
D6.1 Deterministic optimization software

Document information table

Contract number: 800898
Project acronym: ExaQUte
Project Coordinator: CIMNE
Document Responsible Partner: TUM
Deliverable Type: Report, Other
Dissemination Level: Public
Related WP & Task: WP6, Task 6.1
Status: Final version

Deliverable 6.1

Authoring

Prepared by:
Authors Partner Modified Page/Sections Version Comments
Andreas Apostolatos TUM
Brendan Keith TUM
Contributors

Change Log

Versions Modified Page/Sections Comments

Approval

Approved by:
Name Partner Date OK

Task leader Roland Wüchner TUM OK
WP leader Andreas Apostolatos EPFL OK
Coordinator Riccardo Rossi CIMNE OK

Page 2 of 16

Deliverable 6.1

Table of contents

1 Introduction 6

2 Sensitivity analysis 6

3 Optimization 7

4 Example 8

A API definition and usage 12

Page 3 of 16

Deliverable 6.1

List of Figures

1 Mesh motion computed in KRATOS. 7
2 Implementational concept of the deterministic algorithms in KRATOS. . . 9
3 Problem placement of a hook for the shape optimization algorithm. 9
4 Shape optimized hook for mass under the constraint of keeping the strain-

energy (stiffness) constant. 10
5 Objective and constraint history through the optimization iterations. . . . 10
6 Sensitivity map at the tenth optimization iteration. 11
7 Example of the corresponding calls in the python level for the deterministic

optimization algorithms using in KRATOS and an internal analyser. (taken
from file ./src/run test.py) . 12

8 Example of the corresponding calls in the python level for the determinis-
tic optimization algorithms using in KRATOS using an external analyser.
(taken and slightly modified from file ./src/run test.py) 12

9 Class associated with the internal analyser in KRATOS. (taken from file
./src/analyzer factory.py) . 13

10 Class associated with the external analyser in KRATOS. (taken from file
./src/analyzer factory.py) . 14

11 Specialization of the class associated with the external analyser in KRATOS.
(taken from file ./src/run test.py) . 15

12 Specification of the optimization properties in parameters.json file when
using an external analyser. (taken from file ./src/parameters.json) 16

Page 4 of 16

Deliverable 6.1

Nomenclature / Acronym list

Acronym Meaning

API Application Programming Interface

ExaQUte
EXAscale Quantification of Uncertainties for Technology
and Science Simulation

QoI Quantity of Interest
MC Monte Carlo
MLMC Multilevel Monte Carlo method
C-MLMC Continuation Multilevel Monte Carlo method
HPC High performance computing
PDE Partial differential equation

Page 5 of 16

Deliverable 6.1

1 Introduction

This deliverable focuses on the implementation of deterministic optimization algorithms
and problem solvers within KRATOS open-source software. One of the main challenges of
optimization algorithms in Finite-Element based optimization is how to get the gradient
of response functions which are used as objective and constraints when this is not avail-
able in an explicit form. The idea is to use local sensitivity analysis to get the gradient
of the response function(s)

2 Sensitivity analysis

Sensitivity analysis [4, 7, 8], plays an important role in optimization: It can be used to
study the effects of the variation of the input parameters onto the output parameters of
the underlying problem. Herein, suitable sensitivity analysis methods for Finite-Element
based models are employed: Those include direct or adjoint approaches for sensitivity
analysis when the response function depends on the design variable(s) as well as on the
state variable(s) which is the case for most responses in structural mechanics such as the
nodal displacements, the stress field and the strain-energy relationship. Other types of
responses may depend on an eigenvalue problems e.g. the eigenfrequency or the critical
load factor are treated differently. The direct approach is beneficial when more response
functions than design variables are encountered, because the number of the system eval-
uations depends on the number of the design variables. On the other hand, the adjoint
approach it is beneficial when there are more design variables than response(s), because
the number of system evaluations depends on the number of responses.

Finite Element-based optimization involves often more design variables than objec-
tives/constraints e.g. in shape optimization. In KRATOS open-source software the dis-
crete semi-analytic adjoint sensitivity analysis is employed.

