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Abstract. Within a 3D concrete printing process, concrete is still fresh and possible collapse
may occur due to its own weight and lack of formwork. On the other hand, the mechanical
characteristics of the material are continuously evolving due to hydration during curing. Within
a predictive theory, the constitutive relation of the early age concrete is to be defined in rate
form. In this contribution, and due to the soft nature of the problem at hand, a finite strain
incremental viscoelastic modeling is adopted. A generalized Maxwell rheological model is used
together with a Saint-Venant-like incremental elasticity. A parametric study is conducted on
simulated slump-tests to highlight the abilities of the present framework. Clearly, the early
age rheology and mechanical properties have a great impact on the buildability of the fresh
concrete. A set of simulations is then given for the purpose of demonstration.

1 INTRODUCTION

Additive manufacturing is nowadays gaining more and more interest, e.g. [9, 8, 3, 22]. It
is for instance mostly based on a layer-by-layer extrusion technique. In civil engineering, the
still fresh concrete must be able to retain its shape due to the lack of confining formworks.
Its buildability is largely influenced by its early age rheology, e.g. [7, 10, 15]. Indeed, under
certain conditions, the initially low mechanical properties can lead to possible collapse during
the printing process. On another hand, with evolving mechanical properties due to hydration,
the stress-strain constitutive relation is of hypo-elastic type (incremental elasticity), a result
that has been stated by an abundant literature on early-age concrete, e.g. [2, 4, 5]. It is
then mandatory to take this fact into account within a predictive theory involving geometrical
nonlinearities.
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In recent literature, different numerical models have been proposed, for example as in
[18, 20, 12, 13, 17, 16]. Herein, use is made of the one developed in [13, 14]. For the incre-
mental formulation, an adequate kinematic choice is adopted. Use is made of a multiplicative
decomposition of the current deformation gradient into its known part at an earlier time and a
relative deformation gradient with respect to the configuration at that time. This gives rise to
an intermediate configuration on which incremental constitutive relations for the stress state
and evolution equations for early-age creep can be well defined. As a Lagrangian formulation
is adopted for the mechanical equilibrium, the constitutive equations are pull-back from the
known intermediate configuration toward the reference configuration. The above kinematics is
well suited for this transport procedure.

Motivated by the generalized Maxwell model, we use an additive decomposition of the in-
cremental stress that is based on a Saint-Venant-like model together with an incremental over-
stress. In this contribution, we show the effectiveness of the proposed framework. In particular,
to capture the influence of the printing speed on the occurrence of structural buckling insta-
bilities. This could certainly help the optimization of the printing process through simulations
that could limit the number of costly real experiments. Early age rheology has a strong influ-
ence on the buildability and performance. A parametric study on simulated slump-like tests
is presented that could introduce, in future works, a possible method to help identifying the
material parameters relative to the early-age creep.

2 BASIC EQUATIONS

As the finite strain range is assumed, the equilibrium equation is equivalently written in
terms of the second Piola-Kirchhoff stress tensor S as:∫

B0

S : F T∇X(δφ) dV =

∫
B0

ρ0b̄.δφ dV (1)

that holds for any admissible variation δφ of the deformation φ, F = ∇Xφ is the deformation
gradient where ∇X(�) is the material gradient operator, ρ0 is the initial density, and ρ0b̄ defines
the body force vector due to the self-weight. Here and in all what follows, the double dot
symbol ′ :′ is used for double contraction, i.e. for any second-order tensors A and B, one has
A : B = tr[ABT ] = AijBij where summation on repeated indices is assumed.

