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Chapter 1

INTRODUCTION

1.1 — Structural behavior and safety evaluation of large concrete
structures

Since the 1960’s, it is possible to assist to the simultaneous development
of numerical methods and nonlinear material models. Economical arguments,
connected to a greater knowledge demand about structural behavior and its
safety evaluation, are some of the reasons by which nonlinear material models
tend, nowadays, to be present in almost all fields of civil engineering.

However, such a powerful tool has its own disadvantage. As it is
well known, nonlinear material models are essentially large computer-time
consumers, which constitutes a serious problem, when dealing with large
tridimensional structures.

An example of this scenario is the design of concrete dams, where linear
elastic analyses are still today in practice, specially when concerning dynamic
computations. Taking into consideration that, for a typical seismic analysis,
an accelerogram will contain information abut 1000-2000 time steps, which
will require a number of calculations of the same order of magnitude, it is
easy to understand why a nonlinear earthquake analysis of, for instance, a

tridimensional concrete dam is still today of restricted practical use (Hall
(1988)).

Furthermore, many of the nonlinear analyses of dams are performed
in order to determine the causes of many observed structural problems
(eventually proposing immediate safety remedies), in a a posteriors fashion,
and only seldom for design purposes.

Koyna Dam {107m high), in India, is probably the most famous example
of a concrete dam which experienced serious cracking during an earthquake,
which motivated a great number of nonlinear back-analyses, throughout the
world-wide scientific commumty.
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More recently, Kolnbrein Arch Dam (200m high), in Austria, was
analysed (Linsbauer ef ol (1989a, 1989b)), in order to check for the causes
of the extensive cracking observed near the toe of the dam, at the moment
the water first attained a level 40m below the maximum. Although in this
case the loads responsible for the nonlinear behavior were of static nature
(grouting pressure, combined with dead weight and hydrostatic pressure), the
complexity of the calculations which were performed called for a simplified
analysis, taking into consideration only part of the central cantilever, under
plane strain assumption.

This latter example reflects the attention which must be devoted to the
kind of nonlinear model to be selected for a large scale computation, in order
to capture those features of concrete behavior which should be considered the
most relevant for a proper structural nonlinear characterization, but keeping
respective computational effort within reasonable limits.

1.2 ~ Statement of main goals for the election of a concrete
material model

In continuation, some particular aspects of constitutive behavior of
concrete (specially massive concrete) will be referred, in order to guide
towards the election of an appropriate nonlinear material model, physically
realistic (for engineering purposes) and computationally fast and easy to
implement (in orther to be feasible).

Among the many contributions from experimental analyses of behavior
of concrete specimens, it is possible to put in evidence that:

i) Under monotonic uniaxial tests one of the most visible aspects of concrete
behavior is that, beyond some stress threshold, it behaves nonlinearly (see
figure 1.1), exhibiting progressive and irreversible damage until complete
collapse occurs (either in tension or in compression). Bellow the stress
threshold, behavior can be considered linear and elastic.

Under biaxial and triaxial loading similar conclusions can also be taken
about concrete behavior, namely the nonlinear branch of the stress-strain
curves after an initial threshold.

This peculiar macroscopic behavior is usually interpreted as a
consequence of the fact that concrete is a composite material, with the
components:
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- a cement matrix, which is a microporous material;
- the aggregates;
- a transition zone between the matrix and the aggregates.

The weakest zone is the last, called halo, because crystals, as a
consequence of wall effects, are there highly oriented, leading to a greater
porosity (Mazars and Pijaudier-Cabot (1989), Mazars (1991)). Onset of
damage occurs in this zone, whenever material strength is lower then the
local {microscopic) stress concentration (which enables to understand the
existence of a stress threshold, for onset of nonlinearity).

¢ MPa / /

Tension Compression

Figure 1.1 — Uniaxial concrete behavior (Mazars and Pijaudier-
-Cabot {1989))

Many mechanisms of damage exist, namely the one associated to the
propagation of internal microcracks and microvoids (usually inside the
cement matrix, following an aleatory and erratic path between the
aggregates (Ofiate et al (1987), or in the cement-aggregate interface
(Yankelevsky and Reinhardt (1987)). Another mechanism is the one
due to high hydrostatic pressure, leading to consolidation of the material
and the collapse of the microporous structure.

Under biaxial and triaxial compressive loading concrete strength is
greater that the one observed in uniaxial tests. In biaxial compressive
tests it is typical to observe a 1.16-1.20 ratio between biaxial and uniaxial
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Figure 1.3 ~ Triaxial concrete behavior (Chen (1982))

strengths (see figure 1.2}, but in triaxial tests much greater ratios
are reported (see figure 1.3}, sometimes attaining values up to 10-20,
depending on the confining stresses considered. Although modelling of
material behavior under large hydrostatic pressures is obvioulsy out of the
scope of the present work, a realistic material model for concrete needs to
account for the important feature of strength enhancement under biaxial
and triaxial compressive loading.



iii)

iv)
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Beyond the compressive stress threshold, and upon unloading, it is
possible to observe that some permanent strains remain (figure 1.1),
which is an evidence of the irreversibility inherent {o the material loading
process. This aspect is an important feature in concrete behavior, and
traditionally is referred to as some “plastic strain” (Pdvoas (1991), Ofiate
et al (1987)), although some controversy still exists around the pertinence
of this concept when applied to geomaterials (CEB (1991), Lubliner et al
(1989)). These irreversible strains are commonly attributed to the fact
that, after occurence of damage, many fissures are distributed among
the cement matrix. The roughness of these fissures and the aggregate
interlock (CEB (1991)), as well as some slippage, preclude complete
closure of cracks, leading to residual strains when concrete is unloaded.

In what concerns earthquake engineering purposes, this plastic effect is an
important feature, as it is closely linked to the energy which is dissipated,
thus affecting overall structural damping.

When reversing the sign of the external load, it is possible to observe that
some stiffness recovering occurs (figure 1.4), when passing from tension
to compression {and backwards). This is a macroscopic consequence of
the existence of internal microcracks, with capability of selective opening
(or closing), depending on the sign of the external load.

%3 o
BrorLjum)

Figure 1.4 — Stiffness recovering (Yankelevsky and Reinhardt
(1989))

This phenomenon is also an important feature of concrete behavior, and
is termed “unilateral effect” (Mazars and Pijaudier-Cabot (1989), Mazars
(1991)). It is obvious that, for dealing with this directional behavior, the
nonlinear constitutive law to select for concrete should contain some kind
of “memory”.
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v) When performing experimental uniaxial tests with concrete, but applying
loads at increasing speed, it is possible to observe that, when
comparing with a quasi-static test, stress-strain curves exhibit decreasing
nonlinearity, as well as an increase in both the peak strength and the peak

secant modulus (Suaris and Shah (1985), Chappuis (1987)).

