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Bernardo.S.Rueda@south32.net (B.R.); JuanAlonso.Romero@south32.net (J.R.)

3 Control, Data and Artificial Intelligence (CoDAlab), Department of Mathematics, Escola
d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08019
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Abstract. Structural Health Monitoring in the industry is necessary to ensure worker safety,
preservation, and operational efficiency of the structures used in the different processes. A robust
and well-maintained structure minimizes risks, extends equipment lifespan, and prevents costly
production disruptions. Additionally, proper structural health contributes to process stability,
energy efficiency, and compliance with industrial regulations, ensuring a safe and efficient work
environment. In the mining industry, highly complex equipment such as Electric Arc Furnaces
(EAFs) are used for melting metals and other materials. These furnaces consist of casings,
refractory walls, electrodes, and other key components that endure high temperatures and me-
chanical loads during the melting process. These furnaces have a robust sensor network that
monitors and controls important variables in the melting process. Analytical techniques and ar-
tificial intelligence models have been developed to predict key variables, such as internal furnace
temperature, based on other variables. However, issues can arise in information availability
and prediction model performance due to possible sensor network failures. To contribute in the
solutions to this problem, this work analyzes the performance of a recurrent neural network
model (GRU) used in predicting the temperature of an Electric Arc Furnace in the Colombian
mining industry, and two cases of sensor network failures were studied in furnace monitoring:
abrupt failure (sensor calibration issue) and noise-induced failure. A comparison was made
between the model’s performance and the number of sensors with failures present, establishing
the behavior and influence of these failures on temperature prediction. This study is important
in the application field, as it showcases the outstanding performance of these new technologies
in industrial use. It highlights the potential benefits and impact that these advancements could
have on various industries.



Diego Godoy, Bernardo Rueda, Juan Romero, Jersson X. Leon-Medina and Diego Tibaduiza

1 INTRODUCTION

Complex industrial processes such as ferronickel smelting require permanent monitoring of
the temperature of the refractory lining to determine hot zones in the furnace and to be able to
execute control actions to reduce the temperatures in these hot zones [1] and prevent problems
that can affect the regular operation and to the workers associated to this operation. The
knowledge of changes in these temperatures because of different changes in the operation con-
ditions with some hours or days before damages can appear is a need. From this point of view,
strategies based on historical data for predicting these variables are necessary.

Monitoring and predicting the temperature of the refractory lining in furnaces has been
carried out in recent years using machine learning algorithms. In 2021, Leon-Medina et al.,
[2] developed a multivariate temperature prediction model based on a Deep recurrent neural
network that combined a GRU layer with a dense one. In a time-series approach, 49 input
variables were used to predict 2 hours in the future the behavior of 16 temperature outputs
at different locations of an electric arc furnace. The average root mean square error (RMSE)
value was 1.19 ◦C in the test set. Later, in the work developed by Godoy et al. [3] an
attention mechanism in a Deep recurrent neural network was used to predict the behavior of
76 thermocouples distributed radially in an electric arc furnace. It was observed that as the
number of thermocouples to predict increases, the average RMSE also increases. In this case,
a value of 3.89 ◦C was found in the test set when 76 thermocouples were predicted. A study of
the deterioration of the temperature prediction model over time was carried out, determining
that it is advisable to retrain the Deep learning model every year to maintain the error value
at the aforementioned magnitude. On the other hand, due to the continuous monitoring that
must be carried out, in 2022, Leon-Medina et al. [4] developed a temperature prediction model
that works with stream data. Unlike traditional batch learning, the stream learning modality
takes advantage of the continuous arrival of new instances to train a multi-target regressor
online. This study compared two types of multi-target regression trees based on Hoeffding
trees. These two models were the Stacked Single-Target Hoeffding tree regressor (SST-HT)
and the Incremental Structured Output Prediction tree regressor (iSOUP-Tree). The models
were used to predict the behavior of 12 thermocouples distributed radially in different sectors
of an electric arc furnace. The best model (SST-HT) found an average mean absolute error
value of 3.719 ◦C.
As it is mentioned some works have developed to monitor and forecast some variables in the
ferronickel production process; however, one of the challenges in the use of these data is the
ability of models to cope with unforeseen situations and make accurate decisions under adverse
conditions which is very common in industrial equipment in operation. As a contribution to
this problem, this paper considers two common failures in the data captured by sensors to
determine how the model is affected in predicting the variables.
This paper is organized as follows: the second section includes the theoretical background and
methods used in the approach, the third section includes the results, and finally, the conclusions
are summarized in the fourth section.
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2 METHODS AND THEORETICAL BACKGROUND

