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Abstract. Many electromagnetic and acoustic applications require the ability to explore
all solutions in a given frequency window. When the problem is large scale, strategies
based on computing a large number of solutions from successive solver calls usually lead
to prohibitive computational costs. This is especially the case when the solver relies
on an integral equation discretized using the boundary element method (BEM), as this
amounts to solving numerous complex, unsymmetrical and fully populated linear systems.
The reduced basis method (RBM) is an efficient approach to rapidly and accurately
approximate any solution within a given frequency window [1, 2]. In the context of
frequency sweeps with the BEM, the success of the RBM essentially depends on the
ability to decouple the frequency from the kernel of the underlying integral equation.
In this work, we present a new methodology based on the ideas of local adaptivity [3].
The main benefit is that the overall number of operators to be assembled throughout the
RBM (or to be computed using adequate low-rank approximation methods) is significantly
reduced compared to previous approaches [1, 4]. The proposed methodology is illustrated
with the double-layer operator on an academic problem.
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1 INTRODUCTION

In this work, we consider a parameterized integral equation discretized using the Bound-
ary Element Method (BEM). The parameter µ ∈ D represents the wavenumber evolving
in a given window D = [µmin, µmax] ⊂ R. Let V,W be two N -dimensional approxima-
tion spaces, such that the integral equation discretized using the BEM consists in finding
u(µ) ∈ V satisfying

A(µ)u(µ) = f(µ) in W ′ (1)

where A(µ) ∈ L(V,W ′) is the µ-dependent discretized integral operator and f(µ) ∈ W ′

a given µ-dependent right-hand side (RHS). Problem (1) is assumed to be well-posed for
all µ ∈ D. Thus, the solution manifold {u(µ), µ ∈ D} exists and is unique.

The Reduced Basis Method (RBM) is a method of choice for efficiently approximating
the solution manifold with rigorous bounds on the approximation error [1, 2]. The effi-
ciency of the RBM is well-known to critically depend on the affine nature of the operator
and the RHS. In the affine context, there exist two integers Ma,M f such that

A(µ) =
Ma∑
m=1

θam(µ)Am, f(µ) =
Mf∑
n=1

θfn(µ)fn, (2)

with µ-dependent functions θam, θ
f
n : D → C and µ-independent operator and RHS parts

Am ∈ L(V,W ′), fn ∈ W ′, 1 6 m 6Ma, 1 6 n 6M f . When the operator (or RHS) is not
affine, one builds an affine approximation. In the case of a discretized integral operator,
the affine approximation typically has a large number of terms Ma because of the non-
trivial µ-dependency in the underlying integral equation. Yet Ma being a key contributor
to the online complexity of the RBM, a large Ma may ruin the overall performance of the
RBM, as has been observed in [1]. To circumvent this issue, the authors in [1] define a
maximum number of terms Q and build a domain decomposition of D in K subdomains.
Instead of one global affine approximation valid over D, one now constructs K local affine
approximations, each valid over a given subdomain. The number of subdomains K and
the domain decomposition itself are tuned in such a way that the number of terms never
exceeds Q in each local affine approximation.

In this work, we revisit the overall RBM for integral equations with three new ingredi-
ents: (i) a locally adaptive strategy for building local affine approximations not exceeding
Q terms, (ii) a reduced basis approximation based on nested approximation spaces, gener-
ated in a greedy manner and (iii) a non-intrusive framework. We show the virtues of each
component of the proposed methodology: (i) significantly reduces the overall number of
distinct µ-independent operator parts to be assembled during the offline stage compared
to the hp approach proposed in [1, 4], (ii) ensures that the number of µ-independent
operator parts simultaneously required in memory never exceeds Q during the greedy al-
gorithm used to generate the reduced basis and finally (iii) simplifies the implementation,
as no other assembly routine than that for assembling A(µ) at given µ needs to be im-
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plemented. Note that we always speak of ”assembling” the operator, but in practice this
could stand for ”computing a representation using low-rank approximation methods”.

The paper is structured as follows. In section 2 we introduce the non-intrusive local
affine approximations. In section 3 we detail the reduced basis approximation. Finally,
section 4 is devoted to numerical results on a Helmholtz second-kind integral equation.

2 NON-INTRUSIVE LOCAL AFFINE APPROXIMATIONS

2.1 Defintion

In this approach, Q is decided a priori by the user. We introduce J > Q parameters
points CJ = {µj}16j6J ⊂ D, indexed in inceasing order: µ1 6 · · · 6 µJ . Following a
locally adaptive strategy [3], we define for all µ ∈ D the set T (µ) comprising of the
Q points in CJ closest to µ in the euclidean distance (thus T (µ) is subset of CJ whose
cardinality is exactly Q). Notice that there always exists an index k, 1 6 k 6 K, with
K = J − Q + 1, such that T (µ) = {µk, . . . , µk+Q−1} ≡ Tk. Using this observation, we
define the kth subdomain as Dk = {µ ∈ D, T (µ) = Tk}.

