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Abstract. A high-order Discontinuous Galerkin (DG) solver is assessed in the computation
of the flow through an Organic Rankine Cycle turbine nozzle and stage. The flow features are
predicted with a RANS (Reynolds averaged Navier–Stoke) approach and the k-log(ω) turbulence
model in a multi reference frame, where interfaces between fixed and rotating zones are treated
with a mixing plane approach, and non reflecting boundary conditions are used. Primitive
variables based on pressure and temperature logarithms are adopted to ensure non-negative
thermodynamic variables at a discrete level. The fluid can be modeled with the polytropic ideal
gas law and the Peng-Robinson equation of state.

1 INTRODUCTION

In the last decades applications characterized by non-ideal compressible flows can be found
in many industrial fields, such as Organic Rankine Cycle (ORC) turbomachinery. The working
fluid (heavy hydrocarbons, fluorocarbons and siloxanes) for an ORC can show a non-ideal ther-
modynamic behaviour in the region where, for example, the expansion takes place, i.e. when
pressure and temperatures are close to the liquid-vapour saturation curve in the region near the
critical point. In these conditions the ideal gas law fails in predicting accurately the thermody-
namic behaviour, and more complex equations of state are required, such as the Van der Waals
or Peng-Robinson equations of state (EoS) or multi-parameter EoS.

To enhance the design of this family of turbomachinery, in recent years the coupling of
accurate CFD tools with sophisticated thermodynamic models has been investigated, mainly for
Finite Volume solvers. However, the increasing computational power, and the higher accuracy
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expected by the design offices worldwide, motivate the recent interest in higher-order accurate
methods, such as Discontinuous Galerkin (DG) methods. DG methods are particularly attractive
for their geometrical flexibility [1], simple implementation of h/p adaptive techniques [2, 3], and
compact stencil. Their drawback with respect to standard finite volume (FV) methods is the
higher computation cost, which prevents a widespread application, and promotes many research
efforts to devise more efficient computational approaches [4, 5].

In this work a high-order Discontinuous Galerkin (DG) solver [6, 7] is assessed in the compu-
tation of the flow through an Organic Rankine Cycle turbine nozzle and stage. The flow features
are predicted with a RANS (Reynolds averaged Navier–Stoke) approach and the k-log(ω) tur-
bulence model in a multi reference frame, where interfaces between fixed and rotating zones are
treated with a mixing plane approach, and non reflecting boundary conditions [8]. Primitive
variables based on pressure and temperature logarithms are adopted to ensure non-negative
thermodynamic variables at a discrete level. The fluid can be modeled with the polytropic ideal
gas law and the Peng-Robinson equation of state.

2 GOVERNING EQUATIONS

Governing equations can be written in the fixed and rotating frame as
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where ui can be the absolute (ua,i) or the relative (ur,i) velocity, depending on where the unknown
variables are considered (fixed or rotating frame), and

E = ê+ ukuk/2− fr(ϵijkωirc,j)(ϵijkωirc,j)/2, (6)
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µt = α∗ρke−ω̃r , k = max (0, k) , (11)
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where ê is the internal energy, h the enthalpy, ϵijk the Levi-Civita tensor, Pr and Prt are the
molecular and turbulent Prandtl numbers and

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the mean strain-rate tensor.

The source term components, sr,i, include the Coriolis acceleration, 2ω × û , where û =
ur + fr (ω × rc), and the centripetal acceleration, ω × ω × rc, and are defined as

sr =

 ω2û3 − ω3û2 + ω2 (ω1rc,2 − ω2rc,1)− ω3 (ω3rc,1 − ω1rc,3)
ω3û1 − ω1û3 + ω3 (ω2rc,3 − ω3rc,2)− ω1 (ω1rc,2 − ω2rc,1)
ω1û2 − ω2û1 + ω1 (ω3rc,1 − ω1rc,3)− ω2 (ω2rc,3 − ω3rc,2)

 . (12)

If the unknown variables are considered in the fixed or rotating frame, the parameter fr assumes
the value 0 or 1, respectively.

The values of the closure parameters α,α∗, β, β∗, σ, σ∗ can be found in [9]. The production
term of the energy equation and the destruction term of the k and ω̃ equations are computed
with the value ω̃r, which satisfies the realizability condition for the turbulent stresses.

3 THERMODYNAMIC MODELS AND TRANSPORT PROPERTIES

In this work, the thermodynamic properties of the working fluid are modeled with two
EoS that differ in complexity and accuracy: the polytropic ideal gas (PIG) and the Peng-
Robinson [11] (PR) EoS.