2.1 Electric Arc Furnace Dataset

The dataset for training and validating the model comprises information collected over five
years, encompassing 177,312 instances for 49 distinct attributes. These data were gathered
from one of the Electric Arc Furnaces (EAF) used by Cerro Matoso S.A. (CMSA) for pro-
ducing ferro-nickel. CMSA is a subsidiary of South 32 located in Montelibano (Cordoba) in
Colombia. The data collection frequency was set at 15-minute intervals, spanning 1,847 days.
The model uses various input variables such as electrode current, voltage, arc characteristics,
power, calcine feed, chemical composition of the calcine, relative electrode positioning, and an
array of 16 thermocouples which were also used as output variables for predictive purposes.

Diverse data preprocessing steps were undertaken to identify anomalous patterns within
the employed variables. These data preprocessing steps start with removing duplicate data
or variables, treating empty and null values, treating unique values, encoding strings, and
removing negative temperatures. In addition, variables with high variance and zero variance
were also removed from the dataset. From this preprocessing, 49 variables were used for model
training and testing because they do not exhibit any abnormal behaviors [5], the proportion
used for training and test sets are 80% - 20% respectively. Figure 1 shows the steps in the
methodology, as it can be observed RMSE metrics and GRU models are used. The following
subsections will introduce these concepts.

Definition of dataset
Input and Output variables
Train/Validation/Test Sets

Data Normalization
and definition of batch

generator

GRU
model and loss function

definition

Model compilation and
training

Generate Baseline
predictions

Obtain and analyze the
RMSE metric

Modify
the test set for failure

simulation
Generate new predictions

Figure 1: Step by step for the GRU model design and prediction for the failures simulation environment.

2.2 Multivariate Time Series GRU Forecasting Model

Gated Recurrent Unit (GRU) Neural Network models have proven highly effective in pre-
dicting multivariate time series due to their inherent characteristics of sequential learning and
long-term memory, designed to address long sequence problems while maintaining superior
computational efficiency. The key advantage of GRUs lies in their ability to capture complex
temporal dependencies in sequential data, making them ideal for modeling dynamic relation-
ships between multiple variables in time series. In particular, GRUs are well equipped to handle
the high dimensionality of multivariate time series and can learn meaningful representations of
the interactions between variables over time. Their internal gates allow them to decide when
to refresh memory and when to forget old information, making it easier to capture short- and
long-term patterns in the data. This results in highly adaptive models that can fit a wide range
of time structures and make accurate forecasts in situations where the relationships between
variables can be non-linear and highly dynamic [6].
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The GRU model architecture used in this document consists of a layer of 300 GRU cells and
a dense layer of 16 neurons that correspond to the 16 thermocouples that need to be predicted.
The Adam optimization method was used to optimize the model, which is a stochastic gradient
descent (SGD) method based on adaptive estimation. The selection of this model results from
the findings and work done in paper [3] where they compare the performance of various RNN
models for forecasting the temperature in the same context. Other training details correspond
to the batch size of 250 with a sequence length of 1152 and the adaptive learning rate from
0.001 to 0.0001.

2.3 RMSE as an evaluation metric for prediction comparison

The Root Mean Square Error (RMSE) is a fundamental metric in the evaluation of Deep
Learning models; this metric measures the average difference between the predicted values and
the real values; also has the advantage that it penalizes wrong predictions more significantly
since larger differences have a greater impact on the final result, when comparing the results
between different models, a lower value indicates that the model is capable of making more
accurate predictions and is therefore preferable. This metric is calculated using the following
function:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (1)

Where n are the number of data points in the data set, yi represents the actual or observed
value at data point i, ŷi represents the value predicted by the model at data point i and

∑
denotes the sum over all data points, that is, the squared errors for each data point are added.

2.4 Sensor Failures

Sensor failures represent significant challenges in numerous fields that depend on accurate
and reliable measurements; these can manifest themselves in different ways, from constant
readings at a fixed value due to a frozen sensor to erratic or even completely out-of-range mea-
surements due to faulty internal components. These flaws can be challenging to detect and can
substantially impact the quality of the data and the decisions based on it [7]. Thermocouples,
which are typical temperature-measuring devices, can also experience failures. This includes
issues such as degradation of the thermoelectric wire material, loose or corroded connections,
and deviations in expected thermoelectric characteristics, among others. Two types of failures
identified during the initial study of the data set will be further detailed below.

