional traction tli_p" at time t,, along the slip path
from Y, to Y.

ii. Trial slip contribution, using a BE algorithm.

This two-stages algorithm leads to the following expression

blriul

T4, =4 tlr}" +er Fs“p‘f'luﬂ (3.1)

where I'yy;; is the slip amount, A € SO(3) is the shifter or orthogonal parallel transport
operator defined as
A = 'Fa,,+1 ® ‘Fa-,,j a = 1,2 (3'2)
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where SO(3) is the special orthogonal group defined as
S0(3):={A:R® - R® | AT = A7? and det[A] = +1} (3.3)

Expression (3.1) represents the semi-discrete counterpart of the evolution problem given
by the trial state in (2.24), where the shifter or parallel transport operator has been
introduced to integrate the Lie derivative along the flow induced by the slip velocity and
a Backward-Euler time stepping algorithm has been used to integrate the slip velocity.

Step 4. Projection onto the Coulomb disk. Return mapping algorithm. The computed
trial frictional traction on current configuration is projected onto the Coulomb disk via
a return mapping algorithm. This projection, involves the computation of the trial slip

function defined as -
btrlu

jal
B = 5l = 1t (3.4
If $7i2! < 0 then the trial frictional traction satisfies the frictional constraints and the
projection is just

b b!riul

=1 (3.5)

Tn-{-l Tu+1
otherwise, a projection of the trial values onto the Coulomb disk must be performed.
For the simple classical Coulomb model, the return mapping algorithm leads to a direct
computation of the frictional tangent traction given by:

b b(riul

tTu+l = K tN1L+1pT1L+1 (3-6)

btriul

trial trial
where }7/1-'."_‘-1 = th”_*,l /thT,L+1 “

A summary of the frictional time integration algorithm is shown in Table III.1.

REMARK 3.1. The whole algorithm has been introduced within the simple context
of the model problem of a particle subjected to holonomic unilateral constraints, arising
from the presence of a rigid obstacle, and to non-holonomic frictional constraints, arising
from the frictional roughness behaviour at the surface. The extension of the algorithm to
a finite deformation, large slip multi-body frictional contact framework is straightforward.
Within this general framework, the computation of the trial frictional traction is performed
at a fixed reference configuration. Once the trial frictional traction on reference configura-
tion has been computed, one must perform its push-forward to the current configuration
and then perform the projection onto the Coulomb disk via a return mapping algorithm
on current configuration. []

REMARK 3.2. The algorithm depicted above is amenable to exact linearization
leading to a consistent or algorithmic tangent operator. The linearization of the algorithm,
within the general context of finite deformation, large slip multi-body frictional contact
problems, is included in the Appendix B. []

REMARK 3.3. The implementation of the new frictional time integration algorithm
within an Augmented Lagrangian method is straightforward. In this case it would be
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Table IIL.1. Frictional Time Integration Algorithm.

1. Initial conditions at time t,: Database. Given the history {thﬂ,Yn,un}
for the (one form) frictional traction, cartesian coordinates and unit out-
ward normal (at the slave quadrature points) and for prescribed (motion
driven) values {Y,41,Vn41}

2. Definition of local orthonormal frames attached to Y, and Y, induced
by the slip path.

Set
X
o = M, F1, 1= o, X Un
[vn x m|
_ v X m .
T2ﬂ+1 = L’ qu +1 T2u+1 X Vn+1
[Vn+1 x m|
where

d=Y,1-Y,, d=|d|, m=4d/d

3. Slip path parametrization and slip amount.

i. Slip path parametrization.
CE[-LA Y () =H'(¢) Va+ 5 oH

5 =
+ e (C) Yn+1 + 2 cos 9n+1

where
cosOn =71, - m, cosOnyy:=7,  -m

H(O)=@+00 - /4,  HQ)=@1+)(1-¢)/4
HAO =200+ /4, H()=-(1-)(1+¢)?/4

ii. Tangent map.

d _
T, - o 2
2cos @,

d _
2cos Opyg

(€[-1,41) - Yp(¢) := VHY() Y, +

+ VHz(C) Yn+1 +

iii. Slip amount.
Ni ut

I =% Wy |[¥r(¢h)|

I=1
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Table III.1. Frictional Time Integration Algorithm.

4. Trial state.
i. Trial frictional traction.

btriul

= Aty +ep I¥P7

Tﬂ.+1 n+41
where
A:=74,,, ®Ta,, a=1,2
ii. Trial slip function.
trial | prrial
@n—{-l T ”tT“+1 - /‘l' tN'u.-{-l

5. Frictional return mapping: Projection onto the Coulomb disk.

i. Return mapping.

trial . itrial .
tT”’ila if $.707 <0 (stick)
Tn = 1 . .
e BN, 4 pé{’iia otherwise (slip)

where
btriul btriul btriul

pT,,A.f_l = tTﬂ+1/“tTn.+l

necessary to build up a new slip path in each one of the nested iterations of the Lagrange
multipliers augmentations. []

4. Numerical Simulations.

The formulation presented in the preceding sections is illustrated below in a number
of full three dimensional numerical simulations. The goals are to show the performance of
the new frictional contact time integration algorithm at large slips and finite deformations
and to demonstrate the robustness of the overall finite element formulation in different
numerical analyses. The calculations are performed with an enhanced version of the finite
element program FEAP developed by R.L. Taylor and J.C. Simo and documented in
ZIENKIEWICZ & TAYLOR [1991].

(A) Forming of an oil pan. This example is taken from LAURSEN & Simo [1993] and
proved an illustration of an industrial application of the preceding theory. An initially flat
elastoplastic metal sheet is formed into a pan, by forcing it to conform to the shape of a
rigid punch pressed against it. The sheet is considered to be clamped at the edges to a
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fixed rigid die. A Jy-model of multiplicative plasticity is assumed, with material properties
E =170 GPa, v = 0.3, oy = 140 MPa and isotropic hardening with hardening modulus
H =100 MPa. A Coulomb friction model for the contact interface between the rigid tools
and the sheet is assumed with a friction coefficient of 0.25. The sheet initially measured
600 mm long, 560 mm wide and 5 mm thick. The punch consist of a lower flat region with
an inclined section leading to it. The forming process was continued until the lower region
had been moved through a distance of 100 mm.

