
Vol. 17, 4, 403–426 (2001) Revista Internacional de
Métodos Numéricos para

Cálculo y Diseño en Ingenieŕıa
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Resumen

Los denominados métodos sin malla presentan algunas ventajas claras sobre el método de elementos finitos
(MEF) como puede ser la mejora que se obtiene en la regularidad de las derivadas, con lo que se obtiene
una mejor aproximación. Sin embargo, la imposición de las condiciones de contorno esenciales es uno de
los problemas que presentan estos métodos sin malla. En este art́ıculo se ha trabajado con el denominado
método de Galerkin sin elementos (EFG) al objeto de mejorar dicho método, concretamente en el tratamiento
de las condiciones de contorno esenciales.
Se ha utilizado el método de mı́nimos cuadrados móviles con funciones de peso apropiadas al objeto de
obtener una aproximación local y un principio variacional restringido con una función de penalización para
satisfacer de modo aproximado la condición de contorno esencial. Con este método se obtienen resultados
muy exactos para nubes de puntos regulares e irregulares.
También se ha abordado el estudio de la aproximación del error a posteriori en el método EFG, proponiéndose
un indicador de error.

ESSENTIAL BOUNDARY CONDITIONS IN A MESHLESS METHOD. AN ERROR INDICATOR

Summary

The meshless methods have some important advantages compared with FEM. One of them is the improvement
obtained in the regularity of the solution in the derivatives, obtaining a better approximation. However,
accurate imposition of essential boundary conditions is a main drawback in the meshless methods. In this
paper, it has been worked in the denominated Element Free Galerkin Method (EFG) in order to improve it.
Moving least squares method with appropriate weighting functions and areas of influence, giving as result
a local approximation have been used. As it is necessary to satisfy the essential boundary conditions only
approximately, a way to do it, is to use a constrained variational principle with a penalty function. This
new treatment for essential boundary conditions is simple and logical and works very well in all numerical
examples for 2D potential problems that are presented here. It is shown that the present constrained
variational formulation together with the EFG method and appropriated weighting function exhibit very
high accuracy and stability, for regular and irregular grid of nodes.
The study of approximation of the error in EFG has been initiated. This paper proposes an error indicator.
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INTRODUCCIÓN

Recientemente, Nayroles,1 Belytschko,2,3 Liu,4 Oden5 y Oñate6 han aplicado con éxito
métodos sin malla para resolver problemas de ecuaciones en derivadas parciales.

La ventaja que presentan estos métodos es que guardando una similitud con la for-
mulación clásica del MEF, del que conservan algunas caracteŕısticas, proporcionan apro-
ximaciones más suaves, ofrecen continuidad en la solución y en los gradientes y necesitan
sólo conjuntos discretos de puntos (nodos) y no elementos expĺıcitos. En algunos métodos
sin malla suele utilizarse como método de aproximación numérica el método de mı́nimos
cuadrados móviles(MCM)7 .

En el método de mı́nimos cuadrados móviles7 la idea es reemplazar la interpolación a
trozos, t́ıpica del método de elementos finitos, por un ajuste por mı́nimos cuadrados local,
válido en un cierto entorno del punto (x, y), utilizando un número n de nodos próximos
variable. Con esto la función aproximadora resultante es mucho más suave que la función
interpoladora del método de elementos finitos (MEF), ya que se reemplazan los coeficientes
discontinuos a aplicar al funcional que se minimiza en el MEF (valor unidad en el elemento
y nulo fuera de él) por funciones de peso continuas, lo cual da una función de continuidad
Cn tomando usualmente n > 1. El método de mı́nimos cuadrados móviles fue empleado
inicialmente para aproximación de superficies.7 También se ha utilizado en aplicaciones como
por ejemplo en subsidencia minera.8

Duarte y Oden5 por un lado y Babuška y Melenk9 por otro han mostrado cómo los
denominados métodos sin malla pueden estar basados en la partición de la unidad. Aśı
es fácil por ejemplo justificar, que las funciones obtenidas con mı́nimos cuadrados móviles
constituyen una partición de la unidad.

Parece claro pues, que antes de abordar la construcción de bases de funciones siguiendo
esta idea es necesario aclarar el concepto de partición de la unidad.

Si Ω es un dominio en �n, n = 1, 2 ó, 3 y Qn es un conjunto arbitrario de n puntos
{xi} ∈ Ω denominados nodos, se puede asociar a este conjunto de puntos otro de segmentos,
ćırculos, esferas (según �n, n = 1, 2 ó, 3 ), que se denominan nubes o subdominios Ωi, tales

que Ω̄ ⊂
n⋃

i=1

Ωi centrados en cada {xi} y con un radio hi elegidos de manera que se cubra

completamente de forma abierta el dominio Ω .
El conjunto de funciones Sn = {Φk

i }n
i=1 (notación en la que el sub́ındice i se asocia

a la localización del punto y el supeŕındice k hace referencia al orden de la función de
aproximación) se llama partición de la unidad asociado al conjunto de subdominios o nubes
{Ωi}n

i=1, si tiene las siguientes propiedades

1) Φk
i ∈ C∞

0 1 ≤ i ≤ n 2)
∑

Φk
i ({x}) = 1 ∀x ⊂ Ω (1)

No hay una única forma de construir las funciones Φk
i ({x}) de manera que cumplan la

condición de constituir una partición de la unidad, pudiéndose basar su elección en si el
problema a resolver es o no lineal, la complejidad de la geometŕıa del dominio, regularidad
requerida (C0, C1, . . .), etc.