Regarding the discrete approach, the response function is firstly discretized and then
the derivatives with respect to the discrete parameters are evaluated.

On the contrary, the semi-analytic approach, the analytic procedure is performed up to
a certain extent, which is typically confined in the element level, whereas the remaining
parts of the sensitivity equation are approximated by a finite difference scheme. The
advantages of the semi-analytic versus the analytic approach are,

• Implementation of analytic derivatives of element based data can be omitted, which
is in general a very challenging task

• A generic code structure for different kinds of parameters is possible

• It can be used for any arbitrary element formulation and

• It is faster than the analytic approach

whereas the disadvantages in principle are,

Page 6 of 16

Deliverable 6.1

• Reduced accuracy

• Challenging of finding an “optimal” disturbance measure.

The herein employed workflow for the adjoint sensitivity analysis in KRATOS includes,

• Solving the primal problem to determine the state variables

• Solving the adjoint problem for each response of the primal problem which presents
the main effort in adjoint sensitivity analysis and which involves solving a linear
system even for geometric nonlinear problems. The adjoint problem is independent
of the traced design variables and it solely depends on the response. The solution
of this problem are the so-called adjoint variables.

• Solving for the sensitivities in a post-processing step.

3 Optimization

The Vertex Morphing method is employed within the optimization solution procedure in
KRATOS for the sensitivity filtering, see in [3, 6]. This method is especially important as
in shape optimization multiple solutions may be apparent due to the non-convex nature
of this kind of problems. Therefore, filtering is essential for obtaining a global solution in
Finite Element-based optimization problems.

Figure 1: Mesh motion computed in KRATOS.

Page 7 of 16

Deliverable 6.1

The implementation in KRATOS involves both unconstrained and constrained prob-
lems. Especially for the constrained problems, one constraint is at the moment available
whereas up to ten constraints can be used in principle. Concerning the unconstrained
method, a simple steepest decent approach with basic line search is included. Regarding
the optimization with one constraint, a projection method is herein implemented [5]. In
what concerns optimization with several constraints, an experimental trust region method
is being implemented. The employed optimization algorithms can be applied to solid and
shell structures.

The current implementation in KRATOS can handle millions of design variables. Dif-
ferent filter functions are included to control the surface continuity. Different filter strate-
gies, both matrix-based and matrix-free, are included depending on the available computer
resources. Details on how the filtering affects the design are described in [2].

Several objective functions are implemented, such as the strain-energy, eigenfrequency,
mass, stresses etc. Sensitivity analysis is incorporated for each objective function. Regard-
ing objectives which depend on design and state variables, gradient computation through
semi-analytic adjoint sensitivity analysis is employed. Moreover, steady-state analysis is
herein assumed.

Since the mesh is spatially deformed through the optimization algorithms, mesh mo-
tion techniques need to be considered. Herein, a pseudo-elastic behaviour is utilized
(Fig. 1), which demonstrates nice properties when compared to other approaches such
as solving a Laplace equation, see [9] for more details. Damping is included to directly
impose geometric constraints like a fixed support during optimization.

The implementation of the deterministic algorithms in KRATOS named as Shape Op-
timization App is similar to software Dakota1. The implementation is done considering
its application to relatively large cases and quite long computational times, which neces-
sitates efficiency and robustness. The latter means that connections between different
analyses may be considered (e.g. different adjoint analysis referencing to the results of a
single primal analysis or two function values coming from one physical solution, like the
lift or drag coefficients in aerodynamics). The latter concept called as analyser-optimiser-
communicator (Fig. 2) allows for connections to external solvers, such as demonstrated
in [1].

4 Example

This section demonstrates the aforementioned algorithms based on a solid structure ex-
ample. The objective is the minimization of mass of a hook under the constraint of
keeping the initial strain-energy (stiffness) of the structure constant (Fig 3). The em-
ployed algorithm is herein penalized projection. Figs. in 5 show significant improvement
while accurately satisfying the constraint. It is worth noting that the geometry at the
converged optimized shape is a very intuitive design. The latter can be explained by
the fact that in order to reduce the mass while maintaining the stiffness, one should “ex-
tract” material from the bending axis which is exactly what the converged shape exhibits.

