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Resumen

Los denominados métodos sin malla presentan algunas ventajas claras sobre el método de elementos finitos
(MEF) como puede ser la mejora que se obtiene en la regularidad de las derivadas, con lo que se obtiene
una mejor aproximacién. Sin embargo, la imposiciéon de las condiciones de contorno esenciales es uno de
los problemas que presentan estos métodos sin malla. En este articulo se ha trabajado con el denominado
método de Galerkin sin elementos (EFG) al objeto de mejorar dicho método, concretamente en el tratamiento
de las condiciones de contorno esenciales.

Se ha utilizado el método de minimos cuadrados mdviles con funciones de peso apropiadas al objeto de
obtener una aproximacién local y un principio variacional restringido con una funcién de penalizacién para
satisfacer de modo aproximado la condicién de contorno esencial. Con este método se obtienen resultados
muy exactos para nubes de puntos regulares e irregulares.

También se ha abordado el estudio de la aproximacién del error a posteriori en el método EFG, proponiéndose
un indicador de error.

ESSENTIAL BOUNDARY CONDITIONS IN A MESHLESS METHOD. AN ERROR INDICATOR

Summary

The meshless methods have some important advantages compared with FEM. One of them is the improvement
obtained in the regularity of the solution in the derivatives, obtaining a better approximation. However,
accurate imposition of essential boundary conditions is a main drawback in the meshless methods. In this
paper, it has been worked in the denominated Element Free Galerkin Method (EFG) in order to improve it.
Moving least squares method with appropriate weighting functions and areas of influence, giving as result
a local approximation have been used. As it is necessary to satisfy the essential boundary conditions only
approximately, a way to do it, is to use a constrained variational principle with a penalty function. This
new treatment for essential boundary conditions is simple and logical and works very well in all numerical
examples for 2D potential problems that are presented here. It is shown that the present constrained
variational formulation together with the EFG method and appropriated weighting function exhibit very
high accuracy and stability, for regular and irregular grid of nodes.

The study of approximation of the error in EFG has been initiated. This paper proposes an error indicator.
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INTRODUCCION

Recientemente, Nayroles,! Belytschko,?? Liu,* Oden® y Onate® han aplicado con éxito
métodos sin malla para resolver problemas de ecuaciones en derivadas parciales.

La ventaja que presentan estos métodos es que guardando una similitud con la for-
mulacién clasica del MEF, del que conservan algunas caracteristicas, proporcionan apro-
ximaciones mas suaves, ofrecen continuidad en la solucién y en los gradientes y necesitan
s6lo conjuntos discretos de puntos (nodos) y no elementos explicitos. En algunos métodos
sin malla suele utilizarse como método de aproximacién numérica el método de minimos
cuadrados méviles(MCM)7.

En el método de minimos cuadrados méviles” la idea es reemplazar la interpolacién a
trozos, tipica del método de elementos finitos, por un ajuste por minimos cuadrados local,
vélido en un cierto entorno del punto (z,y), utilizando un niimero n de nodos préximos
variable. Con esto la funcién aproximadora resultante es mucho mas suave que la funcién
interpoladora del método de elementos finitos (MEF), ya que se reemplazan los coeficientes
discontinuos a aplicar al funcional que se minimiza en el MEF (valor unidad en el elemento
y nulo fuera de él) por funciones de peso continuas, lo cual da una funcién de continuidad
C™ tomando usualmente n > 1. El método de minimos cuadrados moéviles fue empleado
inicialmente para aproximacién de superficies.” También se ha utilizado en aplicaciones como
por ejemplo en subsidencia minera.®

Duarte y Oden® por un lado y Babuska y Melenk® por otro han mostrado cémo los
denominados métodos sin malla pueden estar basados en la particién de la unidad. Asi
es facil por ejemplo justificar, que las funciones obtenidas con minimos cuadrados méviles
constituyen una particiéon de la unidad.

Parece claro pues, que antes de abordar la construccién de bases de funciones siguiendo
esta idea es necesario aclarar el concepto de particién de la unidad.

Si © es un dominio en R, n = 1,26, 3 y @, es un conjunto arbitrario de n puntos
{z;} € Q denominados nodos, se puede asociar a este conjunto de puntos otro de segmentos,
circulos, esferas (segun R, n =1, 26, 3 ), que se denominan nubes o subdominios €2;, tales

n

que Q C |J ; centrados en cada {z;} y con un radio h; elegidos de manera que se cubra
i=1
completamente de forma abierta el dominio € .
El conjunto de funciones S, = {®F}", (notacién en la que el subindice i se asocia
a la localizacién del punto y el superindice k£ hace referencia al orden de la funciéon de
aproximacién) se llama particién de la unidad asociado al conjunto de subdominios o nubes
{Q}, si tiene las siguientes propiedades

1) ®eCy 1<i<n  2) Y ®({a}h)=1 VacQ (1)

No hay una tnica forma de construir las funciones ®¥({x}) de manera que cumplan la
condicién de constituir una particién de la unidad, pudiéndose basar su eleccién en si el
problema a resolver es o no lineal, la complejidad de la geometria del dominio, regularidad
requerida (C°, C',...), etc.

En este trabajo se presenta el estudio de un método de aproximacioén que sirve para tratar
de modo sencillo y con gran precisién la condicién de contorno de tipo Dirichlet. Para ello
se combina una propiedad del método de minimos cuadrados mdviles junto con el método
de penalizaciéon. También se ha empleado un nuevo indicador de error a posteriori con el
que se trata de distribuir el error uniformemente en el dominio. Este procedimiento permite
aislar las areas del dominio con peor comportamiento y refinar sélo pequenas zonas.
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EL METODO DE GALERKIN SIN ELEMENTOS

El valor de la variable u(x) en un punto x del dominio se aproxima
x)} = Z{pz x)} {ai(x)} = {p(x)} {a(x)} (2)

donde n es el numero de términos de la base, {p;(x)} son las funciones de base y {a;(x)}
son sus coeficientes, que son funcién de las coordenadas x, y {a(x)} el vector que contiene
los parametros a determinar mediante el algoritmo de aproximacion, es decir, minimizando
el funcional que define la suma de los errores cuadraticos ponderados

J =Y w(d)({p" (x)Ha(x)} - ur)’ 3)

donde w(d;) = w(x — xr) es una funcién de peso con soporte compacto.
La equacién (3) la podemos poner en la forma