En este trabajo se presenta el estudio de un método de aproximación que sirve para tratar
de modo sencillo y con gran precisión la condición de contorno de tipo Dirichlet. Para ello
se combina una propiedad del método de mı́nimos cuadrados móviles junto con el método
de penalización. También se ha empleado un nuevo indicador de error a posteriori con el
que se trata de distribuir el error uniformemente en el dominio. Este procedimiento permite
aislar las áreas del dominio con peor comportamiento y refinar sólo pequeñas zonas.
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EL MÉTODO DE GALERKIN SIN ELEMENTOS

El valor de la variable u(x) en un punto x del dominio se aproxima

{u(x)} =
n∑

i=1

{pi(x)}T{ai(x)} = {p(x)}T{a(x)} (2)

donde n es el número de términos de la base, {pi(x)} son las funciones de base y {ai(x)}
son sus coeficientes, que son función de las coordenadas x, y {a(x)} el vector que contiene
los parámetros a determinar mediante el algoritmo de aproximación, es decir, minimizando
el funcional que define la suma de los errores cuadráticos ponderados

J =
n∑

I=1

w(dI)({pT (xI)}{a(x)} − uI)2 (3)

donde w(dI) = w(x − xI) es una función de peso con soporte compacto.
La equación (3) la podemos poner en la forma

J(a) = ([P]{a} − {u})T [W(x)]([P]{a} − {u}) (4)

donde

{u}T = (u1, u2, . . . , un) (5)

[P] =

[ ({p(x1)}T

. . .
({p(xn)}T

]
(6)

siendo

{p(xi}T = p1(xi), . . . , pm(xi)} (7)

y la matriz de funciones de ponderación diagonal

[W] = diag[w1(x − x1), . . . , wn(x − xn)] (8)

Al imponer la condición de estacionariedad del funcional J respecto de a, se llega a la
relación

∂J
∂a

= [A(x)]{a(x)} − [H(x)]{u} = 0 (9)

donde

[A] = [P]T [W(x)][P] (10)

[H] = [P]T [W(x)] (11)

y por tanto

[a(x)] = [A(x)]−1[H(x)]{u} (12)
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La variable u(x) se puede expresar como

u(x) =
n∑

I=1

{ΦI(x)}{uI} (13)

donde

{ΦI(x)} = {p(x)}T [A(x)]−1[HI(x)] (14)

siendo HI la columna I de H y ΦI(x) las funciones aproximadoras para un punto x.
Las derivadas parciales de las funciones aproximadoras son

{ΦI(x)},j = {p}T
,j [A]−1[HI ] + pT 	[A]−1([HI ],j − [A],j [A]−1[HI ])
 (15)

CONDICIONES DE CONTORNO ESENCIALES

Una de las mayores dificultades de los métodos de puntos o métodos sin malla reside en
que la aproximación no tiene carácter interpolatorio, lo cual suele expresarse mediante la
llamada propiedad delta de Kronecker de la forma

Φi(xj) �= δij (16)

en la que Φi es la i-ésima función de aproximación evaluada en el nodo xj . Además, también
puede ocurrir que las funciones de aproximación asociadas a nodos, que no se encuentran
en el contorno, tampoco sean nulas en el mismo.

Todo ello implica una dificultad cuando se aplican las condiciones de contorno esenciales,
lo que ha llevado a la búsqueda de diferentes soluciones, entre otras mediante multiplicadores
de Lagrange (Belytschko et al.2) o principios variacionales modificados (Lu et al.3).

De acuerdo con Krongauz y Belytschko,10 una solución satisfactoria se obtiene acoplando
elementos finitos en el contorno. Otro método importante, presentado por Mukherjee y
Mukherjee,11 al tratar las condiciones de contorno esenciales con principios variacionales
modificados es tener en cuenta el hecho de que los MCM son una aproximación en vez
de una interpolación. Oñate et al.6 han propuesto una estrategia en ese sentido para
tratar las condiciones de contorno de Dirichlet en el caso de colocación puntual. Otra
solución consiste en forzar que las funciones de peso sean singulares en el contorno donde
exista condición de contorno Dirichlet (Duarte y Oden12). Se pueden obtener funciones de
forma interpoladoras usando funciones de peso singulares (Lancaster y Salkauskas7). Existen
otras técnicas para métodos sin malla: en los denominados métodos RKP se han empleado
diferentes procedimientos para generar aproximaciones admisibles para el tratamiento de
las condiciones de contorno esenciales, como por ejemplo Gosz y Liu13 y Günther y Liu.14
La solución presentada por Gosz y Liu13 consiste en forzar a que sean cero las funciones de
ponderación en los contornos en que se tratan de imponer las condiciones tipo Dirichlet y,
aunque a priori resulta una idea interesante, parece resultar menos robusta que las otras.

Aunque estos métodos proporcionan una manera de afrontar las dificultades inherentes
a los métodos sin malla tienen también algunas limitaciones y desventajas. Por ejemplo,
los multiplicadores de Lagrange presentan el inconveniente que al ser aplicados, la matriz
de rigidez deja de ser definida positiva y de banda y el tamaño del problema se incrementa.
Mientras que los principios variacionales permiten que la matriz de rigidez siga siendo
positiva y de banda, presentan una precisión algo menor. El acoplamiento con elementos
finitos desaprovecha las ventajas de los métodos sin malla y puede originar discontinuidades
en las derivadas de la aproximación.
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Aunque el método es consistente y bastante robusto, según sus autores, tiene la desven-
taja de la complejidad de las funciones de forma en la zona de interfase que obliga a la
utilización de órdenes elevados en la cuadratura de Gauss. Además desvirtúa completa-
mente la pureza de un método de puntos al tener que mezclarlo obligatoriamente con el
método de elementos finitos.

MÉTODO DE PENALIZACIÓN

En este art́ıculo se utiliza el método de penalización para el tratamiento de la condición
de contorno esencial. Se aplicará el método de MCM con funciones de peso y áreas de
influencia adecuadas para cada una de ellas. Se obtiene aśı una aproximación muy cercana
a la interpolación. Debido a que se emplean aproximaciones locales, se necesita satisfacer
las condiciones de contorno esenciales sólo aproximadamente. Una manera de abordar este
aspecto es usando un principio variacional restringido con una función de peso.

El problema planteado es el de obtener la estacionariedad de un funcional Π(u) y al que
se desea imponer las condiciones de contorno esenciales. Por ejemplo, si la función u debe
verificar

P(u) = 0 en ∂Ω (17)

Se puede añadir al funcional original Π(u) el término

α

∫
∂Ω

PT (u)P(u)d(∂Ω) (18)

Obteniendo el nuevo funcional Θ según

Θ(u) = Π(u) + α
∫

∂Ω

PT (u)P(u)d(∂Ω) (19)

donde α es el parámetro o número de penalización, al que se impone la condición de
estacionariedad y que por tanto cumplirá las condiciones de contorno de forma aproximada
dependiendo del valor de α.

Aunque el método no tiene los inconvenientes mencionados en la utilización de multi-
plicadores de Lagrange, la elección del número de penalización es muy importante, ya que
un valor excesivamente alto o bajo puede conducir a problemas numéricos que invaliden los
resultados obtenidos. Como se verá más adelante el método de penalización puede resultar
muy eficaz y estable para un amplio rango de valores del parámetro de penalización.