For symmetry reasons only half the geometry was modeled, with 800 continuum el-
ements being utilized for the discretization of the sheet. A mixed Q1/PO0 finite element
formulation at finite strain, with piece-wise constant interpolations for both pressure and
volume along with a bilinear interpolation for the displacement field has been used. See,
for example, S1MO [1994] (Section 45), for a description of the method. The penalty pa-
rameters for contact and friction have been taken as ey = er = 10'° and the new frictional
time integration algorithm has been used in the simulation. The loading was achieved in
100 load steps, through displacement control of the punch. The Newton-Raphson method,
combined with a line search optimization procedure, has been used to solve the nonlinear
system of equations arising from the spatial and temporal discretization.

The analysis was performed in a Silicon Graphics Power Challenge L Workstation
and it was accomplished in 2 hrs 31 min CPU time. Table IV.1 summarizes the values of
the Euclidean norm of the residual obtained for four typical time steps, corresponding to
25, 50, 75 and 100 mm punch displacement, in an iterative solution procedure employing
Newton’s method. The quadratic rate of convergence exhibited by the iteration is the
result of an exact linearization of the problem, including frictional contact constraints,
leading to an exact expression for the algorithmic tangent moduli.

Table IV.1. Forming of an oil pan. Euclidean residual norm for four typical time steps.

Step 25

Step 50

Step 75

Step 100

2.72291E+04

2.99612E4-04

3.31514E+4-04

3.09564E+04

7.24502E+04

7.95762E404

6.04478E+04

5.94460E+04

1.63322E--04

1.87194E+04

8.44338E4-04

3.50416E+04

1.57428E+-03

2.38115E+03

6.17215E+03

2.21297E+03

1.60151E4-02

1.59523E+02

1.22857E+02

5.76473E+01

1.12800E+01

2.08237E400

2.29146E+01

1.50948E+-00

4.32125E-03

2.50423E-04

5.38027E-01

1.34566E-04

6.46626 E-08

6.48886E-08

2.12824E-06

1.38417E-07

FIGURE 4.1 shows the initial configuration of the sheet and the tools, punch and die,
along with the deformed shapes of the sheet at four different stages of the forming process,
corresponding to punch displacements of 25, 50, 75 and 100 mm. FIGURES 4.2 and 4.3
show, respectively, the contours of equivalent plastic strain and yield ratio at the same
four different stages of the forming process.
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EQ. PL. STN.
Min = 0.00E+00
Max = 2.15E-01

3.08E-02
6.16E-02
9.23E-02
1.23E-01
1.54E-01
1.85E-01

Current View
Min = 0.00E+00
X =-3.00E-01
Y = 2.66E-01
Z =5.00E-03
Max = 2.15E-01
X =-2.26E-01
Y =1.97E-01
Z =-1.50E-02

FIGURE 4.2A. Forming process of an oil pan. Contour of equivalent plastic
strain at a punch displacement of 25 mm.

EQ. PL. STN.
Min = 0.00E+00
Max = 6.88E-01

9.82E-02
1.96E-01
2.95E-01
3.93E-01
4.91E-01
5.89E-01

Current View

Min = 0.00E+00
X =-3.00E-01
Y = 2.66E-01
Z =5.00E-03
Max = 6.88E-01
X =-2.26E-01
Y = 1.97E-01
Z =-3.76E-02

FIGURE 4.2B. Forming process of an oil pan. Contour of equivalent plastic
strain at a punch displacement of 50 mm.
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EQ. PL. STN.
Min = 0.00E+00
Max = 1.21E+00

1.73E-01
3.47E-01
5.20E-01
6.93E-01
8.66E-01
1.04E+00

Current View

Min = 0.00E+00

X =-3.00E-01

Y = 2.66E-01

5.00E-03
1.21E+00

FIGURE 4.2C. Forming process of an oil pan. Contour of equivalent plastic
strain at a punch displacement of 75 mm.

EQ. PL. STN.
Min = 0.00E+00
Max = 1.61E+00
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Current View
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X =-3.00E-01
Y = 2.66E-01
Z = 5.00E-03
Max = 1.61E+00
X =-2.25E-01

FIGURE 4.2D. Forming process of an oil pan. Contour of equivalent plastic
strain at the final punch displacement of 100 mm.
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YIELD RATIO
Min = 0.00E+00
Max = 1.15E+00

1.65E-01
3.30E-01
4.95E-01
6.59E-01
8.24E-01
9.89E-01

Current View
Min = 0.00E+00
X =-3.00E-01
Y = 2.66E-01
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FIGURE 4.3A. Forming process of an oil pan. Contour of yield ratio at a
punch displacement of 25 mm.

YIELD RATIO
Min = 0.00E+00
Max = 1.49E+00
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1.28E+00

Current View
Min = 0.00E+00
X =-3.00E-01
Y = 2.66E-01
Z = 5.00E-03
Max = 1.49E+00
X =-2.26E-01
Y = 1.97E-01
Z =-3.76E-02

FIGURE 4.3B. Forming process of an oil pan. Contour of yield ratio at a
punch displacement of 50 mm.
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YIELD RATIO
Min = 0.00E+00
Max = 1.87E+00

2.67E-01
5.33E-01
8.00E-01
1.07E+00
1.33E+00
1.60E+00

Current View

Min = 0.00E+00
X =-3.00E-01
Y = 2.66E-01
5.00E-03
= 1.87E+00
-2.25E-01
1.96E-01
-6

Z=
Max
X =
Y =
Z =-6.30E-02

FIGURE 4.3C. Forming process of an oil pan. Contour of yield ratio at a
punch displacement of 75 mm.
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Current View
Min = 0.00E+00
X =-3.00E-01
Y = 2.66E-01
Z =5.00E-03
Max = 2.15E+00
X =-2.25E-01

FIGURE 4.3D. Forming process of an oil pan. Contour of yield ratio at the
final punch displacement of 100 mm.
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(B) Pinching of a pipe by two flexible plates. This example is taken from LAURSEN
& SiMo [1992] and is concerned with the pinching of an aluminum pipe by a pair of
aluminum plates. The material properties for both the pipe and the two plates were taken
as bulk modulus K = 74.4 GPa, shear modulus G = 28.5 GPa and yield stress oy = 485
MPa. No hardening effects were assumed. The pipe had an inner radius of 9 cm, an outer
radius of 10 cm and a length of 40 cm. The plates were each one 2 ¢cm thick and measured
40 cm length by 15 cm wide. A Coulomb friction coefficient of p = 0.1 was assumed
between the plates and the pipe.