It is obvious that microcracking process exhibits rate sensitivity, which is
rather more pronounced for tensile than for compressive tests (see figure
1.5).
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Figure 1.5 — Rate effects on concrete behavior (Suaris and Shah
(1984})

If one takes into consideration that under seismic loading deformation
rates varying from 107%/s up to 107! /s can be expected (almost the same
interval as in figure 1.5) — which is commonly said to be the “impulsive
restraint fatigue domain” — it is clear that for earthquake engineering
purposes it will be preferable a concrete material model which could
accommodate these rate effects.

1.3 — The option for damage models

Having selected the basic features of concrete behavior which must be
included in the material model, the next priority is the selection of the
nonlinear material model itself.
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There is, of course, a wide variety of different material models
which could, in principle, satisfy the above requisits (models based on
Theory of Hypoelasticity, Hyperelasticity, Plasticity, Fracture Mechanics,
Plastic-Fracturing, Endochronic, Microplanes and Damage Mechanics are
only some relevant examples {Chappuis (1987), RILEM (1988), Pévoas
(1991)).

Keeping in mind that such a model is mainly intended to perform large
scale computations, one basic criteria for the selection has to be, of course,
the expected computer speed performance, for the same level of information
which is obtained.

In the context of the present work, a Damage Model has essentially
been selected, with two independent internal damage variables, in order to
characterize the (assumed) independent nonlinear mechanisms of degradation
of concrete, under tensile or compressive loading conditions.  This
provides a constitutive law with capability of describing the overall
nonlinear stress-strain curves, including the strain-softening response,
and the stiffness degradation mechanism (clearly visible in figure 1.1,
under multiple loading-unloading conditions). Furthermore, this option
has the important advantage of dealing with tensile and compressive
concrete behavior in a unified fashion, that is, essentially the same
material model is adopted for tension-tension, compression-compression and
tension-compression domains {note the algorithmic simplicity which is hence
obtained, namely when compared to the rather usual procedure which
combines a plasticity derived model for compression-compression domain,
a fracture model for tension-tension domain and some arbitrary procedure
for tension-compression domains (Pévoas (1991)).

As it will be seen in the next chapters, Damage Mechanics, together
with the internal variable concept, provided the general framework in which
was possible to develop a very efficient nonlinear material model, with a
strain-driven formulation, which lead to an almost closed-form algorithm,
where for evaluating the local stress tensor iterations are precluded or rarely
needed.

The model which will be described in the next chapters has its own point
of departure on the Continuum Damage Mechanics, which is a very powerful
and consistent theory, based on the thermodynamics of irreversible processes,
firstly introduced by Kachanov (1958) for creep-related problems.

The Continuum Damage Mechanics has a wide range of domains of
applicability (creep, fatigue, progressive failure (Chaboche (1988a, 1988b))),
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and it is used, nowadays, for materials so different as metal, ceramics, rock
and concrete Kachanov (1986)). Such versatility is mainly due to its rigorous
thermodynamic foundations, from which not only consistent but also very
elegant algorithms are derived.

It was for the aforementioned reasons (rigorous thermodynamic
foundations, efficient algorithmic implementation) that a Damage Model has
been selected, as the main framework from which a material model for large
scale computations of concrete structures has evolved.

By including a plastic strain tensor with a simple but efficient evolution
law, the occurrence of irreversible deformations will also be allowed.

Finally, rate dependency will be accounted for as an almost natural
extension t{o the plastic-damage model, introducing a viscous regularization
of the evolution laws for the damage variables.
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A MATERIAL DAMAGE MODEL
COMBINED WITH PLASTICITY

2.1 — Damage variable concept

For a material being submitted to a particular kind of loading, Continuum
Damage Mechanics characterizes its internal damage by means of a set of
internal “damage variables”, ranging from 0 (virgin undamaged material) to
1 (completely collapsed material) (Lemaitre (1985a)).

In order to clarify the concept of damage, consider a surface element of
outwards normal n in a damaged material volume. This surface has an area
large enough to contain a representative number of defects, but still enabling
to be referred as pertaining to a particular material point. If § denotes
the overall section area and § the effective resisting area (§ — S is the area
occupied by the voids), damage variable d associated to direction n is, by
definition (Lemaitre (1984)):

g=325 4
S
As it can be seen, d represents the surface density of material defects, and will
have 0 value when material is undamaged, as clearly it will be § = 5. During
the reduction of the effective resisting section area damage will continuously
increase, until rupture occurs when some critical value of d is reached (but
always d < 1).

(2.1)

Uy | Gy

From what it is possible to infer {from this definition, damage variable is
a non-decreasing quantity, which points out the irreversible characteristic of
any material loading process: once some cracking occurs, the effective area is
reduced, and no reversibility can exist thereafter. This meaningfull physical
reasoning is of capital importance in the context of Continuum (sometimes
Continuous) Damage Mechanics, furthermore justifying its denomination.

Tt must be pointed out that in the above definition damage appears as a
directional quantity, which is an important feature for materials exhibiting
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highly oriented cracking (Suaris et al (1990)), thus leading to important
anisotropy. For such materials, tensor-valued damage variables (of rank eight,
four or two) (Murakami (1983), Ju (1990)) or at least vector-valued variables
{(Suaris and Shah (1985)) can be adopted.

In many cases a single scalar representation of damage is adopted, which
ensures a sufficiently realistic material model, as it is put in evidence by &
great variety of similar models already implemented (Cervera et al (1990),
Oliver et al (1990), Mazars (1991)), furthermore rendering a less complicated
algorithm (with reference to tensorial or vectorial alternatives). In this kind
of models no particular direction is associated to each damage variable, that
is, cracks are assumed to be equally distributed in all directions (Lemaitre
(1984)).

2.2 — Effective stress concept

Linked to damage concept, the “effective stress” concept is also a
central one in Continuum Damage Mechanics. Although with a very simple
definition, its is a meaningfull physical quantity, of capital importance for
monitoring material internal processes.

For introducing this concept see figure 2.1, where an overall section area
S could be considered (to which the usual Cauchy stress o is reported), as
well §, which is the effective resisting area (thus, after excluding all the
defects).

Figura 2.1 — Cauchy stress and effective stress

If one defines the stress & such that the following equilibrium equation is
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satisfied
S, i 9 (2.2)

it is clear that

o=a

Ul

(2.3)

and consequently (by using the damage variable definition),

ag

1-d

g = (2.4)
which is the definition of the effective stress & (Lemaitre (1984)). When a
damaging process is occurring, & is physically more representative than o,
because in reality it is in the effective stress area that the external loading is
resisted, and this is the reason why the powerful effective stress concept has
been introduced in Continuum Damage Mechanics. From equation (2.4) it is
clear that when damage is null & = ¢, and when it approaches 1 the effective
stress will tend to infinity.