Por otro lado, si la restricción P es aplicable sólo a uno o más puntos del contorno,
entonces añadir el término PT (u)P(u) en esos puntos en el funcional general introduce un
número discreto de restricciones.

En la práctica la aplicación junto al método de elementos finitos de las funciones de
penalización ha resultado muy efectiva.15 Para poder emplear este método con éxito en el
método EFG es necesario que la aproximación obtenida sea muy próxima a la interpolación.
Con objeto de verificar el requisito anterior es suficiente considerar áreas de influencia para
cada función de peso con solapamientos pequeños pero abarcando nodos suficientes para la
aproximación empleada (Figura 1).

Como se muestra en la Figura 1, usando MCM se puede obtener una función aproxi-
madora muy cercana a la interpolación con sólo disminuir el solapamiento de las áreas de
influencia de las funciones de peso en cada punto (rinf = 2, 2; Figura 1).
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a) rinf=2.2 b) rinf=3.3

c) rinf=4.4 d) rinf>5

Figura 1. Aproximación por MCM usando diferentes radios de influencia (rinf) para las
funciones de peso en el caso de un conjunto de 6 puntos

Además, haciendo uso de los MCM se obtendrán los valores de la función y de los
gradientes mediante las aproximaciones

uh(x) =
n(x)∑
I=1

ΦI(x)uI (20)

∂uh

∂x
(x) =

n(x)∑
I=1

∂ΦI

∂x
(x)uI (21)

∂uh

∂y
(x) =

n(x)∑
I=1

∂ΦI

∂y
(x)uI (22)

Los valores de uh, ∂uh

∂x
y ∂uh

∂y
en todos los nodos se aceptan como la solución numérica al

problema.
Para comparar la bondad del método de penalización se han abordado las condiciones

de contorno esenciales empleando dos metodoloǵıas distintas con el método EFG: multipli-
cadores de Lagrange de flujo3,11 y funciones de penalización. Todo ello puede verse con un
mayor detalle en Falcón.16
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RESULTADOS NUMÉRICOS

Se han desarrollado diferentes ejemplos para poder comparar las capacidades numéricas
de ambos métodos. Consideremos la ecuación de Laplace en 2D

∇2u = 0 en el dominio Ω = ]0, 1[x]0, 1[ (23)

con las condiciones de contorno

u = ud en ∂ΩD (24)

∂u
∂n

= vd en ∂ΩN (25)

donde ∂Ω = ∂ΩD ∪ ∂ΩN es el contorno del dominio Ω y u es el vector normal unitario
exterior en cualquier punto del contorno ∂ΩN .

Consideraremos empleando el método EFG dos formas diferentes de tratar la condición
de contorno de Dirichlet. En el método EFG con multiplicadores de Lagrange de flujo, se
obtiene ∫ ∫

Ω

u,iiδudA +
∫

∂ΩD

δ

(
∂u
∂n

)
(u − ud)dr = 0 (26)

integrando por partes

∫ ∫
Ω

u,iδu,idA−
∫

∂ΩD

(
∂u
∂n

)
δudr−

∫
∂ΩD

uδ
(
∂u
∂n

)
dr=

∫
∂ΩN

vdδudr−
∫

∂ΩD

udδ

(
∂u
∂n

)
dr (27)

Sustituyendo las ecuaciones (20) en la forma débil (27) se llega al sistema de ecuaciones

{[K]− [G]− [GT ]}{u} = {f} − {g} (28)

donde

KIJ =
∫ ∫

Ω

(
∂ΦI

∂x

∂ΦJ

∂x
+
∂ΦI

∂y

∂ΦJ

∂y

)
dA (29)

GIJ =
∫

∂ΩD

∂ΦI

∂n
ΦJdS (30)

fI =
∫

∂ΩN

vdΦIdS (31)

gI =
∫

∂ΩD

ud

∂ΦI

∂n
dS (32)

Por otra parte en el método de penalización, se llega al sistema de ecuaciones

{[K]}{u} = {f} (33)

siendo K y f las definidas anteriormente, pero además hay que modificar las ecuaciones
correspondientes a los nodos del contorno con condición de Dirichlet, teniendo en cuenta
que el funcional en esos puntos es diferente debido a que se suma el término (18). Para un
mayor detalle de este método puede consultarse Oñate.17

Se van a considerar diferentes soluciones de la ecuación de Laplace.
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Ejemplo Solución Condiciones de contorno
E1 u = x+ y Dirichlet en todo el contorno
E2 u = −x3 − y3 + 3xy2 + 3x2y Dirichlet en todo el contorno
E4 u = −x3 − y3 + 3xy2 + 3x2y Neumann (vd = 0) en x = 0 ó y = 0 y

Dirichlet en el resto del contorno
T1 u = x2 − y2 Dirichlet en todo el contorno
T2 u = exsen y Dirichlet en todo el contorno

Tabla I. Casos de estudio

Se han empleado los mismos casos E1, E2 y E4 con el fin de poder comparar con los
resultados obtenidos por Mukherjee.11

Se define una medida del error global como

Errorf =
1

|f |max

√√√√ 1
NN

NN∑
i=1

(f (e)
i − f (n)

i )2 (34)

donde f podrá ser el valor de la variable u, o bien sus gradientes ∂u
∂x
, ∂u

∂y
. Los supeŕındices

(e) y (n) hacen referencia a las soluciones exacta y obtenida numéricamente respectivamente
y NN es el número total de nodos.

Se utilizan funciones de forma con una base de polinomios lineal. Se han realizado dos
modelos regulares: uno con 4× 4 celdas (9× 9 nodos) y otro con 8× 8 celdas (9× 9 nodos)
utilizándose diferentes ordenes de integración numérica.

En ambos casos se han utilizado las funciones de ponderación polinómica (tipo spline)
y exponencial (tipo Gauss) con el mismo significado para los diferentes parámetros alĺı
indicado. Dichas funciones de peso son:

a) Función de peso polinomial (spline cuártica)

wi(d) = 1− 6
(
d

dm

)2

+ 8
(
d

dm

)3

− 3
(
d

dm

)4

si d ≤ dm
wi(d) = 0 si d > dm

(35)

donde dm es el radio de influencia y

d =
√
(x− xi)2 + (y − yi)2 (36)

b) Función de peso polinomial (spline cúbica)

wi(d) =




2
3
− 4

(
d

dm

)2

− 4
(
d

dm

)3

si d ≤ 1
2
dm

4
3
− 4

(
d

dm

)
+ 4

(
d

dm

)2

− 4
3

(
d

dm

)3

si
1
2
dm < d ≤ dm

0 si d > dm

(37)

donde dm es el radio de influencia y d viene dada por la expresión (36).

c) Función de peso exponencial (tipo Gauss)
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wi(d) =
e−(

d
c )

2

− e−(dm
c )

2

1− e−(dm
c )

2 si d ≤ dm

wi(d) = 0 si d > dm

(38)

c = βci (39)

donde dm es el radio de influencia y d viene dada por la expresión (36), ci es el lado de la
celda y β es el parámetro de Gauss.