Due to symmetry only one-eighth of the geometry was modeled with 128 continuum
elements being utilized for the discretization of the pipe and 15 continuum elements for
the discretization of each of the plates. A mixed Q1/PO0 finite element formulation at finite
strains, with piece-wise constant interpolations for both pressure and volume along with
a bilinear interpolation for the displacement field, has been used. See, for example, SIMO
[1994] (Section 45), for a description of the method. The penalty parameters for contact
and friction have been taken as ey = e = 10'°. The new frictional time integration
algorithm has been used in the simulation. The loading was achieved in 100 load steps,
through displacement control of the shorter edges of the plates. The Newton-Raphson
method, combined with a line search optimization procedure, has been used to solve the
nonlinear system of equations arising from the spatial and temporal discretization.

The analysis was performed in a Silicon Graphics Power Challenge L Workstation and
it was accomplished in 27 min CPU time. Table IV.2 shows the Euclidean norm of the
residual at four typical time steps.

Table IV.2. Pinching of a pipe by two flexible plates.
Euclidean residual norm for four typical time steps.

Step 25

Step 50

Step 75

Step 100

8.11798E+09

1.12212E+10

1.02522E+10

9.94982E+09

8.48452E+07

4.69798E+08

6.32628E+-08

3.16392E+-09

2.06944E+-06

8.54720E407

6.33897E+08

1.50084E+-09

2.05370E+04

1.42299E+07

1.74784E+07

5.68297E+08

5.81648E+00

7.20342E+04

2.33905E+-06

5.20430E+07

8.62700E-04

4.33376E400

6.22580E+02

4.68104E+06

9.95670E-04

8.67621E-04

9.75066E+04

2.44372E400

9.69764E-04

This example demonstrates the capability of the proposed formulation to handle prob-
lems in which different finite deformable bodies are involved. FIGURE 4.4 shows the ge-
ometry of the problem at the initial configuration along with the deformed shapes at four
different stages of the process. FIGURES 4.5 and 4.6 show the contour of equivalent plastic
strain and yield ratio, respectively, at these four stages of the pinching process. FIGURE
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, 50, 75 and 100 mm plate

FIGURE 4.4. Pinching of a pipe by two flexible plates. Initial configuration

for the sheet and tools and deformed shapes at 25

edges displacement.
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FIGURE 4.5. Pinching of a pipe by two flexible
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FIGURE 4.6. Pinching of a pipe by two flexible plates. Contour of yield ratio
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EQ.PL.STN.
Min = 1.06E-03
S Max = 3.38E-01

+ 2.42E-01
¢ 2.90E-01

FIGURE 4.7. Pinching of a pipe by two flexible plates. Contour of equivalent
plastic strain at the final stage. Half the geometry is represented to appreciate
the deformed shape at the middle section of the pipe and the distribution of
equivalent plastic strain at the middle inner part of the pipe.

4.7 shows the equivalent plastic strain contours at the final stage. Here half the geometry
is represented to better appreciate the final deformed shape of the pipe at the middle
section as well as the distribution of the equivalent plastic strain at the middle inner part
of the pipe.

(C) Draw Bead Simulator. This example is concerned with the simulation of a draw
bead in a deep drawing sheet metal forming process. An initially flat strip metal sheet will
be drawn through a set of rollers. The material properties for the strip were taken as bulk
modulus K = 171.6 GPa, shear modulus G = 79.2 GPa and a hardening law given by the
Swift equation

oy = 536.0 (0.0033 + &7)°2! MPa

The rollers were considered as rigid. The strip was 1 mm thick and measured 60 mm
length by 2 mm wide. The rollers were 4 mm wide and radius of 5 and 2 mm. Relative
to the left side of the strip, the center of the rollers were placed at 9, 20, 31, 34 and 44
mm as it is indicated in FIGURE 4.8. A Coulomb friction coefficient of p = 0.144 was
assumed between the surfaces of the strip and the rollers. Plane strain conditions have
been assumed and only a half part of each roller has been discretized. The loading process
consist of two phases. In the first phase, the main upper roller (at the left) is moved
downwards to a distance of 6.35 mm and the left edge of the strip is keep fixed. In the
second phase, the rollers are keep fixed and the strip is pulled out from the left to a final
distance of 6.35 mm.

The geometry of the problem was modeled with 320 continuum elements being utilized
for the discretization of the strip and 100 surface elements being used for the discretization
of each of the rollers. A mixed Q1/PO0 finite element formulation at finite strains was used
for the discretization of the strip. The penalty parameters for contact and friction were
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taken as ey = 5102 and er = 5-10°. The loading process was achieved in 200 load steps,
100 load steps in each of the phases of the process, through displacement control of the main
roller and the left edge of the strip. The Newton-Raphson method, combined with a line
search optimization procedure, was used to solve the nonlinear system of equations arising
from the spatial and temporal discretization. Convergence of the incremental iterative
solution procedure was monitored by requiring a tolerance of 1072° in the energy norm.

The analysis was performed in a Silicon Graphics Power Challenge L Workstation and
it was accomplished in 2 hrs 5 min CPU time. Table IV.3 shows the Euclidean norm of
the residual at four typical time steps.

