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Abstract. A new type of proportional damping models, called bell-shaped proportional damping model,
has recently been proposed. This new model has not only addressed the spurious damping forces, but also
maintained the same order of computational efficiency as the Rayleigh model. This model has also been
further improved such that, by using the tangent stiffness approach, it becomes suitable for structures
experiencing softening response with negative stiffness. The improved model allows users to have flexible
control of modal damping ratio for all interested frequency intervals, including those associated with
negative stiffness. In this study, the performance of bell-shaped damping model is evaluated numerically
in a response history analysis of a multi-storey building under seismic loading. The results show that,
compared to the Rayleigh model, the bell-shaped model performs excellently in terms of always giving
desirable positive energy dissipation even when the structure is experiencing softening response.

1 INTRODUCTION

In the modeling of large-scale structures subjected to earthquake ground motions, energy dissipation
not already accounted for using material hysteretic models in structural components, often called un-
modeled damping, are usually incorporated using viscous damping such as Rayleigh damping [1] due to
mathematical convenience and computational efficiency. The use of the Rayleigh damping model during
inelastic response after yielding occurs could, however, lead to large spurious damping forces in the
order comparable to material constitutive forces. This problem has been well-documented and studied
[e.g. 2–8].

Many remedies have been proposed to eliminate the spurious damping forces [e.g. 6, 9–13]. However,
most of them are not computationally efficient, and some also deviate from the idea of modal damping
ratio due to loss of proportionality, resulting in difficulty for model parameter calibration against experi-
mentally measured modal damping ratios. Most models are also not suitable for structures experiencing
softening response due to having negative damping ratio.

In a recent study, a new type of proportional damping model, called bell-shaped, has been proposed
[14–20], which has been shown to address most of the issues in the current damping models discussed
above. In particular, it maintains positive damping using the tangent stiffness approach where the damp-
ing coefficient matrix is proportional to the tangent stiffness of the structure. In this study, this great

1



Chin-Long Lee and Theodore L. Chang

feature of the bell-shaped damping model will be evaluated by simulating the seismic response of a real-
istic inelastic multi-storey building structure that experiences softening response with negative stiffness,
with the focus on examining the time history of accumulated viscous energy dissipation.

2 BELL-SHAPED DAMPING MODEL

The bell-shaped damping model is first briefly introduced in the following. It uses a bell-shaped curve
(with a peak value of 1 at frequency ωp) in the frequency domain, see Fig. 1, as a basis function N of
normalized frequency ωr = ω/ωp to generate arbitrary user-defined damping ratio curves by combining
several scaled basis functions. Examples include uniform, linear and trilinear curves [14, 16]. It can
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Fig. 1: Damping ratio curve of bell-shaped damping model.

be implemented as a sparse matrix [15, 17], maintaining the same order of computational cost as the
Rayleigh model, making it suitable for structures with a large number of degrees of freedom. It has
also been further improved with several variants: Types 1, 2 and 3 [18, 19], allowing the frequency
bandwidth of the basis function to be adjusted in order to match a curve with drastic changes across a
small frequency interval, where a particular example is a step distribution.

With its great flexibility in generating a damping ratio curve that covers a broad range of frequencies of
interests, the bell-shaped damping model opens up great potential in simulating energy dissipation using
tangent stiffness approach, where the damping coefficient matrix follows the tangent stiffness matrix,
allowing damping ratio and rate of energy dissipation during inelastic response to be prescribed as well.
Some showed concerns about this approach, particularly that it could lead to negative damping ratios
when the structure being modeled is experiencing softening response with negative stiffness. These
concerns have been largely addressed recently [20]. An improved bell-shaped damping model, called
Type 4, has also been proposed in the same study [20] to ensure no negative damping ratio during the
softening response. This improved damping model has two bell-shaped curves, with one at each side of
the vertical axis, in its basis function N4. See Fig. 2 for some examples of the new basis function. The
one on the right side of the vertical axis corresponds to the positive signed frequencies (lωr > 0, l: sign of
stiffness) associated with positive stiffness, while the one on the left side corresponds to those associated
with negative stiffness. The height of the left bell curve can also be adjusted up and down with suitable
parameter values. More information on setting the parameter values can be found in the previous work
[20]. This provides users with flexibility to specify damping ratios for frequencies of negative stiffness
different from those of positive stiffness.
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Fig. 2: Examples of Type 4 basis function.