En la ecuación anterior c y por lo tanto β es el parámetro que controla la forma de
la función de peso y dm es el tamaño del soporte de puntos de la función y determina el
dominio de influencia de xi.

A continuación pueden verse los resultados obtenidos, primero utilizando el método de
penalización, y luego comparando dicho método con el de multiplicadores de Lagrange.

Como se puede ver en la Figura 2, el error en el valor de la función es estable al variar
el orden de integración en los diferentes casos considerados.

% Error en u =  f(Orden de Integración)

0,00%

0,20%

0,40%

0,60%

0,80%

Orden de Integración

%
 E

rr
o
r

E1 4x4 celdas 0,1035% 0,0360% 0,0449% 0,0369% 0,0387%

E2 4x4 celdas 0,2819% 0,2624% 0,2476% 0,2525% 0,2510%

E2 8x8 celdas 0,2517% 0,2506% 0,2503% 0,2502% 0,2503%

E4 4x4 celdas 0,4256% 0,4392% 0,4229% 0,4321% 0,4286%

T1 4x4 celdas 0,7331% 0,5670% 0,5517% 0,5597% 0,5528%

T2 4x4 celdas 0,1874% 0,1420% 0,1365% 0,1371% 0,1363%

2x2 3x3 4x4 5x5 6x6

 

Figura 2. Error en la función para diferentes órdenes de integración

A continuación se estudia cuál debe ser el valor del parámetro de penalización (10α),
llegándose a la conclusión de que se puede tomar 3 < α < 31, tal y como se puede apreciar
en la Figura 3 para el valor de la función.

Otro importante parámetro que afecta a la precisión de los resultados obtenidos es el
tamaño del dominio de influencia de las funciones de ponderación. Para obtener una mejor
aproximación local es necesario que las áreas de influencia sean pequeñas, siempre que se
asegure un mı́nimo de puntos suficiente para el orden de aproximación elegido. Esto se puede
apreciar en la Figura 4. Para el caso E1 (u = x+ y), el método prácticamente reproduce la
solución exacta.
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g p
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Figura 3. Error en u para diferentes parámetros penalización
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Figura 4. Error en u para diferentes radios de influencia en la función de peso

En la Tabla II se pueden ver los resultados obtenidos para la función u en comparación
con los obtenidos por Mukherjee y Mukherjee11 usando la nueva estrategia propuesta por
ellos para el caso 4× 4 celdas con 9× 9 nodos.

Además de los cinco casos de estudio presentados anteriormente se va a emplear un sexto
con el mismo mallado regular, que se denominará T3 y que es solución de la ecuación de
Laplace en 2D

∇2u = 0 en el dominio Ω = [0, 1; 1, 1]× [0, 1; 1, 1] (40)

con las condiciones de contorno
u = ud en ∂ΩD (41)

donde

u = log(x2 + y2) (42)
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Este caso presenta la particularidad de tener una singularidad en la función y en los
gradientes en el origen de coordenadas.

Estrategia en el Función de penalización Muk. & Muk. Multiplicadores
tratamiento de las de Lagrange
condiciones de (1015) Nueva de flujo
contorno esenciales estrategia
Datos de la función Spline Gauss Gauss

de peso rinf = d = 0, 15 rinf = d = 0, 15 d = 0, 32; c = 0, 48
c = 0, 48

Orden de integr. 4× 4 4× 4 6× 6 6× 6
E1 0,0001 % 0,0732 % 0,51 % –
E2 0,0318 % 0,2073 % 1,85 % 17,97 %
E4 0,1432 % 2,9071 % 0,5 % 3,06 %

Tabla II. Comparación con los resultados de Mukherjee y Mukherjee11

En la Tabla III se presentan los resultados obtenidos con multiplicadores de Lagrange
de flujo para los casos E2 y T3 con diferentes números de celdas de integración para las
tres funciones de peso consideradas y rinf = 0, 32. Los mejores resultados se han obtenido
con funciones de peso “spline” cuártica y cúbica. Los resultados obtenidos con el método
de penalización pueden ser ampliamente mejorados reduciendo el radio de influencia “rinf”
(como se vio en la Figura 1).

Estrategia en el Multiplicadores de Lagrange Función de penalización
tratamiento de las de flujo (1015)
condiciones de
contorno esenciales

Datos de la Spline Spline Gauss Spline Spline Gauss
función de peso cuártica cúbica rinf = cuártica cúbica rinf =

rinf = rinf = d = 0, 32 rinf = rinf = d = 0, 32
d = 0, 32 d = 0, 32 c = 0, 48 d = 0, 32 d = 0, 32 c = 0, 48

Orden de 6× 6 6× 6 6× 6 6× 6 6× 6 6× 6
integración

E2 u 10,609 10,619 11,974 0,293 0,316 4,964
8× 8 cel. ∂u

∂x
19,819 20,284 29,275 1,944 2,241 36,133

9× 9 nod. ∂u
∂y 19,819 18,164 29,281 1,944 4,435 36,133

E2 u 10,610 10,619 11,889 0,293 0,317 5,014
4× 4 cel. ∂u

∂x
19,817 20,289 29,619 1,951 2,239 36,813

9× 9 nod. ∂u
∂y 19,817 18,169 29,565 1,951 4,437 36,813

T3 u 8,945 7,937 15,735 2,176 1,916 4,114
8× 8 cel. ∂u

∂x
10,619 11,970 21,303 8,138 7,856 6,448

9× 9 nod. ∂u
∂y 7,019 7,878 12,945 8,138 8,472 6,448

T3 u 8,948 7,941 15,575 2,177 1,916 4,261
4× 4 cel. ∂u

∂x
10,613 11,971 21,266 8,138 7,856 6,365

9× 9 nod. ∂u
∂y 7,017 7,878 12,877 8,138 8,472 6,365

Tabla III. Error (%) en u, ∂u
∂x

y ∂u
∂y

Sin embargo, el principal interés de los métodos sin malla es el de poder aplicarlos a
geometŕıas arbitrarias y mallados irregulares. Por este motivo se ha considerado un segundo
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ejemplo del caso de la ecuación de Laplace en un dominio más complejo, con una malla
irregular de nodos (Figura 5 ).
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Figura 5. Dominio complejo con un mallado de nodos irregular

La integración numérica sobre este dominio más complejo se ha realizado usando celdas
triangulares y cuadrangulares según se muestra en la Figura 6.
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Figura 6. Celdas triangulares y cuadradas empleadas para la integración numérica

La Tabla IV muestra los resultados obtenidos con multiplicadores de Lagrange y penali-
zación para el caso T3, para dos radios de influencia distintos.