1https://dakota.sandia.gov/

Page 8 of 16

https://dakota.sandia.gov/

Deliverable 6.1

Figure 2: Implementational concept of the deterministic algorithms in KRATOS.

Figure 3: Problem placement of a hook for the shape optimization algorithm.

Page 9 of 16

Deliverable 6.1

Figure 4: Shape optimized hook for mass under the constraint of keeping the strain-energy
(stiffness) constant.

Figure 5: Objective and constraint history through the optimization iterations.

Page 10 of 16

Deliverable 6.1

Figure 6: Sensitivity map at the tenth optimization iteration.

Page 11 of 16

Deliverable 6.1

The sensitivity map corresponding to the objective function in the tenth optimization
iteration is shown in Fig. 6. Even without performing optimization, such a plot can be
used to identify hot spots that have big influence on the objective which are indicated by
red in Fig. 6.

A API definition and usage

This appendix provides a brief documentation and explanation of the API for the deter-
ministic optimization and how those can be used.

1 # Import Kratos core and apps
2 from KratosMultiphysics.ShapeOptimizationApplication import *
3
4 # Perform optimization
5 with open("parameters.json",’r’) as parameter_file:
6 parameters = Parameters(parameter_file.read())
7
8 # Create the corresponding model
9 model = Model ()

10
11 # Perform optimization
12 optimizer = optimizer_factory.CreateOptimizer(parameters["optimization_settings"],

model)
13 optimizer.Optimize ()
14

Figure 7: Example of the corresponding calls in the python level for the deterministic
optimization algorithms using in KRATOS and an internal analyser. (taken from file
./src/run test.py)

1 # Import Kratos core and apps
2 from KratosMultiphysics.ShapeOptimizationApplication import *
3
4 # Perform optimization
5 with open("parameters.json",’r’) as parameter_file:
6 parameters = Parameters(parameter_file.read())
7
8 # Create the corresponding model
9 model = Model ()

10
11 # Import the external analyser
12 import optimizer_factory
13
14 # Perform optimization
15 optimizer = optimizer_factory.CreateOptimizer(parameters["optimization_settings"],

model , CustomAnalyzer ())
16 optimizer.Optimize ()
17

Figure 8: Example of the corresponding calls in the python level for the deterministic
optimization algorithms using in KRATOS using an external analyser. (taken and slightly
modified from file ./src/run test.py)

As standard in KRATOS Multiphysics software R©, the simulation steps are controlled
using a python layer. For the corresponding deterministic optimization algorithms, inter-
nal (implemented in KRATOS core) and/or external (third party) analysers can be used.
This is shown in Figs. 7 and 8, respectively, where the external analyser is identified
by CustomAnalyzer(). Concerning the internal analyser, the analysis stage within the
corresponding class is shown in Fig. 9.

Page 12 of 16

Deliverable 6.1

1 class KratosInternalAnalyzer((__import__("analyzer_base")).AnalyzerBaseClass):
2 # --
3 def __init__(self , optimization_settings , model_part_controller):
4 self.model_part_controller = model_part_controller
5
6 self.response_function_list = response_function_factory.

CreateListOfResponseFunctions(optimization_settings , self.model_part_controller.
GetModel ())

7
8 # --
9 def InitializeBeforeOptimizationLoop(self):

10 for response in self.response_function_list.values ():
11 response.Initialize ()
12 # --
13 def AnalyzeDesignAndReportToCommunicator(self , currentDesign ,

optimizationIteration , communicator):
14
15 for identifier , response in self.response_function_list.items():
16
17 response.InitializeSolutionStep ()
18
19 # response values
20 if communicator.isRequestingValueOf(identifier):
21 response.CalculateValue ()
22 communicator.reportValue(identifier , response.GetValue ())
23
24 # response gradients
25 if communicator.isRequestingGradientOf(identifier):
26 response.CalculateGradient ()
27 communicator.reportGradient(identifier , response.GetShapeGradient ())
28
29 response.FinalizeSolutionStep ()
30
31 self.__ClearResultsFromModelPart ()
32
33 # --
34 def FinalizeAfterOptimizationLoop(self):
35 for response in self.response_function_list.values ():
36 response.Finalize ()
37
38 # --
39 def __ClearResultsFromModelPart(self):
40 self.model_part_controller.SetMeshToReferenceMesh ()
41 self.model_part_controller.SetDeformationVariablesToZero ()
42