Now that our domain decomposition of D in K subdomains is defined, we are ready
to introduce the non-intrusive local affine approximations, for k = 1, . . . , K,

∀µ ∈ Dk, Ak(µ) =

Q∑
q=1

θkq (µ)A(µk+q−1). (3)

Here, the µ-dependent functions θkq : Dk → C, are constructed in such a way that the
approximation error A(µ) − Ak(µ) is ”adequately small” over Dk. Typically, one sets a
prescribed tolerance ηtol > 0 and looks forward to obtaining

sup
µ∈Dk

sup
v∈V

‖A(µ)v − Ak(µ)v‖W ′
‖v‖V

< ηtol. (4)

2.2 Properties

Assume that, at some point during the offline stage of the RBM, N reduced basis
functions {ξn, n = 1, . . . , N} ⊂ V (to be defined in section 3) are available and that
the Q assembled operators A(µk), . . . , A(µk+Q−1) are available in memory. It is then
possible to compute all the quantities 〈A(µi)

∗R−1
W A(µj)ξn, ξm〉, for i, j ∈ {k, . . . , k+Q−1}

and n,m ∈ {1, . . . , N} (here, RW ∈ L(W,W ′) denotes the Riesz map on W ). These
pre-computed quantities will be useful in the online stage of the RBM, for computing
〈Ak(µ)∗R−1

W Ak(µ)ξn, ξm〉 for any n,m ∈ {1, . . . , N} and any µ ∈ Dk in O(Q2) complexity
using the formula (3).

At this point, if k < K, we are almost able to compute 〈Ak+1(µ)∗R−1
W Ak+1(µ)ξn, ξm〉

for any n,m ∈ {1, . . . , N} and any µ ∈ Dk+1 with O(Q2) complexity. Indeed, the only
missing quantities are the 〈A(µi)

∗R−1
W A(µk+Q)ξn, ξm〉 and the 〈A(µk+Q)∗R−1

W A(µi)ξn, ξm〉,
for i ∈ {k + 1, . . . , k + Q} and n,m ∈ {1, . . . , N}. Computing these missing quantities
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offline requires the Q operators A(µk+1), . . . , A(µk+Q) to be available in memory. This
shows how, thanks to formula (3), the number of operators simultaneously required in
memory will never exceed Q. Overall, the number of operator assemblies will be J .

3 REDUCED BASIS APPROXIMATION

3.1 Nested approximation spaces

Let us introduce K discrete sets Sk ⊂ Dk, k = 1, . . . , K. We recursively define the K
nested approximation spaces,

V 1 = Span{u(µ̌), µ̌ ∈ S1}, (5)

V k = V k−1 ⊕ Span{u(µ̌), µ̌ ∈ Sk}, 2 6 k 6 K.

Clearly, V 1 ⊂ V 2 ⊂ · · · ⊂ V K ⊂ V . Assuming that solutions at different parameter
points are linearly independent, the approximation space V k, 1 6 k 6 K is of dimension
N(k) =

∑k
κ=1 Card(Sκ), where Card(·) denotes the cardinality (0 when the set is empty).

Here, we recall that D1 contains the lowest and DK the highest possible values of
µ ∈ D. Since µ denotes the wavenumber (or frequency), the approximation space V 1

must be thought of as the span of some low-frequency solutions and V K as the span of
solutions ranging from the lowest to the highest possible frequencies.

3.2 Least-squares approximation

For all k = 1, . . . , K, define the reduced µ-dependent test spaces W k
µ = R−1

W Ak(µ)V k ⊂
W . For all µ ∈ D, there exists an integer k = 1, . . . , K such that µ ∈ Dk. We define the
reduced basis approximation at this value of µ as urbk (µ) ∈ V k, solution to the Petrov-
Galerkin formulation

〈Ak(µ)urbk (µ), wk〉 = 〈f(µ), wk〉 ∀wk ∈ W k
µ , (6)

with duality brackets between W and W ′. Equivalently, urbk (µ) ∈ V k is the solution to
the Galerkin formulation

〈Ak(µ)∗R−1
W Ak(µ)urbk (µ), vk〉 = 〈Ak(µ)∗R−1

W f(µ), vk〉 ∀vk ∈ V k, (7)

with duality brackets between V and V ′. Existence and uniqueness of the reduced basis
solution is guaranteed when Ak(µ) satisfies an inf-sup condition. Given that A(µ) satisfies
an inf-sup condition (from the well-posedness of (1)), an adequately small ηtol > 0 in (4)
will ensure the well-posedness of the reduced basis problem.