Unlike classical constitutive relations where stresses are directly linked to strain measures,
here the stress is restricted to be defined in incremental form. Within a typical time interval
[tn, tn+1], we write:

S = Sn +∆S (2)

where Sn is the known stress tensor at time t = tn, and ∆S is the second Piola-Kirchhoff stress
tensor increment at the current time t ∈ [tn, tn+1]. With (2) into (1), the balance equation to
be solved is: ∫

B0

(Sn +∆S) : F T∇X(δφ) dV =

∫
B0

ρ0b̄.δφ dV (3)
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This equation is valid for all classes of incremental constitutive relations through the defini-
tion of model-dependent stress increment ∆S including, for instance, creep. Precisely for this
latter, we use in this work a generalized Maxwell model where the stress is additively split as

S = S∞ +Q (4)

where S∞ is the equilibrium part, and the internal tensor variable Q may be interpreted as a
non-equilibrium over-stress [6, 19, 13]. Eq. (2) becomes;

S = S∞
n +Qn︸ ︷︷ ︸
= Sn

+ ∆S∞ +∆Q︸ ︷︷ ︸
= ∆S

(5)

We now have to define an incremental constitutive relation for the equilibrium part ∆S∞,
and hence the update of S∞. Here we postulate the following Saint-Venant-like relation, see
[12] for more details:

∆S∞ = λ∞(t) [(E −En) : 1]1 + 2µ∞(t)
(
E −En

)
(6)

where E is the current Green-Lagrange strain tensor, En is its known value at time t = tn.
Here and in all what follows, 1 is the second-order identity tensor of components δij, i.e. the
Kronecker delta.

The time-dependent parameters λ∞(t) and µ∞(t) are Lamé-like coefficients within the asymp-
totic infinitesimal limit. They are related to the time-dependent Young’s modulus E∞(t) and
Poisson’s ratio ν(t) of the equilibrium part as:

λ∞(t) =
ν(t)E∞(t)

(1 + ν(t))(1− 2ν(t))
µ∞(t) =

E∞(t)

2(1 + ν(t))
(7)

In addition, we need to specify an evolution equation for the internal variable Q. This is
motivated by the generalized Maxwell model. Still within the time interval [tn, tn+1], we have
shown in [13] that the discrete update is given by:

Qn+1 = e−ω∆t Qn + f
1− e−ω∆t

ω∆t
∆S∞ (8)

where ∆t = tn+1 − tn, and Qn is the known (stored) value of Q at time tn, while ∆S∞ has
just been evaluated in Eq. (6). Here the adimensional parameter f is a scaling factor of the
overstress contribution, chosen to be constant for the sake of simplicity. The quantity ω is given
by,

ω =
Ė∞

E∞
+

1

τ
(9)

in terms of the characteristic time τ and the rate of change of the early-age Young modulus
E∞(t).

Once Qn+1 is updated with the help of Eq. (8), the difference ∆Q = Qn+1 − Qn is to be
evaluated and then replaced into Eq. (5) for the (total) stress increment ∆S. This latter is
used in the balance equation (3) to be solved at the global level.
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In summary, the mechanical parameters needed to identify the behavior of the early-age
concrete are:

1. E∞(t), the time-dependent Young’s modulus function;

2. ν(t), the time-dependent Poisson’s ratio. This latter will be considered constant in the
simulations below due to the lack of informations;

3. f , the adimensional scaling over-stress factor;

4. τ , the early-age characteristic time.

3 NUMERICAL IMPLEMENTATION AND FINITE ELEMENT OVERVIEW

In a finite element context, the interpolations of the reference geometry and displacements
are completely standard. Over a typical finite element Be they take the form,

Xe(ζ) =

ne
node∑
A=1

NA(ζ)Xe
A ue(ζ) =

ne
node∑
A=1

NA(ζ)ue
A (10)

where XA ∈ Rndim , uA ∈ Rndim denote the reference position and the displacement vector
associated with the element node A, ndim = 2 or 3 is the space dimension, ne

node is the node
number within the element, and NA(ζ) are the classical isoparametric shape functions. The
interpolation of the deformation gradient then takes the form,

Fe(ζ) =

ne
node∑
A=1

(Xe
A + ue

A)⊗∇X [NA] with ∇X [NA] = J(ζ)−T∇ζ[N
A] (11)

where ∇ζ[�] is the gradient relative to the isoparametric coordinates, and J(ζ) = ∂Xe(ζ)/∂ζ
denotes the Jacobian of the isoparametric map ζ → X.
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Figure 1: Typical finite element with nodal dofs and integration points where the stress and the internal
variable are stored.