Se han empleado, como se muestra en la Figura 6, 52 celdas triangulares (13 puntos de
integración) y 48 celdas cuadradas (4 × 4 puntos de integración). Los mejores resultados
se han obtenido con el método de penalización empleando una función de peso spline y un
pequeño radio de influencia (rinf = 0, 15), ya que en este caso se obtiene una aproximación
muy cercana a la interpolación.
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Estrategia en el Multiplicadores de Lagrange Función de penalización
tratamiento de las de flujo (1015)
condiciones de
contorno esenciales

Datos de la Spline Spline Gauss Spline Spline Gauss
función de peso cuártica cúbica rinf/c = 2

3
cuártica cúbica rinf/c = 2

3

Orden de 4× 4/13 4× 4/13 4× 4/13 4× 4/13 4× 4/13 4× 4/13
integración

T3 u 22,370 20,617 23,821 22,217 19,740 23,707
8× 8
cel. cuad. ∂u

∂x
35,332 42,195 29,279 32,683 38,563 29,875

52 triáng.
rinf = 0, 32 ∂u

∂y 31,786 32,003 27,407 45,742 35,134 28,305
T3 u 34,657 19,989 15,482 2,431 2,069 2,573
8× 8
cel. cuad. ∂u

∂x > 100 83,390 40,071 7,169 7,143 10,819
52 triáng.
rinf = 0, 15 ∂u

∂y
> 100 > 100 72,179 11,348 10,211 13,731

Tabla IV. Error (%) en u, ∂u
∂x

y ∂u
∂y

para el caso T3

Como se ha podido comprobar, se obtienen unos resultados muy precisos con el método
EFG en combinación con el método de penalización. Sin embargo, hay que tener en cuenta
a modo de gúıa para su uso eficaz los siguientes aspectos:

1. Es recomendable el uso de las funciones de peso tipo spline, dadas en las ecuaciones (35)
y (37).

2. Es necesario que al emplear el MCM se obtenga una aproximación cercana a la interpo-
lación. Este punto es muy fácil de verificar, ya que es posible evaluar la diferencia entre
el valor u (solución del sistema de ecuaciones) y el valor aproximado uh de (20), usando
por ejemplo la fórmula (34) para calcular el error global de interpolación, con u = u(e)

y uh = u(n). Esta fórmula, (34), se aplica en la siguiente Tabla V para calcular el “% de
error de interpolación”.

El punto anterior puede ser abordado también empleando radio variable (rinf). En este
caso, rinf se ajusta para cada punto en función solamente del área cercana que abarca los n
puntos más próximos. Se puede multiplicar la distancia del n-ésimo nodo por un parámetro
(como se ha hecho en la siguiente Tabla V) para asegurar un pequeño solapamiento entre
las áreas de influencia de cada punto.

La Tabla V se ha obtenido considerando rinf variable, ajustándose al tercero, cuarto,
quinto o sexto punto más cercano al entorno de cada nodo.

Una propiedad interesante de las funciones MCM aparece cuando las funciones de forma
cubren un número de nodos igual que el número de monomios que hay en la base. Por
ejemplo si una función de forma con una base lineal (1, x, y) cubre tres nodos, el resultado
es una delta de Kronecker.

En dos dimensiones es dif́ıcil usar esta propiedad, ya que las funciones de forma usan
un soporte circular. Sin embargo, como se mostró en la Figura 1, es posible acercarse a
una interpolación reduciendo el número de nodos, en el soporte circular de cada una de las
funciones de peso.

En la Tabla V el error global de interpolación de la función, calculado de acuerdo con
la ecuación (34), disminuye con el número de nodos empleado para calcular el radio de
influencia de la función de peso. Sin embargo, el error en u, ∂u

∂x
y ∂u

∂y
se incrementa cuando
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se está muy cerca de la interpolación, como en el caso de tres nodos de soporte. Los mejores
resultados se obtienen con cuatro nodos en el área de influencia de cada punto.

Por ello los resultados obtenidos indican que es aconsejable acercarse a la interpolación
(empleo de 4 nodos), que además se puede medir el error en la interpolación empleando (20)
y (34), pero que no es conveniente forzar en exceso la interpolación (empleo de 3 nodos).

Estrategia en el tratamiento de las Función de penalización
condiciones de contorno esenciales (1015)

Datos de la función de peso Spline Spline
cuártica cúbica

Orden de integración 4× 4/13 4× 4/13
rinf = 1, 05× distancia al error en interpolación (%) 0,013 0,006
tercer nodo error en u (%) 11,211 10,394
más cercano error en ∂u

∂x (%) 34,063 33,566
error en ∂u

∂y (%) 27,751 27,383
rinf = 1, 1× distancia al error en interpolación (%) 0,136 0,1867
cuarto nodo error en u (%) 1,835 1,718
más cercano error en ∂u

∂x (%) 6,919 9,171
error en ∂u

∂y (%) 8,079 10,117
rinf = 1, 1× distancia al error en interpolación (%)(%) 1,034 0,687
quinto nodo error en u (%) 2,519 2,068
más cercano error en ∂u

∂x (%) 7,851 7,669
error en ∂u

∂y
(%) 11,311 10,497

rinf = 1, 1× distancia al error in interpolación (%) 2,143 1,351
sexto nodo error en u %) 2,6091 2,154
más cercano error en ∂u

∂x
(%) 8,1615 7,947

error en ∂u
∂y

(%) 11,675 10,350

Tabla V. Error (%) en u, ∂u
∂x

y ∂u
∂y

para el caso T3

ESTIMACIÓN DEL ERROR EN MÉTODOS SIN MALLA

La estimación del error debe ser una pieza clave en todo proceso de cálculo adaptable
y por tanto actualmente es parte importante en todo análisis. En efecto, un estimador del
error permite conocer cuál es la calidad de la solución y por tanto, si esta resulta o no
aceptable, proporcionando, en el segundo caso, información sobre las modificaciones que se
deben introducir en el modelo matemático utilizado para alcanzar de forma económica la
aproximación deseada.