3.3 Error estimation

Denoting α(µ) = inf
v∈V
‖A(µ)v‖W ′/‖v‖V the inf-sup constant of A(µ), the following a

posteriori error estimate holds,

‖u(µ)− urbk (µ)‖V 6
1

α(µ)
‖Ak(µ)urbk (µ)− f(µ)‖W ′ +

ηtol

α(µ)
‖urbk (µ)‖V . (8)
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Typically, ηtol > 0 is chosen sufficiently small so that the second term in the error estimate
can be neglected. Thus, the practical error estimate is simply the residual norm divided
by the inf-sup constant.

4 NUMERICAL RESULTS

4.1 Helmholtz formulation using the double layer potential

Consider the unit sphere S = {y ∈ R3, ‖y‖ = 1} and the wavenumber interval D =
[0.92, 6.0] (corresponding to the frequency interval [50, 325]Hz taking into account the
speed of sound c = 340m/s). Given the Dirichlet data gd(µ) ∈ H1/2(S), we are interested
by the following second-kind integral equation: find φ(µ) ∈ H1/2(S), such that(

Mµ +
1

2
I

)
φ(µ) = gd(µ), (9)

where Mµ : H1/2(S)→ H1/2(S) denotes the double layer integral operator at wavenumber
µ. This formulation can be used to solve the Helmholtz exterior problem, where S is the
boundary of the scattering object.

In our numerical experiments, we consider a triangulation of S with N = 642 vertices.
This triangulation defines a polyhedral approximation to the unit sphere, which we denote
Γ. Let V be the Lagrange P 1 finite element approximation space constructed upon
the triangulation (note that dim(V ) = N ). We set W = V and consider the operator
A(µ) ∈ L(V,W ′) defined for all (v, w) ∈ V ×W by

〈A(µ)v, w〉 =

∫
Γ

w(x)

∫
Γ

∂n(y)G(x, y;µ)v(y)dγydγx +
1

2

∫
Γ

w(x)v(x)dγx (10)

where G(x, y;µ) = eiµ‖x−y‖

4π‖x−y‖ is the Helmholtz fundamental solution and ∂n(y) the derivative

with respect to the normal n(y), outgoing Γ. We also define the RHS f(µ) ∈ W ′ as
〈f(µ), w〉 =

∫
Γ
gd(x;µ)w(x)dγx, where the Dirichlet data is the plane wave gd(·;µ) : x ∈

Γ 7→ eiµ(x−x0)·d, with direction d = (1, 0, 0)T and origin x0 = (−5, 0, 0)T .

4.2 Local affine approximations

Given the problem at hand, we can be satisfied by a non-intrusive local affine approxi-
mation just for the fully-populated part of our operator, corresponding to the discretiza-
tion of Mµ. Indeed, the 1

2
I part is independent from µ and yields a sparse matrix. To

start with, we observe that the fully-populated part of our operator writes as a convolution
with a kernel taking the specific form

∂n(y)G(x, y;µ) = ψ(‖x− y‖;µ)H(x, y), (11)

where H : Γ× Γ→ C does not depend on µ and where we can give an explicit analytical
expression for ψ(·;µ) : R+ → C. Thus, the work to be done is brought to finding J
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wavenumbers {µj}16j6J ⊂ D and a domain-decomposition of D = ∪Kk=1Dk, such that for
all k = 1, . . . , K, we can build a local interpolant under the form

Ikψ(·;µ) =

Q∑
q=1

θkq (µ)ψ(·;µk+q−1) (12)

that is a ”good” approximation to ψ(·;µ) for µ ∈ Dk. A tool for achieving this is for
instance the locally adaptive method developped in [3]. Note that there is a singularity
limr→0 ψ(r;µ) = ∞. Fortunately, we can decompose ψ(·;µ) = ψns(·;µ) + ψs(·), where
ψns(·;µ) is non-singular and contains all the dependency in µ, while ψs(·) is singular and
independent from µ. Thus, to obtain (12), one applies the locally adaptive tools not
directly to ψ(·;µ) but to the non-singular part ψns(·;µ).

0 1 2 3 4 5 6 7
µ

 

 

Locally adaptive

hp

Figure 1: The J = 20 parameter points selected by the locally adaptive algorithm [3] and the 34
parameter points selected by the hp algorithm [4]. Both algorithms applied to ψns(·;µ) with Q = 7 and
prescribed tolerance of 10−7 on the approximation error in L∞([0, rmax]×D) norm (with rmax = 2, the
diameter of the unit sphere).