Table IV.3. Draw bead simulator. Euclidean residual norm for four typical time steps.

Step 50

!

Step 100

Step 150

Step 200

5.28310E+402

6.53489E+02

4.12709E4-04

4.12687E+04

3.81569E+02

3.58552E+02

2.51557TE+02

1.58693E+-02

2.37672E+01

1.14570E+402

2.82030E+4-01

3.67684E+01

1.42762E+01

2.48702E4-01

3.65624E+-00

6.23131E+00

3.97753E+4-00 5.95389E+-00 2.94132E-01 2.14350E-01
1.81214E-01 5.91212E-01 5.56107E-02 9.54870E-03
5.06938E-04 2.36497E-03 1.29838E-05 2.17244E-07
5.21445E-09 6.42952E-08 5.46098E-10 5.29836E-10
5.96470E-10 5.03292E-10

FIGURE 4.8 shows the initial geometry of the strip and the initial placement of the
rollers. FIGURE 4.9 shows the deformed shapes of the strip at four different stages of the
process, corresponding to a displacement of 3.175 and 6.350 mm of the upper main roller
during the first phase and to prescribed displacements of 3.175 and 6.350 mm of the left
edge of the strip during the second phase, respectively.

FIGURE 4.10 shows the evolution of the horizontal reaction at the left edge of the
strip and the evolution of the horizontal displacement of the right edge of the strip, during
the loading process. Loading time is such that ¢ = 1 corresponds to the end of the first
phase, with a final vertical displacement of the upper main roller of 6.35 mm.

FIGURE 4.11 shows the distribution of the equivalent plastic strain in the strip at the
same four selected stages of the process. A zoom of the central part of the strip with the
distribution of equivalent plastic strain at the final stage is shown in FIGURE 4.12.

5. Concluding Remarks.

A new frictional time integration algorithm, suitable for large slip multi-body frictional
contact problems at finite deformations has been presented. To introduce the algorithm it
has been sufficient to consider a simple model problem: the sliding motion of a particle into
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FIGURE 4.8. Draw Bead Simulator. Initial geometry of the strip and initial
placement of the rollers.
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FIGURE 4.9. Draw Bead Simulator, Deformed shapes of the strip at four
different stages of the process, corresponding to a displacement of the upper
main roller of 3.175 and 6.350 mm during the first phase and to a prescribed
displacement of 3.175 and 6.350 mm of the left edge of the strip during the
second phase, respectively.
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FIGURE 4.10. Draw Bead Simulator. Evolution of the horizontal reaction
at the left edge of the strip and evolution of the horizontal displacement of
the right edge of the strip. Time scale is such that ¢t = 1 corresponds to the
end of the first phase of the loading process, given by a vertical displacement
of the upper main roller of 3.175 mm.
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FIGURE 4.11. Draw Bead Simulator. Distribution of the equivalent plastic
strain in the strip at four different stages of the process, corresponding to a
displacement of the upper main roller of 3.175 and 6.350 mm during the first
phase and to a prescribed displacement of 3.175 and 6.350 mm of the left
edge of the strip during the second phase, respectively.
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FIGURE 4.12. Draw Bead Simulator. Zoom of the distribution of the equiv-
alent plastic strain in the central part of the strip at the final stage of the
process, corresponding to a displacement of the upper main roller of 6.350
mm during the first phase and to a prescribed displacement of 6.350 mm of
the left edge of the strip during the second phase.
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a fixed surface. The main aspects of the algorithm can be introduced within the context
of this model problem and the extension to a general large multi-body problem at finite
deformations can be performed in a straightforward manner.

The key point of the algorithm lies in the parametrization of the incremental assumed
sli path as an approximation to a geodesic curve. Remarkably, this parametrization is
defined, only in terms of the initial and final position of the particle and the unit normals
to the surface at these points, without using the underlying local surface parametrization.
This fact allows to deal with large slip situations in a trivial manner.

The algorithm is amenable to exact linearization getting an asymptotic quadratic rate
of convergence when used within a Newton-Raphson solution scheme. The performance of
the algorithm has been shown in different representative numerical simulations.

Appendix A. A New Frictional Time Integration Algorithm for Large Slip
Multi-Body Frictional Contact Problems.

In this Appendix a new frictional time integration algorithm, within the framework
of finite strains and large slips multi-body frictional contact problems, is introduced.

(A) Notation. Let 2 < ngim < 3 be the space dimension and I := [0,7] C IRy the
time interval of interest. Let the open sets 2(1) ¢ R™ ™ and 22 ¢ IR™*" with smooth
boundaries 82(Y) and 92*) and closures 21 := 2 U 9™ and N .— () U 002,
be the reference placement of two continuum bodies B and B(?), with material particles
labeled X € (1) and Y € 2(2) respectively.

Denote by () : 2(8) x T — IR™™ the orientation preserving deformation map of the
body B9, with material velocities V(1) := 91D and deformation gradients F(?) := D9,
For each time ¢ € I, the mapping t € I (sz) := ¢(I(.,1) represents a one-parameter
family of configurations indexed by time t, which maps the reference placement of body
B® onto its current placement St(z) : c,osbz')(B(")) C IR,

We will denote as the contact surface I') C 92 the part of the boundary of the
body B() such that all material points where contact will occur at any time ¢ € I are

included. The current placement of the contact surface I'"'*) is given by 4 := cpgi)(F(i)).

Attention will be focussed to material points on these surfaces denoted as X € I"()
and Y € I'®), Current placement of these particles is given by = = cpgl)(X) € v and
y = (Y) ey®.

Using a standard notation in contact mechanics we will assign to each pair of contact
surfaces involved in the problem, the roles of slave and master surface. In particular, let
I'D be the slave surface and I'®) be the master surface. Additionally, we will denote
slave particles and master particles to the material points of the slave and master surfaces,
respectively. With this notation in hand, we will require that any slave particle may not
penetrate the master surface, at any time ¢t € I. Although in the continuum setting the
slave-master notation plays no role, in the discrete setting this choice becomes important.