The simplest thermodynamic model is the polytropic ideal gas model

p(ρ, T ) = ρR∗T, (13)

where p denotes the pressure, T the temperature and ρ the density of the gas. R∗ = R/M ,
where R = 8314 J/(mol K), is the universal gas constant and M is the molecular weight of the
gas, while the ideal gas isochoric specific heat is given by the Mayer relation:

cv,ref = cp,ref −R∗. (14)

Introducing the ratio of the isobaric to isochoric specific heat γ = cp,ref/cv,ref , polytropic be-
haviour (i.e., constant heat capacities) is granted by choosing a proper fixed reference value for
cv,ref . Due to the operating conditions, this value is set at the critical temperature Tcr as

cv,ref = cp,0(Tcr)−R∗, (15)

where cp,0(T ) is a polynomial function of the ideal gas isobaric specific heat given by

cp,0(T ) = A+BT + CT 2 +DT 3, (16)

where A, B, C and D are substance dependent constant parameters calculated with the chemical
group contribution method described in [20].
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As a consequence, the ideal gas internal energy can be expressed as

e(T ) = cv,refT =
R∗T

γ − 1
. (17)

The Peng-Robinson EoS [11] is given by

p(ρ, T ) =
ρR∗T

1− ρb
− aρ2α2(T )

1 + 2ρb− ρ2b2
, (18)

where α(T ) is a temperature dependent quantity, while a and b are constant parameters, which
take into account molecular attraction forces and molecular volume, respectively. Their values
are computed as
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)
, (19)
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, (20)
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, (22)

where pcr is the critical pressure, psat is the saturation pressure and ω is the acentric factor, a
constant parameter that estimates the non-sphericity of molecules.
The real gas internal energy is defined with the general relation [19]:
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where the ideal gas contribution to the isochoric specific heat is given by

cv,0(T ) = cv,0(Tcr)

(
T

Tcr

)n

, (24)

as suggested in [18] to simplify calculations. The exponent n is a constant and is defined as

n =
ln (cv,0(T2)/cv,0(T1))

ln (T2/T1)
, (25)

where T1 and T2 satisfy the following constraint: T1 < Tcr < T2. The quantities cv,0(Tcr), cv,0(T1)
and cv,0(T2) are evaluated by the polynomial law for the isobaric specific heat as cv,0(T ) =
cp,0(T )−R∗.

The internal energy, according to Peng-Robinson EoS, can be written as

e(ρ, T ) =
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cv,0(T )dT − a

b

(k + 1)α(T )√
2

atanh

( √
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while the real gas isochoric and isobaric specific heats are defined through two general rela-
tions [17]:
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. (28)

The dynamic viscosity µ is also computed with a power law that approximates its variation with
the temperature

µ

µref
=

(
T

Tref

)β

, (29)

where µref and Tref are reference values, and the exponent β is a constant parameter. By
assuming a constant Prandtl number Pr, the thermal conductivity can be computed from the
viscosity as κ(ρ, T ) = cp(ρ, T )µ/Pr.

4 DISCONTINUOUS GALERKIN DISCRETIZATION

Governing equations can be written in compact form as

P(w)
∂w

∂t
+∇ · Fc(w) +∇ · Fv(w,∇w) + s(w,∇w) = 0, (30)

where w is the unknown vector, Fc and Fv are the convective and viscous flux functions, s the

vector of source terms. w =
[
p̃, u1, u2, u3, T̃ , k, ω̃

]T
is the unknown vector, where the polynomial

approximation of the working variables p̃ = log(p) and T̃ = log(T ) are used (see [12] for details).
Notice that the use of p̃ and T̃ does not modify the governing equations.

The governing equations are discretized in space by multiplying the system (30) with an
arbitrary smooth test function v = {v1, . . . , vm} and integrating by parts. The solution and the
test function are replaced with a finite element approximation wh and a discrete test function

vh that belong to the discrete polynomial space in physical coordinates Vh
def
= [Pk

d(Th)]m.
The set of test and shape functions in any element K is chosen coincident with the set {ϕ}

of NK
dof orthogonal and hierarchical basis functions in that element.

Each component wh,j , j = 1, . . . ,m, of the numerical solution wh ∈ Vh can be expressed as
wh,j = ϕlWj,l, l = 1, . . . , NK

dof , ∀K ∈ Th.
The DG discretization of the governing equations consists in seeking, for j = 1, . . . ,m, the
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∫
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dt
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∑
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for i = 1, . . . , NK
dof . Fj,n is the sum of the convective and viscous flux functions. As the

functional approximation is discontinuous, the flux is not uniquely defined, a numerical flux
vector, F̂j,n, over the mesh faces is adopted. The convective part is based on the solution of
local Riemann problems with the approximate Riemann solver of Roe [13], generalized to the
case of an arbitrary EoS following the Vinokur-Montagné approach [14], while the viscous part
is discretized with the BR2 scheme [15].

The shock-capturing technique adopted in this work is based on the approach presented
in [1], and inside each element is introduced an artificial diffusion contribution, without using
any shock sensor to detect discontinuities. The shock-capturing term is always active, but, only
a numerical viscosity is introduced only in regions where unphysical oscillations are present.