J(a) = (PHa} — {u}) " [W(x)|([P|{a} — {u}) (4)

donde
{u}” = (u1,up, ..., uy) (5)
({p(x1)}"
[P] = e ] (6)
({p(xa)}"
siendo
{P(Xi}T =pi(Xi), -, Pm(Xi)} (7)

v la matriz de funciones de ponderacién diagonal
[W] = diag[w(x — x1), ..., w,(x — x,,)] (8)

Al imponer la condicién de estacionariedad del funcional J respecto de a, se llega a la
relacién

Z—j = [A(x){a(x)} — [H(x)]{u} =0 (9)
donde
[A] = [P]T[W (x)][P] (10)
[H] = [P]"[W(x)] (11)
y por tanto
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La variable u(x) se puede expresar como

n

u(x) = Y {®:(x) Hur} (13)

I=1

donde
{2:(x)} = {P(x)}"[A(x)] 7' [H;(x)] (14)

siendo Hy la columna I de H y ®;(x) las funciones aproximadoras para un punto x.
Las derivadas parciales de las funciones aproximadoras son

{@r(x)}; = {p}jIA]"" [H/] + p" [[A] 7' ([Hi]; — [A] [A]7'[H])] (15)

CONDICIONES DE CONTORNO ESENCIALES

Una de las mayores dificultades de los métodos de puntos o métodos sin malla reside en
que la aproximacién no tiene caracter interpolatorio, lo cual suele expresarse mediante la
llamada propiedad delta de Kronecker de la forma

®;(x;) # b (16)

en la que ®; es la i-ésima funcién de aproximacion evaluada en el nodo x;. Ademas, también
puede ocurrir que las funciones de aproximacién asociadas a nodos, que no se encuentran
en el contorno, tampoco sean nulas en el mismo.

Todo ello implica una dificultad cuando se aplican las condiciones de contorno esenciales,
lo que ha llevado a la bisqueda de diferentes soluciones, entre otras mediante multiplicadores
de Lagrange (Belytschko et al.?) o principios variacionales modificados (Lu et al.?).

De acuerdo con Krongauz y Belytschko,!® una solucién satisfactoria se obtiene acoplando
elementos finitos en el contorno. Otro método importante, presentado por Mukherjee y
Mukherjee,!! al tratar las condiciones de contorno esenciales con principios variacionales
modificados es tener en cuenta el hecho de que los MCM son una aproximacion en vez
de una interpolacién. Onate et al.’° han propuesto una estrategia en ese sentido para
tratar las condiciones de contorno de Dirichlet en el caso de colocacién puntual. Otra
solucién consiste en forzar que las funciones de peso sean singulares en el contorno donde
exista condicién de contorno Dirichlet (Duarte y Oden'?). Se pueden obtener funciones de
forma interpoladoras usando funciones de peso singulares (Lancaster y Salkauskas”). Existen
otras técnicas para métodos sin malla: en los denominados métodos RKP se han empleado
diferentes procedimientos para generar aproximaciones admisibles para el tratamiento de
las condiciones de contorno esenciales, como por ejemplo Gosz y Liu'® y Giinther y Liu.'
La solucién presentada por Gosz y Liu'® consiste en forzar a que sean cero las funciones de
ponderacién en los contornos en que se tratan de imponer las condiciones tipo Dirichlet vy,
aunque a priori resulta una idea interesante, parece resultar menos robusta que las otras.

Aunque estos métodos proporcionan una manera de afrontar las dificultades inherentes
a los métodos sin malla tienen también algunas limitaciones y desventajas. Por ejemplo,
los multiplicadores de Lagrange presentan el inconveniente que al ser aplicados, la matriz
de rigidez deja de ser definida positiva y de banda y el tamano del problema se incrementa.
Mientras que los principios variacionales permiten que la matriz de rigidez siga siendo
positiva y de banda, presentan una precisién algo menor. El acoplamiento con elementos
finitos desaprovecha las ventajas de los métodos sin malla y puede originar discontinuidades
en las derivadas de la aproximacion.
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Aunque el método es consistente y bastante robusto, segin sus autores, tiene la desven-
taja de la complejidad de las funciones de forma en la zona de interfase que obliga a la
utilizacién de ordenes elevados en la cuadratura de Gauss. Ademads desvirtiia completa-
mente la pureza de un método de puntos al tener que mezclarlo obligatoriamente con el
método de elementos finitos.

METODO DE PENALIZACION

En este articulo se utiliza el método de penalizacién para el tratamiento de la condicién
de contorno esencial. Se aplicard el método de MCM con funciones de peso y areas de
influencia adecuadas para cada una de ellas. Se obtiene asi una aproximaciéon muy cercana
a la interpolaciéon. Debido a que se emplean aproximaciones locales, se necesita satisfacer
las condiciones de contorno esenciales sélo aproximadamente. Una manera de abordar este
aspecto es usando un principio variacional restringido con una funcién de peso.

El problema planteado es el de obtener la estacionariedad de un funcional II(u) y al que
se desea imponer las condiciones de contorno esenciales. Por ejemplo, si la funcién u debe
verificar

P(u) =0 en 90 (17)

Se puede anadir al funcional original II(u) el término
a/ P’ (u)P(u)d(09) (18)
o0
Obteniendo el nuevo funcional © segin
O(u) = M(u) + / P ()P (u)d(02) (19)
o0

donde « es el pardmetro o nimero de penalizacién, al que se impone la condicién de
estacionariedad y que por tanto cumplird las condiciones de contorno de forma aproximada
dependiendo del valor de .

Aunque el método no tiene los inconvenientes mencionados en la utilizacién de multi-
plicadores de Lagrange, la eleccién del ntimero de penalizacién es muy importante, ya que
un valor excesivamente alto o bajo puede conducir a problemas numéricos que invaliden los
resultados obtenidos. Como se verda més adelante el método de penalizacién puede resultar
muy eficaz y estable para un amplio rango de valores del parametro de penalizacion.

Por otro lado, si la restriccion P es aplicable sélo a uno o més puntos del contorno,
entonces anadir el término P?(u)P(u) en esos puntos en el funcional general introduce un
numero discreto de restricciones.

En la préctica la aplicacién junto al método de elementos finitos de las funciones de
penalizacién ha resultado muy efectiva.'® Para poder emplear este método con éxito en el
método EFG es necesario que la aproximacion obtenida sea muy proxima a la interpolacion.
Con objeto de verificar el requisito anterior es suficiente considerar dreas de influencia para
cada funcién de peso con solapamientos pequenos pero abarcando nodos suficientes para la
aproximacién empleada (Figura 1).