Equation (11)1 is used for the discrete variation and increment of the Green-Lagrange strain
tensor. For instance for the latter:

∆E =
1

2

ne
node∑
A=1

[
F T

e (∆ue
A ⊗∇XNA) + (∇XNA ⊗∆ue

A)Fe

]
=

ne
node∑
A=1

B[NA] ∆ue
A (12)
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in terms of the nodal displacement increments ∆ue
A, and where B[�] is the discrete Green-

Lagrange strain operator. The element contribution to the global tangent stiffness matrix and
residual associated with the element nodes are written from (3) as,

KAB
e =

∫
Be

BT [NA]Ξ
algo B[NB] dVe +

{∫
Be

(∇X [NA])T (Sn+∆S)∇X [NB] dVe

}
Indim

RA
e =

∫
Be

[
NAρ0b̄− BT [NA] (Sn+∆S)

]
dVe

(13)
for A,B = 1, . . . ne

node, see Fig. 1 for an illustration, and Indim
is the ndim×ndim identity matrix,

and Ξ
algo

is the fourth-order algorithmic tangent modulus.

At the end of the global resolution, the stress field Sn+1 and the updated stress-like internal
variable Qn+1 via the evolution equation (8). They are stored at the integration points level
during the whole iterative process, see again Fig. 1, a procedure that is similar to the ones
classically used in modelings involving internal variables, e.g. [1, 11] for example.

Last but not least, Ξ
algo

is deduced from (6) together with the algorithmic update (8):

Ξ
algo ≡ ∂∆S

∂∆E
=

(
1 + f

1− e−ω∆t

ω∆t

)
Ξ

∞
with Ξ

∞
= λ∞(t)1⊗ 1+ 2µ∞(t)I (14)

where I is the fourth-order identity tensor, i.e. such that I : A = A for any second-order
tensor A, and of components Iijkl =

1
2
(δikδjl + δilδjk).

4 PARAMETRIC STUDIES AND NUMERICAL SIMULATIONS

It is of major importance to correctly identify the mechanical parameters of the early-age
concrete. For a given formulation of a concrete, this could certainly help optimizing the printing
process via numerical tools. In the absence of experimental data, we give in this section a set
of simulations to show the capacities of the present theoretical and numerical framework.

4.1 A parametric study for the creep at early-age

It is obvious that different concrete mixes would slump differently. It would then be advan-
tageous to be able to numerically simulate such a very popular test. Let us consider a classical
cone of 300 mm height, with a diameter of 200 mm at the bottom, and an upper diameter of
100 mm, see Fig. 2(a). The simulations are performed as an axisymmetric problem. To fix the
ideas, we consider the following very low early-age mechanical parameters, basically, an almost
liquid concrete:

E∞(t) = 0.0025 + 0.001t [MPa] ν = 0.3 f = 2 τ = 0.06min (15)

where the Poisson’s ratio is kept constant for the sake of simplicity. The time t is expressed in
minutes. For the self-weight, a density ρ0 = 2070 kg/m3 is used.

5
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In the simulations below, a frictional contact is accounted for with the bottom horizontal
surface, see for example [21]. Fig. 2(b) shows the deformed configuration when the cone is
almost instantly removed. Afterwards, the deformation still evolves due to the early-age creep
as illustrated in Fig. 2(c), see also [13].

50 mm

(a) (b) (c)

Displacement norm [mm]

Figure 2: Slump-test simulation: (a) Axisymmetric geometry and finite element mesh, (b) instantaneous
slump, (c) delayed slump due to early-age creep. The parameters are those given in (15).