In connection with the effective stress concept, the hypothesis of strain
equivalence (Lemaitre and Chaboche (1978)) is also introduced:

“ the strain associated with a damaged state under the applied stress o is
equivalent to the strain associated with its undamaged state under the
effective stress & ” (Simo and Ju (1987a)).

Taking advantage of this hypothesis, together with the already expressed
dependency between o and & (equation (2.4)), constitutive laws can be
derived in a more comprehensible fashion, by postulating intuitive effective
stress-strain relations for material points located on the effective area.
For concrete, Cervera et al (1991) considered successfully a linear elastic
stress-strain assumption in the effective space; in this situation, the nonlinear
overall behavior is essentially driven by the effective area reduction, as it is
obvious from equation (2.1), thus leading to

c=(—-ds=(1-d)Ec=E'e
in a unidimensional problem (this equation also puts into evidence that
damage induces a reduction on the initial elastic Young’s modulus, leading

to the secant one E’).

In the present work the above mentioned strain equivalence will be
considered combining elastic and plastic contributions. Considering a general
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tridimensional representation, the effective stress tensor @ (second order) will
assume the following form:

=Dy : (e6—¢€") (2.5)

In this expression Dy is the usual fourth order linear-elastic constitutive
matrix, € is the second order strain tensor, and (:) denotes the tensorial
product contracted on two indices. &P is the plastic strain tensor, which
reproduces the residual strains visible on concrete upon unloading.

2.3 — Considerations about thermodynamics

Continuum Damage Mechanics is based on the Thermodynamics of the
Irreversible Processes (Lemaitre et al (1978), Lemaitre (1984), Krajcinovic
and Fonseka (1981)), which implies that First and Second Principles of
Thermodynamics are systematically obeyed (Lubliner (1972)). This leads
to a very consistent framework, in which a non-negative energy dissipation
is continuously enforced, according to the irreversible nature of the internal
physical processes (this is not always satisfied by other constitutive material
models, as it can be seen in Chappuis (1987)).

To establish a particular constitutive law, rigorously founded
thermodynamically, a free energy potential must be introduced, where
observable and internal variables must be represented (Lubliner (1972)).
This potential characterizes the local thermodynamic state, in the sense
that distinct equilibrium configurations will have different values for the free
energy potential. In this work the strain tensor € is selected as the observable
variable and €? and the damage variables are the internal ones.

Besides the free energy potential definition, the derivation of a particular
constitutive model demands the definition of the kinematics of the internal
variables, that is, their evolution laws. In fact a great freedom exists
in choosing a particular law (Lemaitre (1984)), providing that a realistic
representation of the experimental material behavior is considered, and that
a positive (or null) energy dissipation is always obtained (in accordance with
the irreversibility of the process).

The free election of the observable and internal variables and of
the energy potential which will characterize the material thermodynamic
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state, together with the evolution laws, enables to establish a wide
variety of thermodynamically consistent material models, with the intended
particularities.

In continuation, the relevant steps for developing a plastic-damage model
will be presented. For the sake of clarity, rate dependency will be considered
in an autonomous chapter, thus avoiding unnecessary complexity of exposure
at the present stage.

As a consequence of having selected a scalar damage model, with
separeted internal damage variables for tensile and compressive siress
contributions, a split of the effective stress tensor into tensile and compressive
components will be needed. In order to clearly identify contributions
respecting to each one of these independent effective stress tensors, (+) and
(-) indices will be extensively used, referring to tensile and compressive
entities, respectively. In this work, the stress split will be performed
according to

3

gt = <§> = ) <&> pi®Pp
=1
3

g = >o< = Z >0 < pi®@p:
=1

where ; denotes the i-th principal stress from tensor & and p; represents
the unit vector associated to its respective principal direction. The symbols
< . > are the MacAuley brackets (thus giving the value of the enclosed
expression when positive, and setting a zero value if negative), and symbols
> . < are such that <z >+ >z <=2

2.4 — Helmholtz free energy potential

Keeping in mind the effective stress tensor introduced by equation (2.5),
a possible form for the free energy potential is the Helmholtz {ree energy. In
the present work the following definition (inspired in La Borderie et al (1990},
Mazars and Pijaudier-Cabot (1989)) will be adopted for this potential:

¥ (e,ef,d",d7) = (1— dH) Ok (e,67) + (1 — d7) Y5 (e,€7) (2.6)
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with:

1
U = Ui (5(e,e’)) = 56" Do i (2.7)

- :D 7 (2.8)

The entities ¥ and ¥y are elastic free energies and (1 — dt) ¥} and
(1 —d7) ¥; are the contributions to ¥, due to the split of & effective stress
tensor into &% and &~ contributions. dt and d~ are the damage variables
and Dy ™! is the linear-elastic compliance matrix.

Considering the definition of Dg~?
Dol = Doy = 5[ (1 +2) 8 8 — v 835 (2.9)
and (due to the adopted effective stress split)
og=06"+5" (2.10)
tr(ad) = &:1 = tr{¢") + tr (") (2.11)

i expression (2.7) can be sucessively modified:

Pt = -é-&“‘“ Dot = -2-%&+: [(1 A L utr(&)I] =
_ 12"; 75— Lot (3)tr (37) =
- 12;” 5ti5 - Lut(et) — sotr (@) (3)  (212)
Since
" =0 (2.13)

e (-) is the trace of a tensor.
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it is also possible to express ¥ according to:

1+v v v
b st .ot Baty o =) —
U = AR 2Et?~ (a™) 2Etr(a‘ Yir (&7)
1 v
L lat.p.logt 4 [ — o\ (et
=25 Dy 5 ( 1 (57)tr (& )) (2.14)

Owing to its quadratic form, the first additive term of (2.14) is always
positive, provided that Dg™! is a defined and positive matrix. Once tr (&)
is positive and ¢r () is negative, the second additive term is also positive,
and so

ot >0 (2.15)

Using similar reasonings, it is possible to express that

1 1
U = ~2~6'"":D0"1:6::§6'" (et + o) =
1+U Lot — 1—-—. -1, ==
=gy 06T - t:r'(a )tr(a)+2cr DT =
1
=Dy e - g%tr( & )tr (5%) >0 (2.16)

From definition (2.6), and according o equations (2.5, 2.7, 2.8), it is possible
to evaluate the expression for the total free energy when no damage and
plasticity has yet occurred:

1
‘1’0:\1’3'+\I]EZ§6'+:DQWII

o
1., L - 1_ 1
m-2—(0+—|—a):Dol:a:EU:Dglzam
1
=—2—e:Dg:Do‘1:Do:s~—-%s:D0:s >0 (2.17)

As it can be observed, ¥, recovers the usual form for the elastic free energy,
which is a thermodynamic demand, once for elastic stages the Helmholtz free
energy has to equate Y.