2.4.1 Abrupt Failure

Abrupt failure occurs in sensors when the readings remain constant at a fixed value; it
represents a critical situation that can significantly impact the measurements’ precision and
reliability. This failure is typically the result of a sudden interruption in the sensor’s ability
to capture and transmit accurate data. When the readings remain constant at a fixed value
typically the last measured value as seen in the figure 2, this may be due to a physical blockage
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of the sensor or a malfunction in its internal electronics. Identifying and addressing these abrupt
failures is essential to ensure reliable measurements and avoid potential negative consequences
in specific applications where data accuracy is critical [8].
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Figure 2: Representation of a sinusoidal signal that has an abrupt failure at the last recorded value.

2.4.2 Noise-induced Failure

Induced noise in the context of signals refers to any unwanted interference or disturbance
mixed with the signal of interest during data acquisition or transmission steps. This phe-
nomenon can manifest itself as random fluctuations or unsystematic variations in the signal
that can distort or make it difficult to interpret the information that the signal carries accu-
rately. In essence, noise adds uncertainty and error to measurements or data, as seen in Figure
3, making observations less reliable.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps

3

2

1

0

1

2

3

Am
pl

itu
de

Normal Signal

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Am
pl

itu
de

Signal + High Noise

Figure 3: Representation of two sinusoidal signals, without noise and with high noise.

Noise-induced failures in sensors add an additional layer of complexity to detecting and cor-
recting problems in measurement instrumentation. Noise, which can arise from multiple sources
such as electromagnetic interference, electrical fluctuations, or even environmental vibrations,
can corrupt sensor signals and lead to inaccurate or erratic measurements [9].

3 RESULTS

This section presents the results obtained through the implementation and evaluation of
the Gated Recurrent Unit (GRU) neural network model in detail in the context of a wall
temperature monitoring and diagnosis study of an electric arc furnace. The results presented
here are based on the application of this model in three different scenarios, addressing an initial
case without failures and two cases of sensor failures. The first case corresponds to the abrupt
failure of the sensors and the second failure case presents a noisy environment. Throughout this
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section, quantitative analyses will provide information on the detection and diagnosis capacity
of the GRU model, allowing a deep understanding of its performance in varied and challenging
situations.

3.1 Baseline Prediction (without Sensor Failures)

Firstly, the temperature prediction was carried out in the 16 thermocouples without any
type of failure in the test set as seen in figure 4, with the objective of having initial RMSE
evaluation metrics that allow comparison to be carried out when failures begin to be included
in the data. Figure 4 shows the good performance of the model when making predictions since
in its entirety for the 16 thermocouples there is no great difference with the real behavior data,
which can be verified from the RMSE obtained for each thermocouple, as evidenced in table 1,
where on average a very acceptable RMSE value was also obtained.
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Figure 4: Prediction versus true behavior for the test set of the 16 thermocouples without failures.
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Table 1: RMSE results in ◦C and the average for the 16 thermocouples in the train and test sets without
failures.

T Train Test T Train Test T Train Test T Train Test
T1 0.97 1.89 T5 1.63 2.27 T9 1.15 1.31 T13 3.58 4.91
T2 1.26 1.63 T6 1.70 2.39 T10 1.23 1.38 T14 3.38 3.99
T3 0.96 1.27 T7 1.08 1.51 T11 1.10 1.59 T15 2.34 2.75
T4 0.69 0.70 T8 0.77 0.73 T12 0.78 0.72 T16 1.38 1.57

Average: Train: 1.50 Test: 1.91

3.2 Prediction case #1 (Abrupt Failure to last value)

The test set of the thermocouple #9 was modified to take the last data from the training
set and remain constant over time at that value, as can be seen in figure 5.
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Figure 5: Prediction at thermocouple #9 when an abrupt failure sets its value to the last recorded temperature.

In figure 5 it is possible to observe that the prediction made by the model for this thermocou-
ple in the case of failure, the prediction got worse compared to the base case; however, despite
not having real information in that moment from the thermocouple, the model is capable of
making a prediction very close to the real behavior, identifying its variations and trends. Now,
figure 6 shows the behavior of the remaining 15 thermocouples when there is a failure in one of
them and as can be seen the predictions made for these are almost not affected, which shows
the good performance that the model has against this type of abrupt failures.
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Figure 6: Prediction versus true behavior for the test set of the 16 thermocouples when an abrupt failure set
the value of the thermocouple #9 to the last recorded temperature.