Como se muestra en la Figura 1, usando MCM se puede obtener una funcién aproxi-
madora muy cercana a la interpolacién con sélo disminuir el solapamiento de las areas de
influencia de las funciones de peso en cada punto (rinf = 2,2; Figura 1).
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a) rinf=2.2 b) rinf=3.3

o 2 B a 10 12 1 O 2 2 B E) 10 12 4

¢) rinf=4.4 d) rinf>5

a z F) ] i iz e 0 E

10 12 14

Figura 1. Aproximacién por MCM usando diferentes radios de influencia (rinf) para las
funciones de peso en el caso de un conjunto de 6 puntos

Ademas, haciendo uso de los MCM se obtendréan los valores de la funcién y de los
gradientes mediante las aproximaciones

n(z)
u"(x) =Y ®r(x)u; (20)

I=1
Oy 5RO (21)
oz o — oz wr
ou & 9,
8—y(x) = —y(X)uI (22)

~

=1

Los valores de u”, %L: y %Lyh en todos los nodos se aceptan como la soluciéon numérica al
problema.

Para comparar la bondad del método de penalizaciéon se han abordado las condiciones
de contorno esenciales empleando dos metodologias distintas con el método EFG: multipli-
cadores de Lagrange de flujo*!! y funciones de penalizacién. Todo ello puede verse con un
mayor detalle en Falcén.'6
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RESULTADOS NUMERICOS

Se han desarrollado diferentes ejemplos para poder comparar las capacidades numéricas
de ambos métodos. Consideremos la ecuacion de Laplace en 2D

V2u =0 en el dominio Q =0, 1[z]0, 1] (23)

con las condiciones de contorno

u=uy endlp (24)
0
8—1; =uvy en 00y (25)

donde 02 = 0Q2p U 0Ny es el contorno del dominio 2 y u es el vector normal unitario
exterior en cualquier punto del contorno 0Q2y.

Consideraremos empleando el método EFG dos formas diferentes de tratar la condicion
de contorno de Dirichlet. En el método EFG con multiplicadores de Lagrange de flujo, se

obtiene
ou
u ;0udA + 0l =— | (u—uy)dr=0 (26)
Q a0p on
integrando por partes

ou ou ou
0u ,dA— — | dudr— ) dr = oudr— 1) d
//Qu B /sz <8n> e /meu (8“) " /emN paoner /sz i (8”) r (@7)

Sustituyendo las ecuaciones (20) en la forma débil (27) se llega al sistema de ecuaciones

{K] - [G] - [G"]}Hu} = {f} - {g} (28)
donde
0P; 09, 8@1 0P,
//(ax or * By oy )dA (#)
0d;
Gy = /8  Gawas (30)
I1 :/ vg®rdS (31)
gr = /6Q ud%dS (32)

Por otra parte en el método de penalizacidn, se llega al sistema de ecuaciones

{[K]Hu} = {f} (33)

siendo K y f las definidas anteriormente, pero ademas hay que modificar las ecuaciones
correspondientes a los nodos del contorno con condicién de Dirichlet, teniendo en cuenta
que el funcional en esos puntos es diferente debido a que se suma el término (18). Para un
mayor detalle de este método puede consultarse Onate.!”

Se van a considerar diferentes soluciones de la ecuacién de Laplace.
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Ejemplo Solucién Condiciones de contorno

El u=z+y Dirichlet en todo el contorno

E2 u=—2° —y>+ 3xy? + 322y | Dirichlet en todo el contorno

E4 u=—x3—y>+ 3xy? + 32%y | Neumann (vg=0)enz=06y=0y
Dirichlet en el resto del contorno

T1 u =12 —y> Dirichlet en todo el contorno

T2 u = e”seny Dirichlet en todo el contorno

Tabla I. Casos de estudio

Se han empleado los mismos casos E1, E2 y E4 con el fin de poder comparar con los
resultados obtenidos por Mukherjee.!!
Se define una medida del error global como

Ny

Error; = ! ! Z(fi(e) — fi(n))2 (34)

o \| o 2=

donde f podra ser el valor de la variable u, o bien sus gradientes %, g—ly‘

(e) y (n) hacen referencia a las soluciones exacta y obtenida numéricamente respectivamente
y Ny es el namero total de nodos.

Se utilizan funciones de forma con una base de polinomios lineal. Se han realizado dos
modelos regulares: uno con 4 x 4 celdas (9 x 9 nodos) y otro con 8 x 8 celdas (9 x 9 nodos)
utilizdndose diferentes ordenes de integracion numérica.

En ambos casos se han utilizado las funciones de ponderacién polinémica (tipo spline)
y exponencial (tipo Gauss) con el mismo significado para los diferentes pardmetros alli
indicado. Dichas funciones de peso son:

. Los superindices

a) Funcién de peso polinomial (spline cuartica)

d\* d\’ d\*
. =1 — — — —_— 51 d <
wi(d)=1-6 <dm> +8 (dm) 3 (dm) sid <dm (35)
wi(d) =0 sid>dm

donde dm es el radio de influencia y

d=+/(z— )%+ (y — y;)? (36)
b) Funcién de peso polinomial (spline ctibica)
(2 d\’ d\’° 1
Z_ ) _ - ; < Z
3 4<dm> 4<dm> si d_2dm
4 d d\° 4(dY\ 1
i(d)=¢ = -4 — 4{—) — = — R < 37
wi(d) 3 <dm> * <dm> 3 <dm) . 2dm<d_dm (37)
0 si d>dm

donde dm es el radio de influencia y d viene dada por la expresién (36).

¢) Funcién de peso exponencial (tipo Gauss)
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1—e T)z (38)

w;(d) =0 sid>dm

c = Bc; (39)

donde dm es el radio de influencia y d viene dada por la expresion (36), ¢; es el lado de la
celda y (3 es el parametro de Gauss.

En la ecuacion anterior ¢ y por lo tanto 3 es el pardmetro que controla la forma de
la funcién de peso y dm es el tamano del soporte de puntos de la funcién y determina el
dominio de influencia de z;.

A continuacién pueden verse los resultados obtenidos, primero utilizando el método de
penalizacién, y luego comparando dicho método con el de multiplicadores de Lagrange.