Finally, due to the non-negativeness of ¥J and ¥; and provided that

0< dt <1

0< d <1 (2.18)

it can be concluded that

Y= (1-d)¥+(1-d)¥; >0 (2.19)
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From the observation of equations (2.6), (2.7) and (2.8) it results that

av

-yt = e v (2.20)

—Y* and —Y~ are commonly referred to as being thermodynamic forces
associated to damage variables d* and d~. Each one of these forces is an
elastic strain energy release rate associated to a unit damage growth, which
gives a physical meaning to the thermodynamic forces, analogous to the
Fracture Energy concept in Fracture Mechanics (Lemaitre (1984), Chaboche
(1988a)).

2.5 — Characterization of damage

In order to clearly define concepts such as “loading”, “unloading”,
“reloading”, a scalar positive quantity, termed equivalent stress, will be
defined. In essence it is comparable to the dual concept of equivalent strain
from Simo and Ju (1987a), and enables to compare different tridimensional
stress states, evaluating a suitable norm of their respective stress tensors.
With such a norm, distinct tridimensional stress states can be mapped to
a single equivalent unidimensional stress test, which makes possible their
quantitative comparison (as it is also common practice in Plasticity (Owen

and Hinton (1980))).

As a consequence of the stress split, an equivalent effective tensile stress
7+ and an equivalent effective compressive stress 7~ will be used. In the
present work they will assume the following forms:

7t =+/3+:Dp ! : 5t (2:22)

7= \/ V3 (K Gny + Tour) (2.23)
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In expression (2.23) K is a material property and o,, and T, are,
respectively, the octhaedral normal stress and the octhaedral shear stress+,

obtained from &-. Appendix A.l is devoted to a detailed discussion of
equations (2.22) and (2.23), where definition of K is also presented.

With the above definitions for the effective equivalent stresses, two
separeted damage criteria gt and g~ will be introduced (Simo and Ju
(1987a)), the former for tension and the latter for compression:

gt(FT,rt) = 77 —rT <0 (2.24)
gEF )y =7 -1 £0 (2.25)

Variables r+ and 7~ are current damage thresholds, in the sense that their
values control the size of the expanding damage surfaces. For the initial stage,
that is, when no loading has yet been applied, values r§ and ry, assumed
material properties, are attributed to these thresholds.

As it can be deduced from definitions (2.22) and (2.23), equation (2.24)
corresponds to a damage bounding surface which is an ellipsoid centered at
the origin in the space of principal undamaged tensile stresses (Oliver et al
(1990)), and equation (2.25) defines a Drucker-Pragger cone for compression
(see Appendix A.1 for details).

Equation (2.24) states that tensile damage tends to increase if ¥+ =r*,

and so it will be initiated when for the first time 7+ = rd (a similar reasoning

can be applied for compression).

2.6 — Evolution of damage variables

For the evolution of damage variables the following rate equations will
be assumed:

¢ Tension
. - aG*(?*')
+ _ g
dr =49 R (2.264a)
G = it (2.26b)

oo = %—tr (o);

Toet = %‘Jz , where J, is the sccond invariant of the devintoric stress tensor obtained from ¢.
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¢ Compression
(2.27a)
9= =4~ (2.27h)

with G* and G~ being appropriate monotonically increasing functions
(derived from experimental observation), in order to accomplish conditions
expressed at equation (2.18). ¥+ and 9~ are damage consistency parameters.
Using the Kuhn-Tucker relations (Simo and Ju (1987a)), Oliver et al (1990)),
it is possible to define damage loading or unloading in compacted form
(exemplifying for tension):

>0 gt<0  drgt=0 (2.28)
Interpretation of these relations (or of a similar set for compression) is
obvious:

. g% < 0 implies that no further damage is occurring, as it is clearly
expressed by last equation in (2.28), which imposes 97 = 0 (equivalent
to say, from (2.26a), that no damage evolution exists);

. with 9% > 0 damage is increasing. In this situation g+ = 0, and from
the damage consistency condition it will be possible to define 9*:

gt(#Fr,rt) = 0 = const. = ¢HF*,7t)=0 =
Fr=st =4t (2.29)

Therefore,
T = maz {r}, maz (F*)} (2.30)

By means of (2.29) and (2.262) it is possible to define the kinematics of
tensile damage variable according to:

: G
dt =7t M =Gt >0 (2.31)
art
For compression it would be obtained:
i =+ 2900 o5 (2:32)
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2.7 — Evolution of plastic strain tensor

As for damage variables, evolution of the plastic strain tensor needs to
be introduced, in this work having been considered the following form:

& =pBEH(d") (‘_?—e) O;t oo (2-33)

g0

where E is the Young’s modulus and S is supposed to be a material
parameter, that controls the rate intensity of plastic deformation (a zero
value for this parameter cancels plastic contribution, thus reducing the
material model to a elastic-damage one). H(d™) is the Heaviside function
of compressive damage rate, and it has been introduced in order to cancel
plastic evolution during compressive unloading or partial reloading. The
MacAuley brackets enable to set a non-negative value to the product & : g,
of capital importance for ensuring a non-negative dissipation (section 2.8).

Defining N
G

1 = (2.34)

3

o :
equation (2.33) can assume the following contracted form:
6 =BEH(d") (15 : £) D3 : 15 (2.35)

The crucial idea underlining the rate equation (2.33) is that plastic
strain evolution is assumed to have the direction of the elastic strain
tensor (Dal : &), which seems a reasonable assumption (although obviously
simplified), in the sense that plasticity is then essentially driven by the
effective stress tensor, an entity with physical background.

The link that in the present model has been considered between
plasticity and compressive damage evolutions (by means of factor H(d™))
was determined by efficiency demands: plastic deformations in reality
are present under tensile loading, but have much more relevance under
compressive loading. As in fact only an overall effect of plasticity is
intended (inducing material damping), the option made seems reasonable.
Furthermore, connecting the two mechanisms of nonlinearity — damage and
plasticity — avoids evolution of plastic strains during unloading or before the
compressive damage threshold is attained (for instance, during the initial
elastic branch or during a partial reloading).
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2.8 ~ Dissipation

As stated before, an important feature of Continuum Damage Mechanics
is its energetic consistency, which implies that during any loading process
dissipation of energy is always a non-negative quantity. This also signifies
that entropy will tend to grow, hence leading to an irreversible process,
according to the Second Principle of Thermodynamics (Lubliner (1972),
Lemaitre (1985b)).