Table 2 shows the variation in the results of the evaluation metric for all the thermocouples.
It can be concluded that errors are similar to the thermocouples that were not affected due to
the failure. However, the most significant variation was that of thermocouple #9, which went
from an RMSE of 1.31 to 5.61.
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Table 2: RMSE comparison in ◦C for the 16 thermocouples with one abrupt failure in the thermocouple #9
versus the baseline results.

T New Test Original Test T New Test Original Test
T1 1.79 1.89 T9 5.61 1.31
T2 1.65 1.63 T10 1.49 1.38
T3 1.39 1.27 T11 1.68 1.59
T4 0.84 0.70 T12 0.74 0.72
T5 3.18 2.27 T13 6.02 4.91
T6 2.52 2.39 T14 4.02 3.99
T7 1.76 1.51 T15 2.72 2.75
T8 0.75 0.73 T16 1.72 1.57

Average New Test: 2.37 Original Test: 1.91

Finally, the behavior of the RMSE was analyzed as more thermocouples presented the abrupt
failure and as can be seen in the table 3, as the number of thermocouples with constant values
increases, the RMSE value tends to increase.

Table 3: Behavior of the RMSE value in ◦C related to the number of thermocouples that fail abruptly to the
last value.

# T. with abrupt failures Average RMSE # T. with abrupt failures Average RMSE
1 2.37 5 4.12
2 2.51 6 4.78
3 2.79 7 5.50
4 2.90 8 5.91

3.3 Prediction case #2 (Failure by Noise)

As for the second type of failure, the reference test set for the thermocouple #9 was selected
again, and a simulation and prediction scenario was carried out adding Gaussian noise to the
original signal as shown in the figure 7
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Figure 7: prediction when the signal measured by the thermocouple #9 is affected by high noise.
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Table 4: RMSE comparison in ◦C for the 16 thermocouples with high noise present in the thermocouple #9
versus the baseline results.

T New Test Original Test T New Test Original Test
T1 1.91 1.89 T9 1.46 1.31
T2 1.66 1.63 T10 1.44 1.38
T3 1.41 1.27 T11 1.72 1.59
T4 0.75 0.70 T12 0.74 0.72
T5 2.34 2.27 T13 5.13 4.91
T6 2.42 2.39 T14 4.02 3.99
T7 1.68 1.51 T15 2.83 2.75
T8 0.77 0.73 T16 1.58 1.57

Average New Test: 1.99 Original Test: 1.91

In the tables 4 and 5 it can be seen the excellent performance of the model concerning failures
due to noise present in the input signal. This suggests that even when a single thermocouple
presents an error of this type, the RMSE value at an individual level increases only minimally.
Moreover, after each increase in the number of thermocouples with the failure, the RMSE value
also increases very slowly. Even with eight thermocouples presenting the error, the predictions
still have a very acceptable value.

Table 5: RMSE comparison in ◦C between the number of thermocouples that fail abruptly.

# T. with abrupt failures Average RMSE # T. with abrupt failures Average RMSE
1 1.99 5 2.17
2 2.03 6 2.18
3 2.10 7 2.20
4 2.16 8 2.22

4 CONCLUSIONS

• The evaluation of predictive models in the event of input failures is crucial to ensure their
reliability and adaptability in real-world applications. The ability of models to handle
unforeseen situations and make accurate decisions under adverse conditions is paramount.
By exposing models to simulated failure scenarios, weaknesses can be identified, and
mitigation strategies can be developed, thus contributing to the robustness and safety of
prediction-based systems. These tests are ultimately essential to enhance preparedness
and confidence in the effectiveness of predictive models in various critical contexts.

• The GRU model seems to have performed well in the two simulated failure cases. The
results were promising, particularly concerning abrupt failures that maintain the mea-
surement at a constant value close to or within the normal measurement range of the
sensor, as well as noise-induced failures in the measurement. The model could predict
the output correctly without being affected by the noise in the input data.

• In this study, the impact of sensor failures on the predictions made by a neural network
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model was observed. The study analyzed both the individual level of the sensor and the
collective level of the other sensors that comprise the system.
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