Como se puede ver en la Figura 2, el error en el valor de la funcién es estable al variar
el orden de integracion en los diferentes casos considerados.

% Error en u = f(Orden de Integracion)
0,80%
0,60% +---- )ﬁm\l ,,,,,,,, o o —————-— o
[ - - a
<
1 040% -~ """ """ """
ES
A n  0n N n
0,20% - _ -
0,000 L * s *
00% 2x2 3x3 4x4 5x5 6x6
—e— E1 4x4 celdas 0,1035% 0,0360% 0,0449% 0,0369% 0,0387%
—m— E2 4x4 celdas 0,2819% 0,2624% 0,2476% 0,2525% 0,2510%
E2 8x8 celdas 0,2517% 0,2506% 0,2503% 0,2502% 0,2503%
E4 4x4 celdas 0,4256% 0,4392% 0,4229% 0,4321% 0,4286%
—X%— T1 4x4 celdas 0,7331% 0,5670% 0,5517% 0,5597% 0,5528%
—e— T2 4x4 celdas 0,1874% 0,1420% 0,1365% 0,1371% 0,1363%
Orden de Integracion

Figura 2. FError en la funcién para diferentes érdenes de integracion

A continuacién se estudia cudl debe ser el valor del pardmetro de penalizaciéon (10%),
llegdndose a la conclusién de que se puede tomar 3 < a < 31, tal y como se puede apreciar
en la Figura 3 para el valor de la funcion.

Otro importante parametro que afecta a la precisiéon de los resultados obtenidos es el
tamano del dominio de influencia de las funciones de ponderacién. Para obtener una mejor
aproximacion local es necesario que las areas de influencia sean pequenas, siempre que se
asegure un minimo de puntos suficiente para el orden de aproximacion elegido. Esto se puede
apreciar en la Figura 4. Para el caso E1 (u = z +y), el método précticamente reproduce la
solucién exacta.
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% Error en u = f(Orden de Penalizacion)
60%
L e J ——————————
40% 1 ——E1
5 ¢ —&—E2
1 30% - E4
= T1
20% - —*—T2
10%
0% ‘ % % ‘ *—l \
0 5 10 15 20 25 30 35 40
Orden de Penalizacion
Figura 3. Error en u para diferentes pardmetros penalizacién
% Error en u = f(Radio de Influencia)
100,0000%
10,0000% -
1,0000% A ——E1
5 —&—E2
W 0,1000% E4
® e
0,0100% - —*—T2
0,0010% -
0,0001% \ + \ \ \ \
0,000 0,100 0,200 0,300 0,400 0,500 0,600
dm

Figura 4. Error en u para diferentes radios de influencia en la funcién de peso

En la Tabla II se pueden ver los resultados obtenidos para la funcién « en comparacién
con los obtenidos por Mukherjee y Mukherjee!! usando la nueva estrategia propuesta por
ellos para el caso 4 x 4 celdas con 9 x 9 nodos.

Ademss de los cinco casos de estudio presentados anteriormente se va a emplear un sexto
con el mismo mallado regular, que se denominara T3 y que es solucién de la ecuacién de
Laplace en 2D

V2u=0 en el dominio Q =[0,1;1,1] x [0,1;1,1] (40)

con las condiciones de contorno
u=u; en 0Qp (41)

donde

u = log(z® + ¢?) (42)
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Este caso presenta la particularidad de tener una singularidad en la funcién y en los
gradientes en el origen de coordenadas.

Estrategia en el Funcién de penalizacién Muk. & Muk. | Multiplicadores
tratamiento de las de Lagrange
condiciones de (1019) Nueva de flujo
contorno esenciales estrategia
Datos de la funcién Spline Gauss Gauss
de peso rinf =d=0,15 | rinf =d=0,15 d=0,32; ¢c=0,48
c=0,48
Orden de integr. 4 x4 4 x4 6 x 6 6 X6

El 0,0001 % 0,0732 % 0,51 % -

E2 0,0318 % 0,2073 % 1,85 % 17,97 %

E4 0,1432 % 29071 % 0,5 % 3,06 %

Tabla II. Comparacién con los resultados de Mukherjee y Mukherjee'!

En la Tabla III se presentan los resultados obtenidos con multiplicadores de Lagrange

de flujo para los casos E2 y T3 con diferentes ntimeros de celdas de integracién para las
tres funciones de peso consideradas y rinf = 0,32. Los mejores resultados se han obtenido
con funciones de peso “spline” cuartica y cubica. Los resultados obtenidos con el método
de penalizacién pueden ser ampliamente mejorados reduciendo el radio de influencia “rinf”
(como se vio en la Figura 1).

Estrategia en el Multiplicadores de Lagrange Funcién de penalizacién
tratamiento de las de flujo (101°)
condiciones de
contorno esenciales

Datos de la Spline Spline Gauss Spline Spline Gauss

funcién de peso cudrtica cibica rinf = cudrtica cibica rinf =
rinf = rinf = d=0,32 rinf = rinf = d=0,32
d=0,32 | d=0,32 | ¢=0,48 d=0,32 | d=0,32 | ¢=0,48

Orden de 6 x 6 6 x 6 6 x 6 6 %6 6 x 6 6 x6

integracién
E2 u 10,609 10,619 11,974 0,293 0,316 4,964
8 x 8 cel. fu 19,819 20,284 29,275 1,944 2,241 36,133
9 x 9 nod. %—‘; 19,819 18,164 29,281 1,944 4,435 36,133
E2 u 10,610 10,619 11,889 0,293 0,317 5,014
4 x 4 cel. ‘9—;‘ 19,817 20,289 29,619 1,951 2,239 36,813
9 x 9 nod. g—;‘ 19,817 18,169 29,565 1,951 4,437 36,813
T3 u 8,945 7,937 15,735 2,176 1,916 4,114
8 x 8 cel. 8—;‘ 10,619 11,970 21,303 8,138 7,856 6,448
9 x 9 nod. oy 7,019 7,878 12,945 8,138 8,472 6,448
T3 u 8,948 7,941 15,575 2,177 1,916 4,261
4 x 4 cel. ‘9—‘; 10,613 11,971 21,266 8,138 7,856 6,365
9 x 9 nod. oy 7,017 7,878 12,877 8,138 8,472 6,365

Tabla III. Error (%) en u, 22 g—‘y‘

Sin embargo, el principal interés de los métodos sin malla es el de poder aplicarlos a
geometrias arbitrarias y mallados irregulares. Por este motivo se ha considerado un segundo
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ejemplo del caso de la ecuacién de Laplace en un dominio mas

complejo, con una malla
irregular de nodos (Figura 5 ).