En el MEF los estimadores de error a posteriori se clasifican en tres familias: estimadores
de posproceso, estimadores residuales y estimadores de extrapolación. Para un mayor detalle
sobre estimadores del error en el MEF ver Oñate,17 Diez18 y Huerta et al.19

La medida del error local como diferencia entre la solución aproximada y la exacta,
además de resultar dif́ıcilmente estimable en general, puede dar una información confusa
(piénsese, por ejemplo, en zonas bajo cargas puntuales). Si además se pretende ser capaz
tanto de realizar estimaciones globales como otras restringidas a un subdominio local,
convendrá utilizar normas integrales, alguna de las cuales, además, tiene un significado
f́ısico que se puede interpretar en el problema que se esté tratando.20
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En los denominados métodos sin malla se ha tratado en algunos casos de calcular el error
a posteriori al objeto de redistribuir los nudos. En lo que sigue, se trata únicamente de
representar una panorámica de las estrategias utilizadas para conseguirlo.

Como ya se ha visto anteriormente, existen varias posibilidades al plantear un método
sin malla. Por ello parece que resultará más clara la exposición, si nos referimos a ellas al
resumir los casos en que de alguna forma se ha tratado de obtener el error a posteriori.

Existen diversos trabajos. Orkisz21 aplicó en el método de diferencias finitas general-
izadas un método adaptativo multimalla para el cálculo del error a posteriori. Aśı, pro-
puso una aproximación adaptativa que utiliza los residuos como indicadores del error y una
relación de convergencia, con un ĺımite establecido, en los nudos comunes a las mallas, cada
vez más densas, que se van utilizando sucesivamente. Para evaluar aproximadamente los
residuos en cada punto, se utilizan las expresiones en diferencias finitas generalizadas del
operador diferencial correspondiente al problema en estudio. Sin embargo, los valores eval-
uados dependen tanto de la precisión de la solución que se está examinando, como de los
operadores en diferencias finitas que se están aplicando. Esta última dependencia es un
inconveniente que se propone eliminar considerando términos de orden más elevado en la
aproximación local utilizada.

Laouar y Villon22 han presentado una técnica adaptativa con un estimador del error
a posteriori aplicado al método de elementos difusos desarrollado por Nayroles et al.1 Se
utiliza la norma de tensión para cada uno de los subdominios ΩK , que cubren el dominio Ω.

‖eτ‖K =
[∫

Ω

({σ̃} − {σ̂})T ({σ̃} − {σ̂})dΩ
] 1

2

(43)

en la que {σ̂} es la aproximación obtenida para el campo de tensiones por aplicación del
método de elementos difusos y {σ̃} es el campo de tensiones continuo obtenido por auto-
equilibrio.23

También empleando el método de elementos difusos se ha propuesto un indicador del
error que estima la variación de las derivadas primeras.24

Duarte y Oden han publicado varios trabajos sobre el método adaptativo de nubes h−p5.
Han demostrado que el orden de convergencia para la aproximación con nubes h − p viene
dado por

|u(x)− uh(x)|m,Ω ≤ c hk+1−m|u|K+1,Ω (44)

donde h es el tamaño de la ventana, k es el grado de polinomio de la base correspondiente,
m es el orden de la ecuación diferencial y las seminormas son las normas L2 usuales que se
generan en los espacios de Sobolev. Liu, Li y Belytschko25 han obtenido resultados similares
para el caso más restrictivo de emplear la aproximación (RPK).

UNA PROPUESTA DE INDICADOR DE ERROR A POSTERIORI

En esta trabajo se presenta un sencillo indicador de error a posteriori. Para ello tomamos
como datos de partida los valores calculados por el programa, es decir los valores de la función
y sus gradientes en cada uno de los nodos del dominio.

También podŕıamos calcular los valores de los gradientes en cada uno de los puntos de
integración de Gauss. Por ejemplo en el caso unidimensional, supuesto un sólo punto de
Gauss para cada dominio de integración, obtendŕıamos la Figura 7, donde puede verse en
representación esquemática lo que seŕıa una curva continua de aproximación por MCM de
uno de los gradientes (suponemos en la gráfica que es una interpolación) y la representación
en diagrama de barras de la diferencia entre los valores de los gradientes en los puntos de
integración numérica y los de los puntos más próximos, asignados a su zona de influencia.



418 S. Falcón y L. Gavete

Valores en los puntos de integración

MCM para los puntos de integración

Valores en el nodo más próximo

Figura 7. MCM y criterio del indicador de error empleado

A partir de estos datos podŕıamos obtener una aproximación a posteriori del error. Para
ello supongamos que para cada nodo del dominio hacemos una teselación de los gradientes.
Con ello podemos obtener en cada punto de integración dos valores distintos de cada
gradiente. Uno corresponde al valor nodal más cercano y otro al valor calculado mediante
MCM en cada punto de integración. Aplicando las normas integrales correspondientes,
este podŕıa ser un estimador, evidentemente no muy exacto, pero válido, al menos a nivel
cualitativo. Tomaŕıamos como valor más exacto el obtenido en los puntos de integración
(Figura 7).

La norma integral que tomaremos será la clásica norma de la enerǵıa y en cada dominio
de integración evaluaremos, como usualmente se hace en el MEF, el error de la aproximación.
En ambos casos tomaremos el error a posteriori como la diferencia obtenida entre dos
aproximaciones. Una proviene del cálculo mediante el método EFG–penalización como
posproceso en los puntos de integración aplicando (21) y (22); y la segunda haciendo una
teselación de los gradientes.

‖e‖2
Ωi

=
[∫

Ωi

({ε} − {εe})T ({σ} − ({σe})dΩ
]
=

=
[∫

Ωi

({σ} − {σe})T [D]−1({σ} − ({σe})dΩ
]
=

=
[∫

Ωi

({ε} − {εe})T [D]({ε} − ({εe})dΩ
] (45)

‖w‖2
Ωi

=
∫

Ωi

({σe})T [D]−1({σe})dΩ (46)

‖e‖2
Ω =

∑
i

‖e‖2
Ωi

(47)
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‖w‖2
Ω =

∑
i

‖w‖2
Ωi

(48)

y el error relativo
η =

‖e‖
‖w‖ (49)

Se define el ı́ndice de efectividad según

θ =
‖e‖
‖E‖ (50)

donde ‖E‖ es el error exacto.