The mathematical expression for this condition is the Clausius-Dubem
inequality (Lubliner (1990)), whose reduced form is:

y=—Fto:é 20 (2.36)

where ¥ is the assumed free energy potential and ¢ is the usual Cauchy stress
tensor.

In accordance with expression (2.6),

A v av . ov .
V=" g+ et &F A ——dt + o d” 2.37
Je 8+861° © +6d+ UFrE (2.37)
Substitution into {2.36), also taking into account the derivatives already
introduced at equations (2.20, 2.21), it is possible to obtain another
expression for the dissipation:

'}=(am%§—):é+\1’§d++‘l’55"*§§;=é” (2.38)

Due to the fact that € is a free variable, an arbitrary é can be specified. For
the equation of dissipation to maintain its generality, the expression within
the parenthesis must cancel (Lubliner (1972)). Hence

av
= — 2.
o= (2.39)

which is ome of the Coleman’s relations (Lubliner (1972), Simo and Ju
(1987a)), essential for the assessment of the constitutive law.

Splitting the current strain tensor € into elastic and plastic contributions,

€=¢" ¢ (2.40)
Ee =& Ep (241)
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the effective stress tensor may be expressed in the form:
() =Do:(e—€")=Dg:¢° (2.42)

and consequently the elastic free energies defined by (2.7, 2.8) are also
expressable by:

1 1
‘yg(se)=§&+ Dunl 5'3"2‘6'+:D0—1:D0:€e:
= %6’*' 1 €° (2.43)
1 1
Vo (ef) = 50" Dyt iE = 59 1 6° (2.44)

The differentiation which is present on equation (2.38) can be
decomposed according to the chain rule, thus rendering:

ov 0¥ Q¢
oY _ovw. 2.45
7T %e B B¢ (2.45)
Due to the dependency between &° and € already expressed at (2.41),
de®
— =1 2.46
e (2.46)
in which I is the fourth-order identity matrix. So,
R N - 0%
= — = {1~ - d 2.47
7 dee (1 —d%) dee +( ) dee ( )

Once & (¢°) has a linear dependency on &°, due to the stress split defined at
section 2.3 it is clear that

ot (ae’) = adt(c%) (2.48)
o (ae’) = ad™(e°) (2.49)

{(a being some arbitrary scalar). These relations put into evidence that
both &+ and &~ are homogeneous scalar functions of first degree on &°, and

consequently, according to Fuler’s theorem¥:
oat
dee

G () = € : (2.50)

! Buler's theorerm states that if ¢ (X} is a homogeneous function of m-th degree on X, that is,
P (AX) =A™ (X)
for an erbitrary scalar A, it occurs that

8
a

€

|

p(X)= %X

be
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(2.51)

In order to clarify the constitutive law (2.47), equation (2.43) must be
derived with respect to variable ¢°

awd 108 , 1_
852 = g ie t 5o (2.52)

Calling for equation (2.50), it results that

0Uy 1, 1.,
= gt Zgt = 2.53
gee 27 T37 =° (2:53)
Identically, it is easy to conclude that
0%,
=g 2.54
e =0 (2.54)

Hence, the contitutive law defined by (2.47) can be explicited, finally
rendering for the Cauchy stress tensor o

o=(1-det + (1-d") & (2.55)

In the equation of dissipation, now reduced to

y=0fdt + ¥ d — — ¢ 2.56

v 0 + 0 8€P ( )
the first and second contributions are non-negative quantities, because
according to (2.15) and (2.16) ¥, ¥. are non-negative, and d*, d~ are
positive (or null), due to the kinematics of damage expressed by (2.31) and
(2.32).

So, condition 4 > 0 will be satisfied once proved the non-negativeness of
the last contribution to dissipation. The demonstration will be made keeping
in mind that, due to the chain rule,

ov AT
Jer  Oee  Oer

(2.57)
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and that expression (2.33) can be written in compacted form as
e?=aD;l: G (2.58)
with e being the following non-negative scalar:

[+,
S

Q!

iy
= > 2.
a=BEH(d") - 20 (2.59)
According to (2.41),
dee
=1 2.60
5or (2.60)
and consequently:
ov ., 0¥ 4. -
_3512'8 maase.l)o 10 (2.61)

But equations (2.47) and (2.55) enable to express that

o

G = (1~d*)a" + (1—-d7)a” (2.62)

which can then be substituted into equation (2.61):
~Z= i@ =a[(1-d")&" D7 16 + (1~d7) 5 DG &] (2.63)

Insight on the enclosed brackets expression and comparison with definitions
(2.6, 2.43, 2.44) puts into evidence that

ov .
_-é—e-;:s? == 2(],‘1’ ZO (2.64)

which is non-negative, once ¥ and ¢ are non-negative quantitiesi, thus
leading to satisfaction of dissipation inequality:

Y= U dt 405 d +2a¥ 20 (2.65)

! Now it is clear the reason for having considered the MacAuley brackets in equation (2.33): this way a
becomes o positive quantity.
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2.9 — Numerical computation of internal variables

For the numerical implementation of the above described model, it will
be necessary to specify the procedure for evaluating the damage variables
and the plastic strain tensor.

Owing to the fact that the strain tensor € is fully determined at the
beginning of each step of a displacement-based finite element algorithm, a
strain-based scheme for updating d*, d~ and &” will be presented, rendering
an almost closed-form algorithm (with obvious computational efficiency).

2.9.1 -~ Damage variables

The particular forms assumed by the rate equations (2.31) and (2.32)
allow to specify the following damage evolution laws, after performing a
trivial integration (with the initial condition of null damages):

dt = Gt(7t) (2.66)
d =G (77) (2.67)

These equations put into evidence that, once specified the strain tensor,
damage variables can be easily evaluated, as they only depend on the
equivalent stresses ¥7 and ¥~, which are evaluated from e.

So, the selection for the particular forms of functions G* and G~ will
determine the specific damage evolutions to be considered, and consequently
some care must be devoted to this subject, so that a realistic representation
of experimental behavior might be obtained. Anyway, the change from one
particular set of evolution laws to a different one does not put any special
problem, thus enabling this model to have substantial updating versatility.