3 PERFORMANCE EVALUATION

The structural model considered in the performance evaluation is a steel moment resistant frame
slightly modified from an SAC model [21]. It has three storeys, two bays, and one gravity column
(see Fig. 3). The section names of beams and columns are shown in the figure. The total horizontal
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Fig. 3: Numerical model of case study structure (modified from an SAC model).

mass at each floor distributed to this frame is 1.25 kips-sec-sec/in. It is lumped at nodes based on their
tributary areas. The vertical mass on the moment-resisting frame is one-sixth of the horizontal mass. The
Young’s modulus of the steel material is 29,000 ksi, and the yield strength is 50 ksi. At each floor, the
gravity loads are applied such that 80.44 kips are applied to the steel moment resisting frame, distributed
to each node based on their tributary areas, and 402.2 kips are applied to the gravity column. The first
three elastic frequencies of the structure are 1.22 Hz, 4.24 Hz and 8.02 Hz.
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All beams and columns are modeled using the plastic hinge element prescribed with a yield surface
considering N-M interaction [22, 23]. To simulate the effect of softening response, a value of -0.05
is assigned to the kinematic hardening parameter K, which will result in about 8% softening stiffness
relative to the elastic case. The second order P-∆ effects are simulated using the corotational formulation.

A 2% damping is assumed for a wide range of frequencies between 0.01 Hz and 100 Hz. The same
amount of damping is also assumed for the range of frequencies associated with the negative stiffness
case. The damping ratio curve corresponding to this distribution in the structural frequency fn (Hz)
domain is shown in Fig. 4 on the symmetric log scale generated using symlog [24]. The damping ratio

Fig. 4: The damping ratio curve assumed in the model.

curve is generated using thirteen basis functions of Type 2 bell-shaped model. The relative error of the
damping ratio within the frequency interval is less than 1%.

The curves on the right side of the vertical axis show the damping ratio for the frequencies associated
with positive stiffness, while the curves on the left side show those associated with negative stiffness,
indicated by the signed of the stiffness l. The damping ratio curve generated using the Rayleigh model
with only the stiffness proportional term is also shown for comparison. It matches a 2% damping for the
first mode only. The damping ratio increases linearly (shown nonlinearly on the symmetric log scale)
with the frequencies of other modes. It shows negative damping whenever the structural frequency is
less than zero.

The input ground motion is the North-South component of the recorded 1940 El Centro earthquake.
The motion was doubled such that its peak ground acceleration is about 0.7 g in order to cause major
damages to the structure. The simulation was conducted using the software suanPan [25], which has the
bell-shaped damping model implemented.

4 RESULTS AND DISCUSSIONS

The time histories of roof drifts (displacements normalized by the building height) are shown in Fig. 5.
As shown, the roof drifts show long-duration residuals due to accumulated inelastic damages. The drifts
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Fig. 5: Roof drifts.

using the stiffness-proportional damping are shown to be smaller than that using the bell-shaped model
for the following reasons:

• Due to having infinite damping ratio at infinite frequency, the stiffness-proportional model would
always result in spurious damping forces whenever yielding occurs [8, 16].

• Compared to the bell-shaped model, the stiffness proportional model gives a higher damping ratio
for higher modes, resulting in higher damping forces in general.

The base shear versus roof drift relationship experienced by the building is shown in Fig. 6. As shown

Fig. 6: Base shear versus roof displacement hysteresis (softening response highlighted with markers).

in this figure, the base shear exhibits softening response when the roof drift exceeds 1%, particularly
during the time interval between 12.8 sec and 13 sec, where the response are highlighted with markers
shown in the figure. This softening response results in having a global negative stiffness in the structure.
It would be of great interest to know if viscous damping is always maintained as positive so that no
unwanted energy is added to the system.

Fig. 7 shows the accumulated energy dissipation due to the viscous damping over the whole duration
of building response on the left side, and the energy dissipation increment or rate (≈ ∆Energy/∆t) for
the time interval between 12.8 sec and 13 sec on the right side. In general, the stiffness proportional
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Fig. 7: Base shear versus roof displacement hysteresis.

model gives a larger energy dissipation because it has a relatively larger damping ratio for all but the first
mode. At the first glance, both damping models give an expected increasing accumulated viscous energy
dissipation. However, a closer look into the rate of energy dissipation for the time interval between 12.8
sec and 13 sec shows that the stiffness proportional model did give negative damping increment during
this time interval. It will result in adding energy to the system, which is contrary to the need of introduc-
ing the viscous damping to the system. This negative damping is unacceptable. Note, the value of this
negative damping is small because it is a total energy dissipation contributed by all the modes, including
those with positive damping, which might have overshadowed those modes with negative damping. On
the other hand, the bell-shaped model maintained positive damping during this time interval, confirming
this feature of the bell-shaped model.

5 CONCLUSIONS

In this study, the performance of a newly proposed bell-shaped model has been evaluated by simulating
the seismic response of a realistic multi-storey SAC building model. The numerical results have shown
that the bell-shaped model can maintain positive damping even when the structure experiences softening
response with negative stiffness. This feature is superior to the stiffness proportional model that resulted
in having negative damping when stiffness is negative, as demonstrated in the example.
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