Figura 5. Dominio complejo con un mallado de nodos irregular

La integracién numeérica sobre este dominio mas complejo se ha realizado usando celdas
triangulares y cuadrangulares segtin se muestra en la Figura 6.

1.00-| y

0.80 [ )

0.60- [) hd

0.40 ° L L]

0.20+ [ )

0.00 T T T
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figura 6. Celdas triangulares y cuadradas empleadas para la integracién numérica

La Tabla IV muestra los resultados obtenidos con multiplicadores de Lagrange y penali-
zacién para el caso T3, para dos radios de influencia distintos.

Se han empleado, como se muestra en la Figura 6, 52 celdas triangulares (13 puntos de
integracién) y 48 celdas cuadradas (4 x 4 puntos de integracién). Los mejores resultados
se han obtenido con el método de penalizacién empleando una funcién de peso spline y un

pequeno radio de influencia (rinf = 0,15), ya que en este caso se obtiene una aproximacién
muy cercana a la interpolacion.
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Estrategia en el Multiplicadores de Lagrange Funcién de penalizacién
tratamiento de las de flujo (1015)
condiciones de
contorno esenciales
Datos de la Spline Spline Gauss Spline Spline Gauss
funcién de peso cudrtica | cubica rinf/c = 2 | cudrtica | cibica rinf/c = 2
Orden de 4x4/13 | 4x4/13 | 4x4/13 4x4/13 | 4x4/13 | 4x4/13
integracién
T3 u 22,370 20,617 23,821 22,217 19,740 23,707
8x8
cel. cuad. ‘3—;‘ 35,332 42,195 29,279 32,683 38,563 29,875
52 tridng.
rinf = 0, 32 ‘3—7; 31,786 32,003 27,407 45,742 35,134 28,305
T3 u 34,657 19,989 15,482 2,431 2,069 2,573
8 x 38
cel. cuad. g—;‘ > 100 83,390 40,071 7,169 7,143 10,819
52 tridng.
rinf = 0,15 ‘3—: > 100 > 100 72,179 11,348 10,211 13,731

Tabla IV. Error (%) en u, 22 y g—;‘ para el caso T3

Como se ha podido comprobar, se obtienen unos resultados muy precisos con el método
EFG en combinacién con el método de penalizacién. Sin embargo, hay que tener en cuenta
a modo de guia para su uso eficaz los siguientes aspectos:

1. Es recomendable el uso de las funciones de peso tipo spline, dadas en las ecuaciones (35)
y (37).

2. Es necesario que al emplear el MCM se obtenga una aproximacion cercana a la interpo-
lacion. Este punto es muy facil de verificar, ya que es posible evaluar la diferencia entre
el valor u (solucién del sistema de ecuaciones) y el valor aproximado u" de (20), usando
por ejemplo la férmula (34) para calcular el error global de interpolacién, con u = u(®
y u" = u(™. Esta férmula, (34), se aplica en la siguiente Tabla V para calcular el “% de
error de interpolacién”.

El punto anterior puede ser abordado también empleando radio variable (rinf). En este
caso, rinf se ajusta para cada punto en funcién solamente del drea cercana que abarca los n
puntos mas proximos. Se puede multiplicar la distancia del n-ésimo nodo por un parametro
(como se ha hecho en la siguiente Tabla V) para asegurar un pequefio solapamiento entre
las areas de influencia de cada punto.

La Tabla V se ha obtenido considerando rinf variable, ajustandose al tercero, cuarto,
quinto o sexto punto mas cercano al entorno de cada nodo.

Una propiedad interesante de las funciones MCM aparece cuando las funciones de forma
cubren un numero de nodos igual que el nimero de monomios que hay en la base. Por
ejemplo si una funcién de forma con una base lineal (1, z,y) cubre tres nodos, el resultado
es una delta de Kronecker.

En dos dimensiones es dificil usar esta propiedad, ya que las funciones de forma usan
un soporte circular. Sin embargo, como se mostré en la Figura 1, es posible acercarse a
una interpolacién reduciendo el nimero de nodos, en el soporte circular de cada una de las
funciones de peso.

En la Tabla V el error global de interpolacién de la funcién, calculado de acuerdo con
la ecuacién (34), disminuye con el nimero de nodos empleado para calcular el radio de
influencia de la funcién de peso. Sin embargo, el error en u, ‘g—‘; y g—‘; se incrementa cuando



416 S. Falcén y L. Gavete

se estd muy cerca de la interpolacién, como en el caso de tres nodos de soporte. Los mejores
resultados se obtienen con cuatro nodos en el area de influencia de cada punto.

Por ello los resultados obtenidos indican que es aconsejable acercarse a la interpolacién
(empleo de 4 nodos), que ademads se puede medir el error en la interpolacién empleando (20)
y (34), pero que no es conveniente forzar en exceso la interpolacién (empleo de 3 nodos).

Estrategia en el tratamiento de las Funcién de penalizacién
condiciones de contorno esenciales (101%)
Datos de la funcién de peso Spline Spline
cuartica cubica
Orden de integracién 4x4/13 4x4/13
rinf = 1,05x distancia al error en interpolacién (%) 0,013 0,006
tercer nodo error en u (%) 11,211 10,394
més cercano erTor en g—; (%) 34,063 33,566
error en 22 (%) 27,751 97.383
rinf = 1, 1x distancia al error en interpolacién (%) 0,136 0,1867
cuarto nodo error en u (%) 1,835 1,718
maés cercano error en g—; (%) 6,919 9,171
error en g (%) 8,079 10,117
rinf = 1,1x distancia al error en interpolacién (%) (%) 1,034 0,687
quinto nodo error en u (%) 2,519 2,068
mas cercano error en a_; (%) 7,851 7,669
error en %—:}‘ (%) 11,311 10,497
rinf = 1, 1x distancia al error in interpolacién (%) 2,143 1,351
sexto nodo error en u %) 2,6091 2,154
més cercano error en 2% (%) 8,1615 7,947
error en %—L‘ (%) 11,675 10,350

Tabla V. Error (%) en u, g—;‘ y g—‘; para el caso T3

ESTIMACION DEL ERROR EN METODOS SIN MALLA

La estimacién del error debe ser una pieza clave en todo proceso de calculo adaptable
y por tanto actualmente es parte importante en todo analisis. En efecto, un estimador del
error permite conocer cudl es la calidad de la solucién y por tanto, si esta resulta o no
aceptable, proporcionando, en el segundo caso, informacion sobre las modificaciones que se
deben introducir en el modelo matematico utilizado para alcanzar de forma econdémica la
aproximacion deseada.