For the present work, the following damage evolution rules will be
adopted:

¢ Tension
+ at (1—%)
dr=1-"2¢ 0 (2.68)
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s Compression

d- :1—;"_—(1WA—)—A”6 o (2.69)

both capable to ensure that

Equation (2.68) is able to reproduce the softening branch of a concrete
unidimensional tensile test, asymptotically to the strain axis, as it is an
observational evidence (Lubliner et ol (1989)). With this evolution law
for dt, due to Oliver et al (1990), a finite area is retained between the
stress-strain curve and the strain axis, which is crucial to appropriately define
the fracture energy concept (as it is well known, of primary importance to
satisfy requisits of mesh-objectivity when dealing with softening materials, as
it happens for concrete under tensile loading (BaZant et al (1979a), BaZant et
al (1983)). Besides the tensile damage threshold r{ (usually corresponding
to the uniaxial tensile peak strength), only the parameter A% exists, the
determination of which is made by equating the material fracture energy to
the time integral of dissipation (see Appendix A.2 for details). Oliver et al
(1990) obtained excellent results with this evolution law, in the context of
an isotropic model with a single damage variable.

By means of equation (2.69) it is possible to reproduce the hardening
effect on concrete submitted to compression, as well the softening wich occurs
after the compressive strength is attained (Mazars and Pijaudier-Cabot
(1989)). In figure 2.3 it is demonstrated that with this evolution law a
fairly good representation of concrete experimental behavior is obtained.
Besides 7y, for its characterization two parameters (4™, B™) must be defined,
usually by imposing that the evolution curve satisfies two selected points of
a unidimensional experimental test (see Appendix A.2 for details).

2.9.2 — Plastic strain tensor

The particular evolution law proposed on equation (2.33) has the
important advantage of enabling to define a fast numerical algorithm for
updating the effective plastic stress tensor, as it will be proved in this section.
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Performing differentiation with respect to time of equation (2.5) and
taking (2.33) into consideration, the following expression can be obtained:

&=Do:(¢~é") =Dy :é—ﬁEH(d‘)(&:é)# (2.70)

Introducing a backward-Euler difference scheme, denoting by (.)i+a¢ entities
respecting to the actual time-step and by (.}, the entities already determined
in the previous time-step, and using the standard A(.) notation for
incremental entities, the numerical integration procedure will be:

&t+At = &t + Do s A — ﬁEH(d;i—/_\.t) (&M*At : &E) “"“""g"t"'téi"‘”“" (271)

Otine t Trint
where further simplification could be introduced by setting

& =a.4+Dg: Ae (2.72)
and
l6)l=va:a (2.73)

thus rendering (performing some mathematics):

| Feeae ||+ ﬁEH(Ci;{-At) (Frrar : D) Tir it
| &erae | Terne ||

=& (2.74)

Considering definition (2.34) for 1g, ot and the next one for 8,

0 =| Guine | +BEH(da) (Lo, 0, ¢ DF) (2.75)

it results
016, ,, =& (2.76)

from which it is evident that (evaluating the norms of both members):
0= | (2.17)

This conclusion can be used to define equation {2.76) in an alternative way,
that is: _
015, 0 =16 150 = 0157 (2.78)

where use of equation (2.34) was made once more, for defining 157. Direct
observation of equation (2.78) puts into evidence that

16,00 = 15T (2.79)
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and so equation (2.75) can assume the form

137 | = || Geee | + BEH(dr,ne) (L7 : e) (2.80)
or alternatively

| o || = || 7 | = BEH{d},p,) (157 2 D) (2.81)
Hemnce, the effective stress tensor can be evaluated according to

C Oepae = | Ferae |l Lo, n = I &eroe | 157 =
= (137 || - BBH(L ) (L7 : D6) 17 =

= (1 L B s g sa) ot ()

from which it is clear that, once known H (dt_ L), evaluation of &¢par can
be performed directly, as Ag, &7 and 157 are fully explicit quantities, due
to their strain-driven characteristics. The form of equation (2.82) puts into
evidence that the updating of &y is inspired in a redial return algorithm:
&7 can be looked as a predictor tensor, from which the effective stress tensor
can be obtained once evaluated the scale factor o

B

e |

Numerical procedure for computing the effective stress tensor is then only
reduced to the evaluation of o. Note that e < 1, which means that

| Farae | <& |l (2.84)

EH(d;,p) (Lgr : L6) (2.83)

o = 1

As only a single doubt exists in equation (2.82) (the 0 or 1 value for the
Heaviside function), determination of the new effective stress tensor can
be performed in a double-trial procedure. Box 2.1 presents the algorithm
implemented within the context of the present work for determining the
effective stress tensor, when plasticity is intended. It is instructive to see
that as

Oipne = O &T H

according to (2.84), and denoting by (7)) the equivalent stress associated
to the negative split of &7 tensor, the following inequality applies:

Froe < (F1)7 (2.85)
which means that if (F7)” < r; obviously T a, <7t and d ¢ = 0, and so

no plastic evolution occurs (a quick exit from the algorithm devoted to the
evaluation of compressive damage and plasticity can then be performed).
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Box 2.1 — Evaluation of elasto-plastic effective stress tensor

INPUT: 8, E, Dy, 7, Le, vy

OUTPUT: &40

ALGORITHM:

(1) Evaluate &7 = &; + Dy : Ae

(2) Split into (&7)" and (%) and calculate (¥7)7, according to (2.23).
Check for (77)™ > r; 7

YES:

NO:

Proceed to step (3).

No compressive damage and no plastic evolution exist.  Set
Frrne = 61, EXIT.

(3) Evaluate 1,7, according to (2.34), and || & ||.

(4) Checkfor (157 : Ng) >07

YES:

NO:

Plasticity is possible. Compute

B
ml—WElw :A
* et et e

Compute a trial effective stress ¢ = a 7. GO TO step (5).

No plasticity exist. Set &4, = o+ . EXIT.

(5) Perform splitting of & and calculate 77 (&), according to (2.23). Check
for 77 > r; 7

YES:

NO:

H (d.;pm) = 1, plasticity and compressive damage exist, and so
E'HN = 3’. EXIT

H (dt_ +ar) = 0, no plasticity and no compressive damage evolution
exist. So, @ =1 and &F,n, = 7. EXIT.
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Box 2.2 — Algorithm for plastic-damage constitutive law

(2)
(3)

(4)

(5)

(6)

INPUT: A+, v}, rF, A=, B~, 75, vy, Do, D3, K, B, E, &, D¢

. + - + -
OUTPUT: Gepney Typnes Tepne dt—l—At’ L+ AL

ALGORITHM:

Ift+ =10 set
e
r, =7g

Evaluate ¢ according to the procedure described in Box 2.1.