RESULTADOS NUMÉRICOS DEL INDICADOR DEL ERROR

Consideremos la ecuación de Laplace en el dominio Ω =]0, 01; 1, 01[x]0, 01; 1, 01[ con la
condición de contorno u = ud en ∂ΩD .

Se utilizan funciones de aproximación de base lineal y el método de penalización para
imponer las condiciones de contorno esenciales.

A continuación se van a obtener algunos resultados numéricos en la ecuación de Laplace
para el caso T3 definido anteriormente. Los modelos empleados se pueden ver en la Figura 8.
Los resultados se muestran en la Tabla VI.

 

289 nodos (17x17); 8x8 celdas

T31708

118 nodos (9x9+37); 8x8 celdas

T30908r3

97 nodos (9x9+16); 8x8 celdas

T30908r1

81 nodos (9x9); 8x8 celdas

T30908

109 nodos (9x9+28); 8x8 celdas

T30908r2

97 nodos (9x9+16); 4x4 celdas

T30904r1

81 nodos (9x9); 4x4 celdas

T30904

Figura 8. Mallados empleados
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Modelo Orden Error (%) Índice de
de integración Exacto Aproximado efectividad
4 25,3491 32,1397 1,4117

Nodos 5 26,8721 39,0075 1,6115
9× 9 6 27,8113 30,7500 1,2268
Celdas 7 28,1217 32,4962 1,2830
4× 4 8 28,1638 36,0590 1,4218
rinf = 0, 2 9 28,1618 32,2483 1,2716

10 28,1756 32,6562 1,2872
4 27,7014 31,3270 1,2552

Nodos 5 28,1307 30,7002 1,2118
9× 9 6 28,1595 32,3730 1,2766
Celdas 7 28,1762 30,6916 1,2098
8× 8 8 28,1637 32,7349 1,2909
rinf = 0, 2 9 28,1664 30,9184 1,2191

10 28,1651 32,9076 1,2977
4 14,3961 23,8344 1,7385

Nodos 5 14,7224 28,6029 2,0402
(17× 17) 6 15,0863 22,7652 1,5851
Celdas 7 15,1121 24,1418 1,6785
8× 8 8 15,1048 26,5639 1,8479
rinf = 0, 1 9 15,1023 23,8819 1,6615

10 15,1105 24,2553 1,6867

Tabla VI. Comparación de errores

A continuación se han llevado a cabo una serie consecutiva de estudios con modelos
sucesivamente más refinados, con el fin de evaluar el comportamiento del indicador. La
Figura 8 muestra los distintos mallados empleados. En todos los casos se han empleado
funciones de peso spline cuártica y radio variable. Para referirse a cada caso se les ha
asignado un código que indica el grado de refinamiento del modelo (Figura 8). En todos
ellos se ha empleado un radio variable y función de peso spline cuártica. Los resultados
generales se muestran en la Tabla VII. La siguiente Tabla VIII corresponde al modelo de
118 nodos. Las Figuras 9 a 15 muestran los errores relativos exacto y aproximado en la
enerǵıa de cada uno de los modelos para cada celda de integración.

Modelo Error (%)

En ∂u
∂x

En la enerǵıa Índice deNodos Celdas En u
y ∂u

∂y Exacto Aprox. efectividad

81 (9× 9) 4× 4 0,4489 7,1139 35,7164 37,5526 1,1905
97 (9× 9 + 16) 4× 4 2,5535 5,2343 46,1488 55,9473 1,3405
81 (9× 9) 8× 8 0,3706 7,1157 41,9328 47,0869 1,2834
97 (9× 9 + 16) 8× 8 0,4014 4,8910 23,8721 29,6375 1,3196
109 (9× 9 + 28) 8× 8 0,2665 4,5967 21,8715 28,8199 1,3977
118 (9× 9 + 37) 8× 8 0,2603 4,4176 21,7182 28,6888 1,3210
289 (17× 17) 16× 16 0,1269 2,8251 22,7767 28,7229 1,3412

Tabla VII. Comparación de errores de los distintos modelos refinados; radio variable 4
nodos; O.I. 4 × 4
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Celda N◦ Exacto Estimado Celda N◦ Exacto Estimado

1 30,5552 37,2677 33 9,5697 11,8855

2 10,7724 20,5471 34 7,9509 11,7392

3 13,2135 21,4845 35 6,0015 9,4920

4 12,2370 16,3743 36 5,0773 7,9830

5 9,5697 11,8855 37 6,2308 8,0693

6 18,3508 20,7830 38 10,3016 14,5061

7 6,0034 9,2398 39 3,9716 7,3741

8 5,2363 6,8589 40 3,6363 6,6689

9 10,7724 20,5471 41 18,3508 20,7830

10 5,1505 10,8032 42 17,3535 20,4013

11 12,9108 18,5707 43 15,3187 18,6273

12 9,1046 14,0867 44 13,3161 16,9466

13 7,9509 11,7392 45 10,3016 14,5061

14 17,3535 20,4013 46 4,5196 9,3919

15 5,5036 10,1862 47 3,6067 6,7826

16 4,9148 7,9729 48 3,2936 6,2160

17 13,2135 21,4845 49 6,0034 9,2398

18 12,9108 18,5707 50 5,5036 10,1862

19 9,6811 14,5959 51 4,9288 9,3119

20 5,7886 11,5390 52 4,3685 8,2569

21 6,0015 9,4920 53 3,9716 7,3741

22 15,3187 18,6273 54 3,6067 6,7826

23 4,9288 9,3119 55 3,1740 6,0966

24 4,4823 7,5804 56 3,0174 5,7802

25 12,2370 16,3743 57 5,2363 6,8589

26 9,1046 14,0867 58 4,9148 7,9729

27 5,7886 11,5390 59 4,4823 7,5804

28 4,5883 9,5640 60 4,0350 7,1211

29 5,0773 7,9830 61 3,6363 6,6689

30 13,3161 16,9466 62 3,2936 6,2160

31 4,3685 8,2569 63 3,0174 5,7802

32 4,0350 7,1211 64 2,7322 5,5010

Tabla VIII. T3; 118 nodos (9 × 9 + 37); 8 × 8 celdas. Errores en cada celda

Aunque se han mostrado todos los resultados e ilustraciones de manera consecutiva,
los sucesivos refinados han sido escogidos sobre la base de los resultados obtenidos en los
modelos previos haciendo uso del indicador del error.
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El modelo T30904, como se puede observar, tiene una distribución del error en la enerǵıa
en el dominio muy irregular. En especial, como se puede observar en la Figura 9, la primera
celda acumula casi todo el error. Este resultado era lógicamente esperable al encontrarse
una singularidad en los gradientes en el origen de coordenadas. Sin embargo, el objetivo es
distribuir el error más homogéneamente en todo el dominio, lo que permitirá obtener unos
mejores resultados en los gradientes.