By numerically computing the integrals in Eq. (31), the following ODEs system is obtained:

MP (W)
dW

dt
+R (W) = 0, (32)

where R (W) is the vector of residuals and MP (W) is the global block diagonal matrix arising
from the discretization of the first integral in Eq. (31). The linearized backward Euler scheme
with a pseudo-transient continuation strategy is adopted for the time integration, and the linear
system is solved using the restarted GMRES algorithm, as available in the PETSc library [16].

4.1 Mixing plane and non reflecting boundary conditions

The mixing-plane interface allows to perform steady state calculations, coupling the fixed
(stator) and the rotating (rotor) domains, where equations are solved with a multi reference
frame approach. It removes the dependency of the results on the relative position between the
rotor and the stator. Outlet (upstream domain) and inlet (downstream domain) are averaged in
the pitch-wise direction, and mixed-out average is used to guarantee the conservation of mass,
momentum and energy.

In turbomachinery applications both the outflow and inflow boundary conditions are set
really close to the blades, and a small space exists between rotor and stator rows. Standard
inflow/outflow boundary conditions lead to the appearance of fictitious reflections that compro-
mise the accuracy of the solution. A set of boundary conditions that correctly describes the
incoming waves is thus required to avoid spurious oscillations of the solution. Giles [8] non
reflecting boundary conditions (NRBC) are chosen. NRBC decomposes the flow into its average
component (user specified/Mixing-plane quantities), and the fluctuating component, which is
obtained by means of a Fourier decomposition. The fluctuating component of the incoming
waves is treated according to the exact two-dimensional theory and prevent spurious reflections
at the boundary.

5 RESULTS

The MIGALE code is used to investigate the real gas flow for a sub-critical expansion through
the i) nozzle and the ii) first stage of an ORC turbine. The influence of the thermodynamic
models on the predicted aerodynamic performance is investigated. The MDM siloxane is consid-
ered as working fluid, which is characterized by a high molecular weight M = 236.5315 g/mol.
The constant ratio of specific heats is set to γ = 1.0173346 for the PIG model. A P2 polynomial
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Figure 1: Mach number contours for PIG (left) and PR (right) EoS. P2 solution approximation

solution approximation has been adopted for both computations. The L2 norm of all residuals
(|resi|L2 < 10−6, i = 1, . . . , 7) has been used as a convergence indicator.

5.1 ORC turbine Nozzle

The mesh consists of 5128 quadratic elements, hexahedra in the boundary layer and prisms
outside. The height of elements adjacent to the solid wall corresponds to a y+ ≈ 5. At the inflow,
the total pressure, p01 = 8 bar, total temperature, T01 = 545 K, flow angle, α1 = 0◦, turbulence
intensity, Tu1 = 4%, and viscosity ratio, (µt/µ)1 = 10, are prescribed. At the outflow, the static
pressure is set equal to p2 = 0.96 bar.

Figure 1 compares the Mach number contours obtained with PIG and PR models. The
predicted flow fields are slightly affected by PR and PIG models, even if some differences are
evident. This can be ascribed to the compressibility factor, Z = pv/(R∗T ), which is around
Z1 = 0.71 at the beginning of the expansion and is close to the unitary value of the PIG model
near the outflow.

5.2 ORC turbine stage

The mesh consists of 10963 quadratic elements, hexahedra in the boundary layer and prisms
outside. The height of elements adjacent to the solid wall corresponds to a y+ ≈ 5. At the
inflow, the total pressure, p01 = 9.11 bar, total temperature, T01 = 535 K, flow angle, α1 = 0◦,
turbulence intensity, Tu1 = 4%, and viscosity ratio, (µt/µ)1 = 10, are prescribed. At the
outflow, the static pressure is seto equal to p2 = 1 bar. The rotational speed of the rotor is set
equal to ω = [0, 0, 314.16 rad/s]T .

Also in this case, even if the compressibility factor at the beginning of the expansion is slightly
lower, Z1 = 0.66, the predicted Mach number contours (see Fig. 2) are not heavily affected by
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Figure 2: Mach number contours for PIG (left) and PR (right) EoS. P2 solution approximation

the chosen thermodynamic model. The effect of the different fluid models are more evident on
the density and speed of sound distributions on the stator and rotor blades, as shown in Fig. 3.

6 CONCLUSIONS

The MIGALE code, recently extended to the solution of turbomachinery stages, has been
used to investigate the expansion from subcritical inlet conditions through an ORC turbine
nozzle and stage. The computations have been performed with two fluid models of increasing
complexity and accuracy, i.e. PIG and PR models. The computations clearly show that the
simple polytropic ideal gas model is not suited for the simulation of the flow through the inves-
tigated ORC applications, and a more accurate model must be used. Moreover, Giles mixing
plane and NRBC are able to couple stator and rotor avoiding nonphysical oscillation, also in a
high order context.

Future work will be devoted to the implementation in the code of more complex models for
transport properties and to the assessment of the solver on more complex 3D configurations.
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