. e + - — + - o
Extract eigenvalues from &;1»; and split into & 5, and o, A,
contributions. Evaluate &, and ¥,

OCt +A Ctt'l-At
Compute the equivalent stresses
=+ _ [+ . p-l.at
Torae = A/ Opn * Do™ 100 A,

Torne = \/ V3 (K3, octyyne T ctt+m)

Evaluate damage variables

d:;m = G+(1:t-:-[_\t)
trAE Gw("“'t;m)

and update thresholds

_ + =4
Tipae = AT {rs, Tt+At}

7‘;‘+L\t = max {'r;", ftim}

Compute the final Cauchy stress tensor:

_ + Y gt - Y&
orrae = (1 — dt+At) Toine + ( dt+/_\c Tyt
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2.10 — Numerical integration of constifutive law

In section 2.9 a special care was devoted to the explanation of the
procedure for evaluating internal variables. It was emphasized that as soon
as the strain tensor € and its increment A¢ are determined, computation of
updated variables d*, d~ and &” can be performed by means of an almost
closed-form algorithm. This feature is in fact of capital importance in the
context of the present material model, ensuring large scale computations to
be feasible, because almost no iterations are needed to evaluate the Cauchy
stress tensor ¢ corresponding to a given strain tensor €.

For a global understanding of the plastic-damage algorithm, Box 2.2
schematizes all the operations needed for evaluating the Cauchy stress tensor.
A remark is made for the extreme clearity and readability of the overall
algorithm, as well for the simplicity of the involved operations.

2.11 — Numerical applications

2.11.1 — Tension-compression cyclic test

In order to check for the performance of the present plastic-damage
constitutive law in a cyclic test, figure 2.2 shows the response of an idealized

concrete specimen with the following propertiesi:

E=20GPa

G,«m200 J/m2
ff=1MPa

ff =1MPa

fo =2MPa

fo =1 MPa

B8 =0.15

! Selection of these properties was only oriented by didactic representation demands, svoiding the usual
1:10 ratios for concrete strengths under tensile and compressive Joadings, which would almost preclude
tensile domain in a small drawing.
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(f+ and f7 are tensile and compressive peak strengths, fi and f; are tensile
and compressive linear-elastic stress thresholds and Gy is the tensile fracture

energy).

A complex loading scheme was imposed, firstly comprising an incursion
into tensile regimen, up to the initial elastic threshold (point A}, and followed
by continuous damage until point B is attained; thereafter unloading takes
place, with a return to point O, and then an incursion inte compressive
regimen is initiated. Up to the initial compressive threshold (point C) a
linear-elastic behavior is obtained, but further loading induces progressive
damage and plastic deformation; at point D compressive unloading is
initiated and at point E reloading in tension takes place. Between points F
and G further tensile damage occurs. At point G a second tensile unloading
is induced, with reloading in compression up to point D; the path observed
is represented by the broken line G-E-D. From point D a second reloading
in compression is induced.

(*10%

Siress (Pa)

Strain

Sip. vy - Byy

Figure 2.2 — Cyclic behavior of plastic-damage model
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(1)

(3)

(4)

(5)

(6)

Chapter 2

A detailed analysis of figure 2.2 allows to conclude that:

The proposed model is able to reproduce the softening behavior in
tension, as well the hardening and softening compressive behavior of
concrete, accordingly to observational evidence.

During path O-A-B, an initially undamaged material experiments tensile
loads for the first time, exhibiting linear-clastic behavior up to tensile
threshold (in this example the tensile peak strength, represented by
point A) and a nonlinear behavior thereafter, which is evidenced by the
branch A-B and by the damaged elastic modulus that is observed during
discharge B-O, This shows that material has suffered an irreversible
tensile damage.

An incursion into tensile regimen without previous induced compressive
damage does not enable any kind of plastic deformation to take place,
as it is evidenced by the return to the origin O during the first tensile
discharge (straight line B-O). This is obviously a direct consequence of
the proposed model for plasticity (equation (2.33)), where irreversible
deformations were supposed to be consequence of a phenomenon linked
to compressive damage. As in this first phase of loading H(d") = 0, no
plastic strains will be observed upon unloading.

When passing from tensile unloading to first compressive loading material
model exhibits stiffness recovering: the elastic-damaged modulus
changes from the damaged one in tension to the undamaged elastic in
compression, as previous damage in tension is supposed to have no effect
in material compressive behavior. This is a first evidence of the unilateral
effect and of the memory capability of the present model.

Straining in compression induces nonlinear behavior as soon as
compressive threshold is overtaken. Unloading at point I shows that
concrete has experienced damage (evidenced by the secant modulus
associated to the straight line D-E) and plastic deformations (point E
is no longer coincident with the origin O).

When passing from compressive unloading to tensile reloading the
unilateral effect is clearly observed, with the model exhibiting different
damaged modulus during compressive unloading and tensile reloading.
Furthermore, model recovers exactly the previous tensile damaged
modulus (see that lines E-F and O-B are parallel) and has capability
for maintaining the plastic deformations induced during compressive
damaging: it is clear that the remaining tensile curve is shiffted along




(7)

(9)
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the strain axis, which is precisely the induced plastic strain effect.

During reloading in tensile domain the previous stress threshold (point
F) is obeyed, which seems a physically realistic demand.

Unloading at point G reveals that further damage has occurred in tension,
but with no plastic strain evolution, as it is evidenced by discharge curve

G-E.

Reloading in compression reveals recovering of compressive damaged
modulus (inclination of tensile unloading curve G-E is different from
inclination of compressive reloading curve E-D} up to the previous
compressive stress threshold. Further straining induces furher damage
and plasticity.

From what was observed in figure 2.2, although with a simple and elegant

formalism, the present model gives a physically realistic representation of
the intended features of comncrete, and satisfies the basic rate-independent
requisits specified in section 1.2.

2.11.2 — Unidimensional cyclic compressive test

The ability of the proposed plastic-damage model for reproducing the

observed behavior of a concrete specimen under cyclic uniaxial compressive
loading can be checked by means of figure 2.3, where an experimental test
taken from the reference Sinha et al (1964) (dotted line) is plotted against
the response predicted by the numerical model (solid line).

The following concrete properties were considered:

E = 25 GPa
£ =30 MPa
o =20 MPa

B = 0.685

As it can be observed, predicted response reveals a fairly good agreement

with the experimental test, namely in what concerns:

(1)

the overall nonlinear behavior evidenced by the calculated envelope curve,
either in the hardening or in the softening regimens, which is rather close
to the test one;
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(2) the residual plastic strain upoa unloading, which is continuously
increasing as further straining takes place, in accordance with the
observed experimental behavior;

(3) the progressive degradation of the secant modulus, expressing that
continuous damage is occurring, which reproduces rather well the the

‘average” lines from the test unloading-reloading loops.

Comparison between observed and predicted model responses puts inte
evidence that the selected compressive evolution laws, both for damage
and for plasticity, are physically realistic and adequate for modelling the
compressive behavior of a concrete specimen under uniaxial cyclic test.