En el MEF los estimadores de error a posteriori se clasifican en tres familias: estimadores
de posproceso, estimadores residuales y estimadores de extrapolacién. Para un mayor detalle
sobre estimadores del error en el MEF ver Onate,'” Diez'® y Huerta et al.'®

La medida del error local como diferencia entre la solucién aproximada y la exacta,
ademas de resultar dificilmente estimable en general, puede dar una informacién confusa
(piénsese, por ejemplo, en zonas bajo cargas puntuales). Si ademéds se pretende ser capaz
tanto de realizar estimaciones globales como otras restringidas a un subdominio local,
convendra utilizar normas integrales, alguna de las cuales, ademads, tiene un significado
fisico que se puede interpretar en el problema que se esté tratando.?”
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En los denominados métodos sin malla se ha tratado en algunos casos de calcular el error
a posteriori al objeto de redistribuir los nudos. En lo que sigue, se trata tnicamente de
representar una panoramica de las estrategias utilizadas para conseguirlo.

Como ya se ha visto anteriormente, existen varias posibilidades al plantear un método
sin malla. Por ello parece que resultard mas clara la exposicién, si nos referimos a ellas al
resumir los casos en que de alguna forma se ha tratado de obtener el error a posteriori.

Existen diversos trabajos. Orkisz?! aplicé en el método de diferencias finitas general-
izadas un método adaptativo multimalla para el calculo del error a posteriori. Asi, pro-
puso una aproximacion adaptativa que utiliza los residuos como indicadores del error y una
relacion de convergencia, con un limite establecido, en los nudos comunes a las mallas, cada
vez mas densas, que se van utilizando sucesivamente. Para evaluar aproximadamente los
residuos en cada punto, se utilizan las expresiones en diferencias finitas generalizadas del
operador diferencial correspondiente al problema en estudio. Sin embargo, los valores eval-
uados dependen tanto de la precisiéon de la solucién que se estd examinando, como de los
operadores en diferencias finitas que se estan aplicando. Esta tultima dependencia es un
inconveniente que se propone eliminar considerando términos de orden més elevado en la
aproximacion local utilizada.

Laouar y Villon?? han presentado una técnica adaptativa con un estimador del error
a posteriori aplicado al método de elementos difusos desarrollado por Nayroles et al.! Se
utiliza la norma de tensién para cada uno de los subdominios Qx, que cubren el dominio 2.

le-llx = Ua({&} —{e})"({a} —{a})dn E (43)

en la que {7} es la aproximacién obtenida para el campo de tensiones por aplicacién del
método de elementos difusos y {6} es el campo de tensiones continuo obtenido por auto-
equilibrio.?

También empleando el método de elementos difusos se ha propuesto un indicador del
error que estima la variacién de las derivadas primeras.?*

Duarte y Oden han publicado varios trabajos sobre el método adaptativo de nubes h—p®.
Han demostrado que el orden de convergencia para la aproximacién con nubes h — p viene
dado por

u(z) — u"(@)|mo < ch" " fulk 10 (44)

donde h es el tamaitio de la ventana, k es el grado de polinomio de la base correspondiente,
m es el orden de la ecuacién diferencial y las seminormas son las normas L2 usuales que se
generan en los espacios de Sobolev. Liu, Li y Belytschko? han obtenido resultados similares
para el caso més restrictivo de emplear la aproximacién (RPK).

UNA PROPUESTA DE INDICADOR DE ERROR A POSTERIORI

En esta trabajo se presenta un sencillo indicador de error a posteriori. Para ello tomamos
como datos de partida los valores calculados por el programa, es decir los valores de la funcién
y sus gradientes en cada uno de los nodos del dominio.

También podriamos calcular los valores de los gradientes en cada uno de los puntos de
integraciéon de Gauss. Por ejemplo en el caso unidimensional, supuesto un sélo punto de
Gauss para cada dominio de integracién, obtendriamos la Figura 7, donde puede verse en
representacion esquematica lo que seria una curva continua de aproximacién por MCM de
uno de los gradientes (suponemos en la grafica que es una interpolacién) y la representacion
en diagrama de barras de la diferencia entre los valores de los gradientes en los puntos de
integracién numérica y los de los puntos mas proximos, asignados a su zona de influencia.
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° Valores en el nodo mas préximo

A A Valores en los puntos de integracion

MCM para los puntos de integracion

Y

Figura 7. MCM y criterio del indicador de error empleado

A partir de estos datos podriamos obtener una aproximacion a posteriori del error. Para
ello supongamos que para cada nodo del dominio hacemos una teselacién de los gradientes.
Con ello podemos obtener en cada punto de integracién dos valores distintos de cada
gradiente. Uno corresponde al valor nodal més cercano y otro al valor calculado mediante
MCM en cada punto de integracién. Aplicando las normas integrales correspondientes,
este podria ser un estimador, evidentemente no muy exacto, pero valido, al menos a nivel
cualitativo. Tomariamos como valor mas exacto el obtenido en los puntos de integracién
(Figura 7).

La norma integral que tomaremos serd la clasica norma de la energia y en cada dominio
de integracion evaluaremos, como usualmente se hace en el MEF, el error de la aproximacion.
En ambos casos tomaremos el error a posteriori como la diferencia obtenida entre dos
aproximaciones. Una proviene del cdlculo mediante el método EFG—penalizacién como
posproceso en los puntos de integracién aplicando (21) y (22); y la segunda haciendo una
teselacion de los gradientes.

b= || @0 =) o)~ (i) -

el

= | [ oy =)0 o) - o] - (45)

- | [ (@ - enroi - (e

[]

b= | (o) DI (o (16)
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%

o (47)
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lwlld, = llwll, (48)

y el error relativo

- (49)
[[wl]
Se define el indice de efectividad segin
lell
0= ——- (50)
IE]

donde ||E|| es el error exacto.

RESULTADOS NUMERICOS DEL INDICADOR DEL ERROR

Consideremos la ecuacién de Laplace en el dominio © =]0,01;1,01[z]0,01;1,01[ con la
condicién de contorno u = ug en 9 p.