Figure 9: Class associated with the internal analyser in KRATOS. (taken from file ./sr-
c/analyzer factory.py)

Page 13 of 16

Deliverable 6.1

1 class Analyzer:
2 # --
3 def __init__(self , optimization_settings , model_part_controller , external_

analyzer):
4 self.model_part_controller = model_part_controller
5 self.external_analyzer = external_analyzer
6
7 if self.__IsInternalAnalyzerRequired(optimization_settings):
8 from analyzer_internal import KratosInternalAnalyzer
9 self.internal_analyzer = KratosInternalAnalyzer(optimization_settings ,

model_part_controller)
10 else:
11 from analyzer_empty import EmptyAnalyzer
12 self.internal_analyzer = EmptyAnalyzer ()
13 if isinstance(external_analyzer , EmptyAnalyzer):
14 raise RuntimeError("Neither an internal nor an external analyzer is

defined!")
15
16 # --
17 def InitializeBeforeOptimizationLoop(self):
18 self.internal_analyzer.InitializeBeforeOptimizationLoop ()
19 self.external_analyzer.InitializeBeforeOptimizationLoop ()
20
21 # --
22 def AnalyzeDesignAndReportToCommunicator(self , current_design , unique_iterator ,

communicator):
23 self.internal_analyzer.AnalyzeDesignAndReportToCommunicator(current_design ,

unique_iterator , communicator)
24 self.external_analyzer.AnalyzeDesignAndReportToCommunicator(current_design ,

unique_iterator , communicator)
25
26 self.__ResetPossibleShapeModificationsFromAnalysis ()
27
28 # --
29 def FinalizeAfterOptimizationLoop(self):
30 self.internal_analyzer.FinalizeAfterOptimizationLoop ()
31 self.external_analyzer.FinalizeAfterOptimizationLoop ()
32
33 # --
34 def __IsInternalAnalyzerRequired(self , optimization_settings):
35 for objective_number in range(optimization_settings["objectives"].size()):
36 if optimization_settings["objectives"][objective_number]["use_kratos"].

GetBool ():
37 return True
38
39 for constraint_number in range(optimization_settings["constraints"].size()):
40 if optimization_settings["constraints"][constraint_number]["use_kratos"

]. GetBool ():
41 return True
42 return False
43
44 # --
45 def __ResetPossibleShapeModificationsFromAnalysis(self):
46 self.model_part_controller.SetMeshToReferenceMesh ()
47 self.model_part_controller.SetDeformationVariablesToZero ()
48

Figure 10: Class associated with the external analyser in KRATOS. (taken from file
./src/analyzer factory.py)

Page 14 of 16

Deliverable 6.1

If one wishes to use a third party analyser, herein called external analyser, the class
KratosInternalAnalyzer is employed, see Fig. 7.

The aforementioned class can then be then instantiated in the python layer as shown
in Fig. 11, where functions such as ObjectiveFunction, ObjectiveGradient, etc.
can be specialized.

1 from analyzer_base import AnalyzerBaseClass
2 class CustomAnalyzer(AnalyzerBaseClass):
3
4 # --
5 def AnalyzeDesignAndReportToCommunicator(self , current_design , optimization_

iteration , communicator):
6 if communicator.isRequestingValueOf("targetDeviation"):
7 communicator.reportValue("targetDeviation", self.__ObjectiveFunction(

current_design))
8
9 if communicator.isRequestingGradientOf("targetDeviation"):

10 communicator.reportGradient("targetDeviation", self.__ObjectiveGradient(
current_design))