B) Parametrization of contact surfaces. Let A ¢ IR™ ™ ™! be a parent domain for
P
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the contact surface of body B(¥). A parametrization of the contact surface for each body B(®)
is introduced by a family of (orientation preserving) one-parameter mappings indexed by
time, gi) : AW ¢ R™m=1  R™im such that ') .= 1/)((,i)(A(i)) and () .= @bgi)(A(i)).
Using the mapping composition rule, it also follows that 1/151) = cpgi) olj)gi). In what follows,
it will be assumed that these parametrizations have the required smoothness conditions.
Additionally, we will consider the case ng;, = 3. Particularization for Ndim = 2 1s trivial
after the three-dimensional case has been considered.

Within the slave-master surface role focuss will be placed on the parametrization of
the master surface. Using the parametrization of the contact surfaces introduced above
we consider a point £ := (¢*,¢£%) € A®) of the parent domain, such that

Y =9€), yi=v2) (A.1)

Attached to each master particle Y € I"®) we introduce the convected surface basis
E,(£) and e4(&), @ = 1,2 on the reference and current configurations, respectively, as

Ea(€) = %0a(6),  eal€) = p{2(¢) (4.2)
where (-) o denotes partial derivative with respect to £<,

(C) Contact normal constraints. Let 7(X,t) € 7*) be the closest-point projection
of the current position of the slave particle X onto the current placement of the master
p p p
surface F(z), defined as

Y(X,1) = arg_min {llp”(X) - o{P(¥)])} (4.3)
(X, 1) = o{7(P) (A.4)

and let gn(X,t) be the gap function defined for any slave particle X € I') and for any
time t € I as
an(X,1) == —[p{V(X) - (P (X,1))) - v (4.5)

where v : 4(2) — §? is the unit outward normal field to the current placement of the
master surface particularized at the closest-point projection J(X,t) € v,

Let P()(X 1) be the first Piola-Kirchhoff stress tensor and NO(X) the unit out-
ward normal to the slave surface I'!) in the reference configuration. The nominal (Piola)
frictional contact traction at X € I'}) is given as

t(X,t) = PY(X,1). NO(X) (A.6)

and the contact nominal pressure ¢ (X, 1) is defined as

tn(X, 1) = tW(X, 1) v (A.7)
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With the preceding notation in hand, the contact normal constraints of impenetrabil-
ity, non-adhesion and contact persistency can be written in Kuhn-Tucker form as:

in 20, gnv <0, tngnv =0

. . (A.8)
tingn =0 if ity >0

D) Convected basis, metric and curvature tensors at the closest-point projection.
point project
Associated to the closest-point projection given by (A4.3) — (A4.4), for some point & :=
(€1,8%) € AP of the parent domain we will have

V(X,1) = (E(X,0),  9(X,1) =P (E(X,1)) (4.9)
Attached to the master particle Y (X,?) € I'® we define the convected surface basis on
the reference and current configurations, respectively, as

(X, 1) = Ba(8(X 1)), 7a(X,1) 1= ea(&(X,1)) (4.10)

Additionaly, the unit outward normals v™*f € §? and v € S? at the master particle
Y (X,t) on the reference and current configurations, respectively, can be defined as

ves . T x 1y o 1 XTy A1l
= el V= (A.11)
777 x 77| |71 % 7|

The vectors 77¢f € T,..; §% and 7, € T, S?, a = 1,2 span the tangent spaces T,r.s S* and
T, S? to the S? unit sphere at v™/ and v, respectively. Here the tangent space to the 52
unit sphere at v € §? is defined as

T,5% :={fv e R™™ : fv-v = 0} (4.12)

The convected surface basis vectors 77¢/ and Toy, @ = 1,2, augmented with the unit
outward normals "¢/ and v, provides local spatial frames at the master particle Y (X 1)
on the reference and current configurations, respectively.

The convected surface basis vectors 77¢/ and 7, a = 1,2, induces a surface metric or

first fundamental form on the reference and current configurations, defined respectively as

Myp =707 ‘rgef , Map i= Ty Tp (A.13)
Inverse surface metrics M*? and m®? are defined in the usual manner. Additionally,
dual surface basis on the reference and current configurations are straightforward defined
respectively as

Tref = M"ﬂ‘rgef ; T = m"ﬁ‘rﬂ (A.14)
The variation of the convected surface basis along the convected coordinates, together with
the unit normal, induces the second fundamental form or surface curvature defined, on the

reference and current configurations, as

kng = Bap(@) V™, Kapi=eap(f) v (A.15)
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E Constrained frictiona] eVO]UﬁOH prob]em. The relative sli velocity in the con-
P
vected conﬁguration is defined as

v (X 1) = YV (X, 1) (A.16)

The relative slip velocity in the current configuration v is defined as the push-forward of
the convected slip velocity and takes the form

vr(X,t) = FP(E(X,1)) - o3 (X, 1) (4.17)

We define the nominal frictional tangent traction t7(X,t) as (minus) the projection
of the nominal frictional contact traction t()(X,t) onto the unit normal v, as

tr(X,t) = TP, t((X,1) = 13(X,1) o (A.18)

With the preceding notation in hand the slip rule and frictional constraints can be
written in Kuhn-Tucker form as:

vp(X,1) = v py (4.19)

B(th,in) <0, v>0, v &(th,in) =0
(T.Nb)_ Y2 7b(T N) (A.20)

where &(t%, ) is the slip function defining the admissible nominal traction states, p’ is
the gradient of the slip potential, usually defined as the slip function for constant pressure,
7 is the slip rate and (-)* states for the one-form associated to the corresponding vector
object.