Se utilizan funciones de aproximacién de base lineal y el método de penalizaciéon para
imponer las condiciones de contorno esenciales.

A continuacion se van a obtener algunos resultados numeéricos en la ecuacion de Laplace
para el caso T3 definido anteriormente. Los modelos empleados se pueden ver en la Figura 8.
Los resultados se muestran en la Tabla VI.

. . . . . . . .

. . . . . . . .
e

. . . . LN . . .

eoe

81 nodos (9x9); 4x4 celdas 97 nodos (9x9+16); 4x4 celdas
T30904 T30904r1

o o oo

o oo |

X X3 LX R X Y

L X3 egeose |0

81 nodos (9x9); 8x8 celdas 97 nodos (9x9+16); 8x8 celdas 109 nodos (9x9+28); 8x8 celdas
T30908 T30908r1 T30908r2

118 nodos (9x9+37); 8x8 celdas 289 nodos (17x17); 8x8 celdas
T30908r3 T31708

Figura 8. Mallados empleados
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Modelo Orden Error (%) Indice de
de integracién Exacto Aproximado efectividad
4 25,3491 32,1397 1,4117
Nodos 5 26,8721 39,0075 1,6115
9x%x9 6 27,8113 30,7500 1,2268
Celdas 7 28,1217 32,4962 1,2830
4 x4 8 28,1638 36,0590 1,4218
rinf = 0, 2 9 28,1618 32,2483 1,2716
10 28,1756 32,6562 1,2872
4 27,7014 31,3270 1,2552
Nodos 5 28,1307 30,7002 1,2118
9%x9 6 28,1595 32,3730 1,2766
Celdas 7 28,1762 30,6916 1,2098
8x 8 8 28,1637 32,7349 1,2909
rinf = 0,2 9 28,1664 30,9184 1,2191
10 28,1651 32,9076 1,2977
4 14,3961 23,8344 1,7385
Nodos 5 14,7224 28,6029 2,0402
(17 x 17) 6 15,0863 22,7652 1,5851
Celdas 7 15,1121 24,1418 1,6785
8% 8 8 15,1048 26,5639 1,8479
rinf = 0,1 9 15,1023 23,8819 1,6615
10 15,1105 24,2553 1,6867

Tabla VI. Comparacién de errores

A continuacién se han llevado a cabo una serie consecutiva de estudios con modelos
sucesivamente mas refinados, con el fin de evaluar el comportamiento del indicador. La
Figura 8 muestra los distintos mallados empleados. En todos los casos se han empleado
Para referirse a cada caso se les ha
asignado un cédigo que indica el grado de refinamiento del modelo (Figura 8). En todos
ellos se ha empleado un radio variable y funciéon de peso spline cuartica. Los resultados
generales se muestran en la Tabla VII. La siguiente Tabla VIII corresponde al modelo de
118 nodos. Las Figuras 9 a 15 muestran los errores relativos exacto y aproximado en la

funciones de peso spline cuartica y radio variable.

energia de cada uno de los modelos para cada celda de integracién.

Modelo Error (%)

Nodos Celdas En u En g—‘; En la energia Indice de

y g—‘; Exacto Aprox. efectividad
81 (9 x 9) 4x4 0,4489 7,1139 35,7164 37,5526 1,1905
97 (9 x 9+ 16) 4x4 2,56535 5,2343 46,1488 55,9473 1,3405
81 (9 x9) 8 x 8 0,3706 7,1157 41,9328 47,0869 1,2834
97 (9 x 9+ 16) 8 x 8 0,4014 4,8910 23,8721 29,6375 1,3196
109 (9 x 9 4 28) 8§ x 8 0,2665 4,5967 21,8715 28,8199 1,3977
118 (9 x 94 37) 8 x 8 0,2603 4,4176 21,7182 28,6888 1,3210
289 (17 x 17) 16x16 | 0,1269 | 2,8251 22,7767 | 28,7229 1,3412

Tabla VII. Comparacién de errores de los distintos modelos refinados; radio variable 4

nodos; O.I. 4 x 4
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Celda N° Exacto Estimado Celda N° Exacto Estimado
1 30,5552 37,2677 33 9,5697 11,8855
2 10,7724 20,5471 34 7,9509 11,7392
3 13,2135 21,4845 35 6,0015 9,4920
4 12,2370 16,3743 36 5,0773 7,9830
5 9,5697 11,8855 37 6,2308 8,0693
6 18,3508 20,7830 38 10,3016 14,5061
7 6,0034 9,2398 39 3,9716 7,3741
8 5,2363 6,8589 40 3,6363 6,6689
9 10,7724 20,5471 41 18,3508 20,7830
10 5,1505 10,8032 42 17,3535 20,4013
11 12,9108 18,5707 43 15,3187 18,6273
12 9,1046 14,0867 44 13,3161 16,9466
13 7,9509 11,7392 45 10,3016 14,5061
14 17,3535 20,4013 46 4,5196 9,3919
15 5,5036 10,1862 47 3,6067 6,7826
16 4,9148 7,9729 48 3,2936 6,2160
17 13,2135 21,4845 49 6,0034 9,2398
18 12,9108 18,5707 50 5,5036 10,1862
19 9,6811 14,5959 51 4,9288 9,3119
20 5,7886 11,5390 52 4,3685 8,2569
21 6,0015 9,4920 53 3,9716 7,3741
22 15,3187 18,6273 54 3,6067 6,7826
23 4,9288 9,3119 55 3,1740 6,0966
24 4,4823 7,5804 56 3,0174 5,7802
25 12,2370 16,3743 57 5,2363 6,8589
26 9,1046 14,0867 58 4,9148 7,9729
27 5,7886 11,5390 59 4,4823 7,5804
28 4,5883 9,5640 60 4,0350 7,1211
29 5,0773 7,9830 61 3,6363 6,6689
30 13,3161 16,9466 62 3,2936 6,2160
31 4,3685 8,2569 63 3,0174 5,7802
32 4,0350 7,1211 64 2,7322 5,5010

Tabla VIII. T3; 118 nodos (9 x 9+ 37); 8 x 8 celdas. Errores en cada celda

Aunque se han mostrado todos los resultados e ilustraciones de manera consecutiva,
los sucesivos refinados han sido escogidos sobre la base de los resultados obtenidos en los
modelos previos haciendo uso del indicador del error.
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El modelo T30904, como se puede observar, tiene una distribucion del error en la energia
en el dominio muy irregular. En especial, como se puede observar en la Figura 9, la primera
celda acumula casi todo el error. Este resultado era logicamente esperable al encontrarse
una singularidad en los gradientes en el origen de coordenadas. Sin embargo, el objetivo es
distribuir el error mas homogéneamente en todo el dominio, lo que permitirda obtener unos
mejores resultados en los gradientes.