11
12 # --
13 def __ObjectiveFunction(self , current_design):
14 """ Returns the objective function to be minimized """
15 objective = 0.0
16 for node in current_design.Nodes:
17 objective = objective + abs(self.__TentFunction(node.X) - node.Z)
18 return objective
19
20 # --
21 def __ObjectiveGradient(self , current_design):
22 """ Returns the gradient of the objective function """
23 sensitivity = dict()
24 for node in current_design.Nodes:
25 delta = node.Z - self.__TentFunction(node.X)
26 if abs(delta) == 0.0:
27 sz = 0.0
28 else:
29 sz = delta / abs(delta)
30 sensitivity[node.Id] = [0.0, 0.0, sz]
31 return sensitivity
32
33 # --
34 @staticmethod
35 def __TentFunction(x):
36 """ Defines the target curve z=__TentFunction(x) """
37 if x <= 15.0:
38 return 0.0
39 elif x<= 20.0:
40 return (x - 15.0) / 5.0
41 elif x <= 25.0:
42 return 1.0 - (x - 20.0) / 5.0
43 else:
44 return 0.0
45

Figure 11: Specialization of the class associated with the external analyser in KRATOS.
(taken from file ./src/run test.py)

Moreover, if one wishes to use an external analyser, entry ["optimization settings"]

in the parameters.json file need to be specified, see Fig. 12. Note that in case of em-
ploying an external analyser, the flag "use kratos" needs to be set to false.

References

[1] D. Baumgärtner, A. Viti, A. Dumont, G. Carrier, and K.-U. Bletzinger. Comparison
and combination of experience-based parameterization with vertex morphing in aero-
dynamic shape optimization of a forward-swept wing aircraft. In 17th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, American Institute of Aero-
nautics and Astronautics, 2016.

Page 15 of 16

Deliverable 6.1

1 "optimization_settings" : {
2 "model_settings" : {
3 "domain_size" : 3,
4 "model_part_name" : "tent",
5 "model_import_settings" : {
6 "input_type" : "mdpa",
7 "input_filename" : "tent"
8 },
9 "design_surface_sub_model_part_name" : "design_surface",

10 "damping" : {
11 "apply_damping" : false
12 },
13 "mesh_motion" : {
14 "apply_mesh_solver" : false
15 }
16 },
17 "objectives" : [{
18 "identifier" : "targetDeviation",
19 "type" : "minimization",
20 "use_kratos" : false ,
21 "project_gradient_on_surface_normals" : true
22 }],
23 "constraints" : [],
24 "design_variables" : {
25 "type" : "vertex_morphing",
26 "filter" : {
27 "filter_function_type" : "gaussian",
28 "filter_radius" : 5.0,
29 "max_nodes_in_filter_radius" : 100
30 }
31 },
32

Figure 12: Specification of the optimization properties in parameters.json file when
using an external analyser. (taken from file ./src/parameters.json)

[2] K.-U. Bletzinger. A consistent frame for sensitivity filtering and the vertex assigned
morphing of optimal shape. Structural and Multidisciplinary Optimization, 49(6):
873–895, 2014.

[3] K.-U. Bletzinger. Shape optimization. Encyclopedia of Computational Mechanics
Second Edition, R. B. and T. J. H. E. Stein, pages 1–42, 2017.

[4] M. Firl. Optimal shape design of shell structures. PhD thesis, Technische Universität
München, 2010.

[5] R. T. Haftka and Z. Gürdal. Elements of structural optimization, volume 11. Springer
Science & Business Media, 2012.

[6] M. Hojjat, E. Stavropoulou, and K.-U. Bletzinger. The vertex morphing method
for node-based shape optimization. Computer Methods in Applied Mechanics and
Engineering, 268:494–513, 2014.

[7] V. Komkov, K. K. Choi, and E. J. Haug. Design sensitivity analysis of structural
systems, volume 177. Academic press, 1986.

[8] H. Masching. Parameter Free Optimization of Shape Adaptive Shell Structures. PhD
thesis, Technische Universität München, 2016.

[9] T. Wick. Fluid-structure interactions using different mesh motion techniques. Com-
puters & Structures, 89(13-14):1456–1467, 2011.

Page 16 of 16

	Introduction
	Sensitivity analysis
	Optimization
	Example
	API definition and usage