(F) Regularized problem. The penalty regularization of (A.8) and (A.19) defines the
following regularized constrained frictional evolution problem. The regularized normal
constraints are defined as

in(X,t) = €N<gN(X,i)> (A.21)

where (-) is the Macauley bracket, representing the positive part of its operand. The
regularized constrained frictional evolution equations are defined as

1
vp(X,t) =7 pir + Lonth (4.22)

subjected to the following constraints

B(t,in) <0, v>0, v B(th,in) =0

. A.23
v St in) =0 if B(th. in) =0 ( )

where £, t% is the Lie derivative of the frictional tangent traction along the flow induced
by the relative slip velocity vr, defined as

Loptiy i= ipar® (A.24)
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Within the context of the product formula algorithms, a frictional operator split of
the constrained evolution problem can be introduced by means of a trial state, defined by
freezing the irreversible (plastic) slip response, i.e. setting v = 0, as follows

Problem 1: Trial state Problem 2: Return mapping
EI,Tt?p = €T 'vzw ["U'rth = —€rT Y at;Tdi(t?p,tN,a) (4.25)
unconstrained ds(tk_r,ilv) <0, v>0, v @(th’tN) -0 .

(G) Frictional time integration algorithm. A step-by-step description of the new fric-
tional time integration algorithm, suitable for large slips at finite deformations, is as follows:

Step 1. Initial conditions: Database. Consider given as initia.l conditions at time t,,
the nominal frictional traction on reference configuration tb , the isoparametric coordi-
nates £, of the closest-point projection at the last converged tlme step and the ma.ster
element surface I’ containing this point. Using the maps, : AD c RMmT

r® c R™ and 1/150 : A RMmT o 4(2) ¢ R mtroduced above, the refer-
ence and current placement of the closest-point projection at time ¢, can be written as

Y, := 82)(5_,1) and = 1/)51_2)(6_,1), respectively.
Within the deformation-driven framework, consider a prescribed deformation lead-

ing at time t,4; to a prescribed value of the isoparametric coordinates of the current
closest-point projection €,4; onto the master element surface I'¢ A contalmng this point.

Reference and current placements of this point can be written as Yn+1 = 1,b0 (§n+1) and

Gnt1 1= Pop1(Ens1), Tespectively.

Step 2. Definition of the local orthonormal frames at &, and &€,,, on reference con-
figuration. As it was shown in Section 2 we define two sets of local orthonormal frames at
the initial &, and final £,4; points on reference configuration. We will denote the basis

vectors defining the local frames as {v]°/,#7¢/} and {V;:_fl, A;cil}, with o = 1,2. Here

Tef € S? and urifl € 5% are the unit outward normals to the master surface elements
I’e and It ; at the points £, and &, 1, respectively, on the reference configuration. The

unit tangent vectors ‘rl ref ¢ T,rc1 8% and 7'1 11 € T,rcs S? are defined as it was shown in
Section 2, in such a way that they are tangent to the assumed slip path. We would like to
remark that restrictions of the type I'S = IS, or I's N Fe+1 # ( are not necessary to be
considered in this framework.

Step 3. Trial frictional traction on reference configuration. The trial frictional traction
on reference configuration can be computed in a two-step algorithm:
1. Parallel transport of the frictional traction t%::j on reference configuration at time

tn, along the slip path from &, to &,41 on reference configuration.

ii. Trial slip contribution, using a BE algorithm.

This two-step algorithm leads to the following expression

pres trial — j{-ft}'! 4 e I—.shp ~ref (A.26)

Tn+1 1, +1
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where I';j;;, is the slip amount on the reference configuration computed as it was shown in
Section 2 and A € SO(3) is the shifter or orthogonal parallel transport operator defined as
A:=70 @, a=1,2 (4.27)

Q41

where SO(3) is the special orthogonal group defined as

SO0(3):={4: R’ - R® | AT = A7! and det[4] = +1} (A.28)

Step 4. Push-forward to the current configuration. Once the (one-form) nominal
frictional traction at £,4; on reference configuration has been computed, we perform the
push-forward to the current configuration, defined as

btrial (2) bre/ trial 5 brcf trial
tT,,,+1 = (P* (tT.,,+1 ) = (T:J{-l ® Taiil) ' tT,,+1 b o = 1’2 ('A'zg)

where 72, ; and Téi{l, a = 1,2 are the reciprocal convective basis at £, on current con-

figuration and the natural convective basis at €, on reference configuration, respectively.

Step 5. Projection onto the Coulomb disk. Return mapping algorithm. The computed
trial frictional traction on current configuration is projected onto the Coulomb disk via
a return mapping algorithm. This projection, involves the computation of the trial slip
function defined as

Sy

I _'P“ th-H (A30)

Tyga

If stf_i‘ﬁl < 0 then the trial frictional traction satisfies the frictional constraints and the

projection is just
b(riul

b
tT1:+1 = tT‘lL-]»l (A'31)
otherwise, a projection of the trial values onto the Coulomb disk must be done. For the

simple classical Coulomb model, the return mapping algorithm leads to a direct computa-
tion of the frictional tangent traction given by:

b b!riul
t:l",,qLl =N, 2 (A.32)

triwl trial
b b

where p =tr .. /It

blriul
Tu+1 ‘

T'll +1

Step 6. Pull-back to reference configuration and store in database. Finally, the current
(one-form) frictional traction on reference configuration is obtained as the pull-back of the
computed (one-form) frictional traction, defined as:

pret */74b a™¢t b
tT-,,,.f.l e ¢(2) (tT',,+1) = (TTL+1 ® Ta‘L+1) . tTu.-}—l’ o= 1,2 (A.33)

The current frictional traction on reference configuration is stored in the database to be
used, after convergence was achieved, as initial condition for the next step.
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Table A.1. Frictional Time Integration Algorithm at Finite Deformations.