Now to show the influence of the early-age creep paramaters f and τ , two studies are
conducted by keeping unchanged the time-dependent Young’s modulus E∞(t) and Poisson’s
ratio ν as given in (15). In Fig. 3, for an over-stress scaling factor fixed to f = 2, we show the
influence of the characteristic time τ , ranging here from few seconds to 3 minutes. The different
curves illustrate the evolution of the displacement vs time of the upper center node. One can
notice the influence of the characteristic time on the kinetics of the delayed deformations.

In Fig. 4, we show the influence of the over-stress scaling factor f , with this time the
characteristic time fixed to τ = 1min. One can notice the influence of the factor f on the early
age stiffness of the material, while the kinetics is almost identical for all the simulations.

In all curves of Figs. 3 and 4, the first jump corresponds to the instantaneous withdrawal of
the cone, then, delayed displacement takes place depending on the early-age viscosity charac-
teristics.
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Figure 3: Slump-test simulations: Vertical displacement of the upper center node for different values of the
characteristic time τ . Here f = 2 is fixed.
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Figure 4: Slump-test simulations: Vertical displacement of the upper center node for different values of the
over-stress scaling factor f . Here τ = 1min is fixed.

4.2 A closed wall printed with thick layers

We consider the closed wall described in Fig. 5, a variant of a similar example already
discussed in [14]. It is manufactured layer-by-layer, each layer with cross-section dimensions of
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45 mm width and, this time, with thicker layers of 30 mm height. With the model described
in Section 2, we consider low mechanical properties so as to trigger structural buckling:

E∞(t) = 0.04 + 0.02t [MPa] ν = 0.3 f = 0.5 τ = 5min (16)

where the time t is here again expressed in minutes.

During the simulations, the Young’s modulus E∞ is updated for each layer within the time
increments. It enters into the definition of the Lamé-like coefficients of Eq. (7). For the
self-weight loading, we consider the density ρ0 = 2020 kg/m3. For symmetry reasons, only one-
fourth wall is considered for the finite element discretization with adequate boundary conditions.

✸
�
�
✁
✁

✶✂✂✂ ✄✄

✼✂✂ ✄✄

✹☎ ✄✄

Figure 5: Geometry of the closed wall (top view), and finite element discretization of 1/4-wall up to 10 layers
of 30 mm thickness each.

At a printing speed of 2 minutes per layer, Fig. 6 shows the deformed configuration till the
end of the simulation with 10 layers. Here the wall remains almost straight until the end of the
computation.

Now for a four times faster printing simulation, at a speed of 0.5 minutes per layer, the wall
starts to visibly deviate at the 8th layer. The computed wall after 10 layers shows a very large
deformation meaning collapse in bending more. For illustrative purposes, Fig. 7 shows the
sequence from the 7 layers wall until the end of the simulation with 10 layers.

This example shows that the present modeling framework is able to capture the influence
of the printing speed on the stability of the printed structures. It is obvious that the precise
knowledge of the model parameters of the fresh concrete and its rheology is of great importance
for the whole process.
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Figure 6: Deformed configuration after 10 thick layers at a printing speed of 2 min/layer.

5 CONCLUSIONS

From the purely mechanical point of view, the fresh concrete has been described through
a time-dependent incremental constitutive relation in the finite strain range. The mechanical
balance is therefore adapted so as to take into account this particularity together with the
important presence of the concrete self-weight.

The early age creep has been motivated by the generalized Maxwell model written in rate
form. Among others, only two parameters are introduced in addition to the incremental equilib-
rium elasticity: a characteristic time τ , and an adimensional factor f representing the amplitude
of the over-stress with respect to the equilibrium incremental elasticity. For this latter, use has
been made of a Saint-Venant-like model.

Numerical examples have shown the efficiency of the whole procedure. In particular, eventual
structural buckling can be captured, and hence circumvented in real tests. This feature could
certainly help the optimization of the printing process through simulations that could limit the
number of costly real experiments.

A future step would be the identification of the mechanical parameter. In particular, we
have shown through numerical simulations that the very popular slump-test could be used for
this task.
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