 
 Exacto         Estimado 

Figura 9. T3; 81 nodos (9 × 9); 4 × 4 celdas. Errores en cada celda

Las conclusiones anteriores conducen a refinar dicha celda, según el modelo T30904r1,
aunque los resultados no son lo suficiente satisfactorios que se esperaban. Los errores son
muy altos y se propaga el error a las celdas adyacentes sin disminuir, e incluso aumentar,
el error en la primera celda (Figura 10). El motivo es que el modelo obtenido tiene una
densidad de nodos muy irregular en el dominio y la transición entre diferentes densidades
se hace de manera abrupta de una celda a otra. La solución pasa por añadir nodos en los
alrededores de la celda número 1. Pero debido al reducido número de celdas del modelo
presente se ha optado por refinar las celdas como paso previo a otro aumento del número
de nodos.

 
 Exacto         Estimado 

Figura 10. T3; 97 nodos (9 × 9 + 16); 4 × 4 celdas. Errores en cada celda

Surgen aśı los modelos T30908 y T30908r1 similares a los dos anteriores pero con 64
celdas. Los resultados obtenidos, aunque mejores que en los modelos T30904 y T30904r1,
conducen a similares conclusiones. Como se deseaba, el indicador en todo el dominio ha
disminuido, bajando drásticamente en la celda número 1, aunque lógicamente aumentado
ligeramente en las adyacentes a esta (Figuras 11 y 12). Sin embargo, lo más interesante es
que las celdas que aumentan en mayor medida el error son las que podŕıamos denominar
segundo anillo, es decir las más cercanas a la zona refinada. Es por tanto necesario establecer
una transición nodal más suave.
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 Exacto         Estimado 

Figura 11. 3; 81 nodos (9 × 9); 8 × 8 celdas. Errores en cada celda

g ( )

 
 Exacto         Estimado 

Figura 12. T3; 97 nodos (9 × 9 + 16); 8 × 8 celdas. Errores en cada celda

En el modelo T30908r2 se ha añadido un nodo en el centro de las celdas de los anillos
tercero y cuarto. El resultado mejora considerablemente. Los errores en la función son
mucho mejores que en el modelo anterior y en los gradientes bajan ligeramente. La es-
timación disminuye en el dominio y se homogeneiza sin aumentar en los cuatro primeros
anillos (Figura 13). Como en el caso anterior el que más aumenta es el quinto porque es
donde se produce el salto en la densidad nodal.

 
 Exacto         Estimado 

Figura 13. T3; 109 nodos (9 × 9 + 28); 8 × 8 celdas. Errores en cada celda

Como consecuencia se refina una hilera más de celdas. Con el modelo T30908r3 se
mejoran un poco los errores, aunque los resultados son muy parecidos (Figura 14).
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 Exacto         Estimado 

Figura 14. T3; 118 nodos (9 × 9 + 37); 8 × 8 celdas. Errores en cada celda

Lógicamente un refinado uniforme como el del modelo T31708 produce unos resultados
mejores (Figura 15). Sin embargo, el aumento computacional es elevado (289 nodos frente
a 118) y los resultados no son ya mucho mejores que en el modelo T30908r3.

g ( )

 
 Exacto         Estimado 

Figura 15. T3; 289 nodos (17 × 17); 8 × 8 celdas. Errores en cada celda

Como se ha podido observar, el indicador del error propuesto es una herramienta sencilla
y de gran utilidad a la hora de decidir sucesivos refinados.

CONCLUSIONES

En primer lugar, si se aplica penalización para el tratamiento de la condición de contorno
esencial, se ha podido comprobar en el método EFG, empleando la ecuación de Laplace, la
utilización del método de penalización es ventajosa para la imposición de las condiciones de
contorno esenciales por la gran precisión obtenida en todos los casos estudiados.

La función de peso escogida es un factor importante en la aplicación de las condiciones
de contorno por el método de penalización. En este sentido la utilización de funciones tipo
spline cuártica y spline cúbica para la ponderación ha resultado muy adecuada e incluso
ventajosa frente a las exponenciales tipo Gauss.

El método de penalización no vaŕıa para un amplio rango del coeficiente de penalización
y es además muy estable para el cambio del número de puntos de integración numérica.

Otro parámetro decisivo a la hora de emplear funciones de peso es la elección de un radio
de influencia adecuado que ha de ser tan pequeño como sea posible con el fin de garantizar
que la función aproximadora esté muy cerca de la interpolación, pero que también permita
un pequeño solapamiento entre funciones de forma de puntos próximos.
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A su vez y para garantizar radios de influencia pequeños en zonas con densidades de
puntos diferentes, se ha empleado también radio variable con muy buenos resultados. En
ese caso tampoco es conveniente forzar la interpolación exacta empleando el mismo número
de puntos que el de los términos del polinomio aproximador. Se recomienda emplear al
menos un punto más y medir el error global de interpolación, tal y como se ha propuesto
en este trabajo.

Como se ha visto, el método ha sido ensayado con éxito en dominios complejos y
con nubes de puntos irregularmente distribuidos, empleándose mallas de integración que
combinan triángulos y cuadriláteros.

En segundo lugar se ha propuesto un método sencillo de aproximación del error. Dicho
método no puede considerarse un estimador real del error, tal como los empleados en el
MEF, pero śı es una primera aproximación sencilla de gran utilidad. El método es aplicable
a dominios arbitrarios, eliminando problemas de mallado. Los cambios y mejoras del modelo
se realizan simplemente añadiendo nodos donde sea necesario, pero teniendo en cuenta dos
importantes cuestiones:

a) Puesto que los mejores resultados se obtienen con mallados con densidades de nodos
uniformes, es recomendable realizar una transición suave desde la zona donde ha sido
necesario refinar al resto del modelo, creando una zona de densidad nodal decreciente.

b) Es igualmente aconsejable mantener una proporcionalidad entre el número de nodos y
celdas y no conservar la estructura inicial de celdas de integración si se ha refinado
fuertemente en una zona determinada.
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