1. Initial conditions at time t,: Database. Given {tb ] ,En,ufff} for the
(one form) frictional tractlon isoparametric coordinates and unit out-
ward normal in reference configuration (at the slave quadrature points)
and for prescribed (motion driven) values {€n4+1,Vn+1}

Bet:

Vo= (&), Vagr = ¢ (Ensn)
Yn = 1/’512)(571), gn-i-] = ¢$12_31(E_n+1)

2. Definition of local orthonormal frames attached to Y, and Y, induced
by the slip path.

Set
pre
Aref fX’lTL ~ref ~ref ref
211 * ref ) 11 - Tzn X Vn
Hu X ml|
ref
~ref Vofr XM ~ref — ~ref ref
2041 " 7“1”+1 : 2,41 X Vota
lrshy x m|’
where

d=Yn1-Y,, d=|d|, m=d/d

3. Slip path parametrization and slip amount.

1. Slip path parametrization.

. — d —
_ = HY(C) Yo + ————FH(¢) 77
€ [=1,41) - F(Q) = HI(Q) Tt 5 RO
FHC) T + —— Q) #7
il 2 cos @n+1 In
where
cos @, ‘rff m, cos@py = 7"17"811 -m

HU(CO)=(2+)1-¢)?%/4,  H()=Q+1-()*/4
H()=(2-001+¢)?%/4,  H()=-(1-01+()/4

ii. Tangent map.

¢ € [=1,+1] = ¥7(Q) o= VH!(() Yo+ 5—am VHI(C) 7

2 d y 7D ~Te
+ VH?(C) Yay1 + —————VH(() 77/
2cos Op41
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Table A.1. Frictional Time Integration Algorithm at Finite Deformations.

ili. Slip amount.
N

et =N Wy || (¢

I=1

4. Trial state.
i. Trial frictional traction on reference configuration.

tef trial | —_ ref T
: = At +ep PSS

Tn+1 n+41

where

A= 7ref ®7"Tef, a=1,2

Ay 41 (SN

ii. Push-forward to the current configuration.

b(Tl(ll L (2) brcf trial . & 'r'ef brt:f trial .
tTn,+1 =P ( T4 ) - (Tn—+-1 ® Ta,,,+1) ' tT,,+1 ) a = 172
iii. Trial slip function.
@tria,l L tbtriul 4
n+1 *— ” T-,,+1 - # IN‘IL+1

5. Frictional return mapping: Projection onto the Coulomb disk.

i. Return mapping.

tEe if $171% < 0 (stick)
Tn = 1 . .
Tl BN, 4 p%liia otherwise (slip)

where

blriul b!riul b(riul

Pp... = tT,LJrl /“tT,,+1 |

A summary of the frictional time integration at finite deformations is shown in Table

Appendix B. Linearization of the Algorithm.

The frictional time integration algorithm described in Appendix A is amenable to
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exact linearization, allowing to compute the consistent or algorithmic tangent operator.

Linearization is performed throuhout a systematic and straightforward use of the
directional derivative. As the computations are quite involved, here we will provide only
the key expressions and we will focuss on the linearization of the trial frictional traction,
which is the main point of the new algorithm.

The linearization of the new time-stepping algorithm is quite involved and requires
a systematic use of the directional derivative. Here, we will focuss on the linearization
of the trial frictional traction one-form components tf_,f::‘:l leading to the non-symmetric
operator components Zg3.

Taking the directional derivative of (A.31) — (A.32) the linearization of the new time-
stepping algorithm described above takes the form:

Athel  (stick)
ntlg
At ntle { 1 trial trial : (Bl)
:u’Ath+1pT,,+1a + /J’tN-u+1ApT"+1a (SIIP)
with
AtN,L.H = ENH(gNu+1) AgNn.+1
Agn, = (A" — Ap@r o yUE, 1)) v (B.20)
rial el £
AR = Eap AT,
t‘érial
ra n+41 trial h, — -
ApFie. = (65 —mB) — =L AP Pr o 1803 (E) + epyy (€) Alnyi]
° 17, |l ' (B.2b)
n41
o a & 2)h, F
ALy = AP {[ApWM — APME, 1)) 5 — g,y - A DM (Enra)])
where H(:) is the Heaviside function, 77 is defined as
rial trial
71’{;3 = PE_P,LHQ P, ., 3 (B-3)
and AP are the components of the inverse matrix A~! = [A=P], where
Aap = Map + gN Kap (B.4)

Here the non-symmetric operator =,5 arises from the linearization of the trial frictional
traction given by (A.29) and takes the form:

[§9]
83}

lip -
ap +er TGP T;‘j_{l P (B.5)

af =
where the non-symmetric operator =,5 arises from the linearization of the parallel trans-
port of trTif from &, to €,41 and takes the form:

Sap = (b - 7770) (7721 72e0 )

+ (b AT (77 I 4 27 B p(Earn)) (B.6)

+ ETFSHP [fiffl,ﬁ . T;iil + 'F1r,f_{1 : Ea,ﬁ(gn-i-l)]
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The computation of the term Fﬁ P, associated to the variation of the slip amount, is
quite involved and a detailed description is included next.

(A) Basic geometric objects and slip kinematics. Let ¥,, € I'®) and Y41 € I'® be
the reference placement of the closest-point projection of a typical slave particle X € I'(1)
onto the placements 7(2) ; ELZ)(F(Z)) and 7,(1+)1 = <p5124)_ (I'®) of the master surface I'(?)
at times ¢, and t,41, respectively.

Consider a local contact surface parametrization such that ¥, :=

e"(z)(ﬁn) and Y,41 := ¢e"+1(2)(§n+1) where, in general, 17" ‘2 and o *+*?) will not

coincide, i.e. the reference placements Y, and Yn+1 will not lie, in general, on the same
surface finite element and thus will be described using different local parametrization maps.