Exacto Estimado

Figura 9. T3; 81 nodos (9 x 9); 4 x 4 celdas. Errores en cada celda

Las conclusiones anteriores conducen a refinar dicha celda, segin el modelo T30904r1,
aunque los resultados no son lo suficiente satisfactorios que se esperaban. Los errores son
muy altos y se propaga el error a las celdas adyacentes sin disminuir, e incluso aumentar,
el error en la primera celda (Figura 10). El motivo es que el modelo obtenido tiene una
densidad de nodos muy irregular en el dominio y la transicién entre diferentes densidades
se hace de manera abrupta de una celda a otra. La soluciéon pasa por anadir nodos en los
alrededores de la celda nimero 1. Pero debido al reducido ntimero de celdas del modelo
presente se ha optado por refinar las celdas como paso previo a otro aumento del nimero
de nodos.

Exacto Estimado
Figura 10. T3; 97 nodos (9 X 9 4 16); 4 x 4 celdas. Errores en cada celda

Surgen asi los modelos T30908 y T30908r1 similares a los dos anteriores pero con 64
celdas. Los resultados obtenidos, aunque mejores que en los modelos T30904 y T30904r1,
conducen a similares conclusiones. Como se deseaba, el indicador en todo el dominio ha
disminuido, bajando drasticamente en la celda ntimero 1, aunque légicamente aumentado
ligeramente en las adyacentes a esta (Figuras 11 y 12). Sin embargo, lo més interesante es
que las celdas que aumentan en mayor medida el error son las que podriamos denominar
segundo anillo, es decir las més cercanas a la zona refinada. Es por tanto necesario establecer
una transicién nodal mas suave.
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Exacto Estimado
Figura 11. 3; 81 nodos (9 x 9); 8 x 8 celdas. Errores en cada celda

Exacto Estimado
Figura 12. T3; 97 nodos (9 X 9 + 16); 8 x 8 celdas. Errores en cada celda

En el modelo T30908r2 se ha anadido un nodo en el centro de las celdas de los anillos
tercero y cuarto. El resultado mejora considerablemente. Los errores en la funcién son
mucho mejores que en el modelo anterior y en los gradientes bajan ligeramente. La es-
timacién disminuye en el dominio y se homogeneiza sin aumentar en los cuatro primeros
anillos (Figura 13). Como en el caso anterior el que mas aumenta es el quinto porque es
donde se produce el salto en la densidad nodal.

Exacto Estimado
Figura 13. T3; 109 nodos (9 x 9 + 28); 8 x 8 celdas. Errores en cada celda

Como consecuencia se refina una hilera més de celdas. Con el modelo T30908r3 se
mejoran un poco los errores, aunque los resultados son muy parecidos (Figura 14).
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Exacto Estimado
Figura 14. T3; 118 nodos (9 x 9 + 37); 8 x 8 celdas. Errores en cada celda

Légicamente un refinado uniforme como el del modelo T31708 produce unos resultados
mejores (Figura 15). Sin embargo, el aumento computacional es elevado (289 nodos frente
a 118) y los resultados no son ya mucho mejores que en el modelo T30908r3.

Exacto Estimado
Figura 15. T3; 289 nodos (17 x 17); 8 x 8 celdas. Errores en cada celda

Como se ha podido observar, el indicador del error propuesto es una herramienta sencilla
y de gran utilidad a la hora de decidir sucesivos refinados.

CONCLUSIONES

En primer lugar, si se aplica penalizacién para el tratamiento de la condiciéon de contorno
esencial, se ha podido comprobar en el método EFG, empleando la ecuaciéon de Laplace, la
utilizacién del método de penalizacion es ventajosa para la imposicion de las condiciones de
contorno esenciales por la gran precisién obtenida en todos los casos estudiados.

La funcién de peso escogida es un factor importante en la aplicaciéon de las condiciones
de contorno por el método de penalizacién. En este sentido la utilizacion de funciones tipo
spline cuartica y spline cibica para la ponderacién ha resultado muy adecuada e incluso
ventajosa frente a las exponenciales tipo Gauss.

El método de penalizaciéon no varia para un amplio rango del coeficiente de penalizacién
v es ademds muy estable para el cambio del niimero de puntos de integracion numérica.

Otro parametro decisivo a la hora de emplear funciones de peso es la eleccién de un radio
de influencia adecuado que ha de ser tan pequenio como sea posible con el fin de garantizar
que la funcién aproximadora esté muy cerca de la interpolacion, pero que también permita
un pequeno solapamiento entre funciones de forma de puntos proximos.
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A su vez y para garantizar radios de influencia pequenos en zonas con densidades de
puntos diferentes, se ha empleado también radio variable con muy buenos resultados. En
ese caso tampoco es conveniente forzar la interpolacién exacta empleando el mismo ntimero
de puntos que el de los términos del polinomio aproximador. Se recomienda emplear al
menos un punto mas y medir el error global de interpolacion, tal y como se ha propuesto
en este trabajo.

Como se ha visto, el método ha sido ensayado con éxito en dominios complejos y
con nubes de puntos irregularmente distribuidos, empledndose mallas de integracién que
combinan tridngulos y cuadrilateros.

En segundo lugar se ha propuesto un método sencillo de aproximacién del error. Dicho
método no puede considerarse un estimador real del error, tal como los empleados en el
MEF, pero si es una primera aproximacién sencilla de gran utilidad. El método es aplicable
a dominios arbitrarios, eliminando problemas de mallado. Los cambios y mejoras del modelo
se realizan simplemente anadiendo nodos donde sea necesario, pero teniendo en cuenta dos
importantes cuestiones:

a) Puesto que los mejores resultados se obtienen con mallados con densidades de nodos
uniformes, es recomendable realizar una transicién suave desde la zona donde ha sido
necesario refinar al resto del modelo, creando una zona de densidad nodal decreciente.

b) Es igualmente aconsejable mantener una proporcionalidad entre el nimero de nodos y
celdas y no conservar la estructura inicial de celdas de integracién si se ha refinado
fuertemente en una zona determinada.
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