We show on fig. 1 the J = 20 wavenumbers obtained when applying the locally adaptive
algorithm on ψns(·;µ), with Q = 7 and a prescribed tolerance of 10−7. These wavenumbers
correspond to the wavenumbers at which the double-layer integral operator will have to
be assembled at some point during the offline phase of the RBM. For comparison, the
hp method (or elementwise method) of [1, 4] applied with the same Q and the same
prescribed tolerance yields 34 wavenumbers, also shown on fig. 1. Thus, the gain from
using the locally adaptive strategy rather than the hp method is 14 offline assemblies,
which is quite significant given that assembly costs are dominant in the BEM.

4.3 Reduced basis generation

The locally adaptive method gives us a domain-decomposition D = ∪Kk=1Dk, with
K = J −Q+ 1(= 14) subdomains. To generate the reduced basis, we proceed subdomain
after subdomain starting at k = 1. To start the process, the Q double-layer operators at
wavenumbers µj, j = 1, . . . , Q must be assembled, then we proceed as follows:

1. classical greedy iterations: the set Sk is enriched until a prescribed tolerance εrb > 0
is reached on max

µ∈Ξk
∆k(µ), where ∆k(µ) is an estimator for the error ‖u(µ)−urb

k (µ)‖V
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and Ξk ⊂ Dk a discrete surrogate set of parameters. The enrichment strategy is
based on enriching Sk by appending the maximizer of the error estimator over Ξk.

2. when the prescribed tolerance is reached, the process terminates if k = K, else
the double-layer operator at wavenumber µ = µk+Q is assembled, overwriting the
memory that was allocated for the double-layer operator at wavenumber µ = µk
(accordingly to section 2.2) and the process is repeated with k ← k + 1.

Recalling that D1 contains the lowest and DK the highest possible frequencies, the process
is really that of a frequency-sweep, from the low to the high frequencies.

Consistent with the error estimate (8), we take as error estimator the residual norm di-
vided by an approximation α̃(µ) for the inf-sup constant (obtained by interpolation), that
is ∆k(µ) = ‖Ak(µ)urb

k (µ)− f(µ)‖W ′/α̃(µ). We use surrogate sets Ξk based on discretizing
Dk uniformly with 100 points. Setting εrb = 10−2, we have obtained nested approxima-
tion spaces V k, 1 6 k 6 K and have consigned their dimension in table 1. We note

Table 1: Dimension of the nested approximation spaces V k, 1 6 k 6 K.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14
dim(V k) 4 4 5 5 6 8 8 9 9 11 12 12 13 16

that the approximation space is sometimes the same between two successive subdomains.
This shows that the frequency-sweep procedure is able to detect, when arriving on a new
subdomain, that the approximation space from the previous subdomain is good enough
to approximate the solution. When this happens, no solution needs to be computed and
the frequency sweep may continue with the next subdomain. This is also visible on fig.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
µ

 

 

Solves

Figure 2: The points µ̌ ∈ Sk, k = 1, . . . ,K for which the solutions u(µ̌) have been computed. The
dotted vertical lines indicate the boundary of the subdomains Dk, k = 1, . . . ,K (thus each interspace
between two dotted vertical lines corresponds to a subdomain).

2, where we have plotted the points µ̌ in the sets Sk, 1 6 k 6 K, where the solutions
u(µ̌) have been computed to serve as basis functions for the approximation spaces V k,
1 6 k 6 K. We explain the stronger concentration of points in the neighborhood of the
wavenumbers 3.1, 4.5 and 5.8 by the presence of interior resonant frequencies, where α(µ)
becomes relatively small (≈ 10−2, while O(1) away from these resonant frequencies).
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4.4 Validation

In order to assess the quality of the reduced basis approximation, we pick 80 random
parameter points in D. We compute the reduced basis solution urb

k (µ) (whose coordinates
in the approximation space V k can be obtained with N -independent complexity) as well
as the truth solution u(µ) (which requires assembling fully-populated BEM matrix and
calling a solver). We then compute the effectivity index eff(µ) = ∆k(µ)/‖u(µ)−urb

k (µ)‖V .
We present some statistics in table 2. We find that the over/under-estimation of the error

Table 2: Statistics of the effectivity index (80 random samples of µ ∈ D).

Minimum Mean Maximum
0.61 (at µ ≈ 4.5) 2.8 61.18 (at µ ≈ 3.1)

stays within reasonable bounds. Thus, the tolerance εrb prescribed a priori by the user
indeed reflects the true level of accuracy of the obtained reduced basis solutions.

5 CONCLUSIONS

We have revisited RBM for integral equations parameterized by the frequency, by intro-
ducing local affine approximations and nested approximation spaces. The methodology
has been illustrated with the double-layer operator on an academic problem. We found
the overall number of operator assemblies to be significantly reduced compared to previous
approaches. Future work will be applying the methodology to various integral equations.
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