With the above notation in hand consider the Euclidean distance vector in reference
configuration d"¢f, with Euclidean norm denoted as d"¢/ and unit vector m™f, defined
as:

drel =Yy — Y, & = ||d™ ), mef = dreS JdreS (B.7)

Following the steps described in Section 2, we construct two sets of local orthonormal
frames attached each one to the material points Y,, and Y, 41, respectively, as follows.

ref X mre_f

- — ref
T211. C i -pef ? Tlu = T21I- X VTL
lvn'? x mref||
ref ref (BS)
v X m
- . n+1 - . a ref
T2, 41 += ref el ) Til,41 = T2,41 X Vn+4
vy x mref||
Here v7¢/ and V:L:’fl are the unit normal vectors to the reference placement of the master
surface at the points Y, and Y, 41, respectively. Using the convective basis {'rf , Zr"ef}

and {1'1 i1 27:?.{1} induced by the tangent maps Dd)g"(z) and Dz/)g"“(z) the unit normals
at the points Y,, and Y, 1 take the form,

viel = (r7 < <Ny |l x|

V::i-fl = (T ;,,11 (,3+1)/” 1,L+1 {fflll

(B.9)

(B) Assumed slip path and slip length computation. Using the local orthonormal
frames defined above, one construct an assumed slip path on the basis of the unit tangent
vectors 71, and 71,,, at the given initial and final points ¥, and Y,41, respectively. The
slip curve is defined through the introduction of Hermitian shape functions via the map:

dr—efﬂl(o 2
2cos @, T

dref

(el-1,+1] =Y () :=H'({) Yu+
(B.10)

+ Hz(() —71+1 + ,F(Z(C) i-l,,.+1

2¢c0s Op41
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where cos @, := 71, -m™f and cos O, 4; := Tt m"/ and the Hermite shape functions
are given in (2.3).

The slip curve defined by (B.10) can be viewed as an approximation to the geodesic
curve through the points Y, and Y, of the master surface I"(?)*,

The tangent map to the curve defined by (B.10) takes the form:

dref
VH(C) 1.,

2cos @,
dref

¢ € =1, +1] — ¥r(¢) := VHI(C) Ya +
(B.11)
+ sz(C) Yn+1 + ——2 05 O "

where VHA(() := dHA(¢)/d¢ and VHA(() := dHA(¢)/d( for A = 1,2. In order to simplify

the notation in further developments we will introduce the following scalar definitions

}_ drcf )_ dref B
g, o ————— g = — 12
T 2cos O, Tt 2cos Onq1 ( )
Note that actually these definitions are such that Yr, = |Yr({ = -1)|| =: |Yr,|| and
YTu+1 = ||YT(C = 1)” = ”YT.,,+1H’
Using the tangent map defined above, the slip curve length can be expressed as
. 1 —
re = [ 7o)l d¢ (B.13)
-1

This integral can be numerically evaluated using a quadrature rule, leading to an expression

of the form
Nint

et = S Wy ¥ (B.14)

I=1

where (5 € [—1,+1] are the positions of the integration points in the isoparametric domain
[—1,+1], W; are the integration weights and N;,, is the number of integration points to
be used in the quadrature rule.

(C) Linearization of the kinematics. The linearization of the frictional time integration
algorithm presented in Appendix A requires the linearization of the local orthonormal
frames introduced above.

i. Linearization of the (normalized) distance vector in reference configuration. The
linearization of the Euclidean distance vector d"¢/, distance magnitude d"¢f and normal-
ized distance vector m™f, can be written in terms of the variation of the isoparametric
coordinates §£% as

6d™f = d7°t §&*
§dref = d,ret 5¢> (B.15)

smrel = nz,;ef 5
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where ¢ ¢
Te
d? = ;f+l
T . ref T
d’aef =meee Tai{H (B.16)
1
m’;ef = dref ]Pmrcj [T;i.il]

Here IP, s [e] is the projection operator defined as

P,..ci[o] := (1 —m™ @ m™/) . [o] (B.17)

ii. Linearization of the local orthonormal frame attached to the point Y,. The
linearized variation of the local orthonormal frame {#;,, 7, ,v"¢/} attached to the point
Y, on reference configuration, takes the form

5‘?1" = "7'1”‘0 (SEO(
67, i= T2, 0 6 (B.18)
IVARIRE VAP T3
where
i, o= T, 0 ¥ u;ef
1 e
- — X ref ref
e ||l/ref X 'm,’”ef“]PTZ" [Vn " e ] (B~19)
u;fg: ==

Here the projection operator IP;, [e] is defined as

P;, (0] :=(1 — T2, @ T2, ) - [o] (B.20)

ili. Linearization of the local orthonormal frame attached to the point Y,,,. The

linearized variation of the local orthonormal frame {7, ,,,72, ,, ,:‘fl attached to the
point Y, 4, on reference configuration, takes the form
6T1n+1 = %1,,_,_1,01 68°
67:2, +1 = %2-,L+1,Q 550' (B.z].)
ref . _ref Fa
oV, =V o 66

where

- A ref - ref
T1u+1,01 = T2, 40,0 X Vn+1 + T2, 41 X Vn+1,a

- 1 re f ref ref
Farra = 7 xm™ v xmTE]
o ||V71;if1 x mref|| Puprntla +l (B.22)
1 r 3
V;i—fl,a = _ref ref :,:.I [B1a(&nt1) X T2 +1 Lk efl X E2a(€ns1)]

H"'l,,,+1 2,L+,”
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Here the projection operators IPz, _[o] and IP ., [o] are defined as
n+1

P, [o] i= (1 72, ® #,) - [0

P, (o] = (1- 1% @v;Fh) - [o]

(B.23)

iv. Linearization of the slip length. The linearized variation of the slip curve length
given by (B.14) takes the form:

ST 1= IO WEES (B.24)

where

11(

Fs“p Wr—=———Yr..((r) (B.25)
Z HYT CI )l
Here Yr,,((r) can be computed from (B.11) and takes the form:

Yr,o(Cr) == VH?((r) 7587

+ VH' (¢1) Yoot + Yo, 71, (B.26)
+ Vﬂ2(<1) [YT +1vaT11 141 + YT1 +1T11:+1 «a ]

where
_ dref dref 3
Y- a — = = nja
T, 2cos@, 2cos?2@, [cos @n), (B.27)
d‘ref dref o '
Y = = - n a
Tugprse 2c0sO@ny1  2c0s? Opqq [c0s Ontal,
and
[cos@ ],a — ,n_chf T, + mre . T, (B 28)
[COS @n+1]aa = anef T11|+l + ,n.LT'cf ’ ‘f-ln-H.u .
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