(%10}
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Sinha, Gerstle and Tulin test (1964)

Figure 2.3 — Observed and predicted 1D compressive behavior
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2.11.3 — Bidimensional compressive test

Having checked for the performance of the plastic-damage model under
1D conditions, a set of 2D experimental tests performed by Kuplier et al
(1969) are plotted in figure 2.4.

A concrete specimen with the properties

E =31 GPa
v=0.2
fo =32 MPa
fo =10 MPa
8 =10.318

is submmited to three different plane stress loading conditions, in which the
pure normal stresses acting on its faces satisfy the following proportions:

(?.) (23] 20, 0'3/0'22—1/0
('t".?:) 0'130, 0‘3/0’2“—"“—1/—1
(?,?,?,) o’y ZO, 0'3/0‘2 x—l/w0.52
Solid lines refer to numerical model predictions and dotted lines correspond
to the observed experimental behavior,

As it can be noticed, the plastic-damage model captures satisfactorily
the overall experimental behavior, specially taking into consideration the
purposes intended within the context of large scale computations, and
the simplifications which had to be introduced in order to obtain an
almost closed-form algorithm. Test and model curves exhibit an acceptable
separation.

Note also that in figure 2.5, where representation of o3/e; curves are
plotted for the same concrete experiment, the numerical predictions are less
accurate than the ones in figure 2.4. This is consequence of the inability
of the proposed simplified plastic model to account for plastic deformations
along direction defined by stress oy, where a null effective stress component
exists, hence inducing a null plastic strain. Anyway, this limitation must be
regarded as not a serious one, because by one side it was foreseeable, due to
the particular form attributed in equation (2.33) to the evolution of plastic
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Figure 2.4 — Observed and predicted 2D o,/e, compressive
behavior

strain tensor, and by other side plasticity is mainly intended as an overall
effect, inducing global deformation irreversibility and dissipation of plastic
energy (important to account for structural damping).

An important feature of the present constitutive law, which is clearly
visible in figure 2.4, is its ability for predicting the concrete strength
enhancement under 2D compressive loading, in accordance with observed
macroscopic behavior {note that in figure 2.4 observed and predicted peak
strengths are almost identical), which constitutes a remarkable advance
when compared to other versions of similar concrete damage models (where
concrete strength under biaxial compression is decreased with reference to the
one observed in uniaxial tests (Mazars and Pijaudier-Cabot (1989}, Suaris et
al (1990)).
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Figure 2.5 — Observed and predicted 2D o,/e, compressive
behavior

2.11.4 — Tridimensional compressive test

As a final benchmark test, figure 2.6 presents a comparison between
predictions obtained by means of the present plastic-damage model and
the experimental results respecting to a concrete tridimensional fest {Green
and Swanson (1973)). The test was performed applying an increasing
normal stress along the specimen vertical axis and three different sets of
constant normal confining stresses along the horizontal directions, with values
0.0 M Pa, 6.895 M Pa or 13.79 M Pa respectively.
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The following properties were considered for concrete:

E = 4137 GPa

v =10.2
fo =48 MPa
fo =10 MPa

B =0
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Figure 2.6 — Observed and predicted 3D behavior

From observation of figure 2.6 it can be concluded that the
proposed plastic-damage model captures satisfactorily the observed strength
enhancement due to the tridimensional confinement. Furthermore, the
predicted increasing ductility of concrete is in satisfactory accordance with
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the experimental one, as well the overall response curves, whose deviations
can be considered acceptable keeping in mind the computations intended

with the present modelt.

2.12 — Final remarks

The experimental tests which have been presented show that the
proposed model is able to predict the nonlinear inviscid material behavior
in a wide range of situations, covering unidimensional, bidimensional and
tridimensional applications.

- Plasticity is accounted in a simplified but elegant fashion, and the stiffness
degradation due to damage is fully captured.

- The softening associated to temsile loading as well the hardening and
softening characteristics evidenced by concrete under compressive loading
are also captured by the numerical model.

- Stiffness recovering when passing from tension to compression (or
vice-versa) is easily attended by the plastic-damage model, due to the
internal “memories” associated to the independent damage variables

for tension and compression. The unilateral effect is hence adequately
modelled.

- Strength enhancement under monotonic biaxial and triaxial loading is
also taken into account, in reasonable agreement with experimental
evidence.

From the performance of the proposed model it is concluded that it
satisfies the basic rate-independent requisits which were defined in section
1.2, rendering an efficient and economical algorithm, with a physical
background, which permits to obtain realistic informations about material
{(and structural) behavior.

¥ Oz even negligible when compared to other sources of uncertainties of major and not quentifiable order
of magnitude, as it is the case of the open issue respecting the seismic input characterization.
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EXTENSION OF PLASTIC-DAMAGE
MODEL TO ACCOUNT
FOR RATE DEPENDENCY

3.1 — General aspects

As referred in Chapter 1, concrete exhibits a rate dependent behavior
when submmited to high speed straining (see figure 1.5), whose visible
effects are the significant increase of dynamic strengths and the decrease
of nonlinearity on the stress-strain response curves (see figure 3.1), when
compared to what is observed on static tests.

This peculiar behavior is rather important under impulsive loading, as
it occurs when structures are subjected to impacts or explosions, where
straining tates ¢ > 107%/s (Chappuis (1987)) can be observed, but
the phenomenon is already important in the “impulsive restraint fatigue
domain”, at which category belongs the earthquake loading, with rates of
straining within the interval 107¢ /s < € < 107! /s. As it can be observed in
figure 1.5, dynamic strength can be enhanced, with respect to the static one,
up to 80 % in tension and 25 % in compression, for the “impulsive restraint
fatigue domain”.

Observational experience shows that rate sensitivity is mainly due to the
fact that growth of internal microcracking (for a particular level of strain)
is retarded at high strain rates (Suaris and Shah (1984)). Being known
that for concrete (and other geomaterials) damage is essentially due to the
nucleation and growth of microvoids and microcracks, it is comprehensible
that a diminuishing of microcracking with increasing strain rate will induce
a reduction in macroscopic nonlinear behavior, and an increase of dynamic
strengths.

The importance of this observed phenomenon has already been

recognized long time ago, and attemps were made for the constitutive laws
to be able to account for it. However, its complexity and the need for some
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sophistication in the numerical models precluded it from common usage, the
customary practice being to account for rate sensitivity by means of empirical
formulas and drastic simplifying assumptions.

Contributions from viscoplasticity were some of the first attemps to deal
with rate dependency with theoretical consistency. Among others, Bi¢anié
and Zienkiewicz (1983) proposed one of these models, with similarity to the
“bounding-surface” concept.

More recently, important experimental and theoretical contributions have
been introduced by Suaris ef al ((1983), (1984), (1985), (1990)), which
provided scientific tools for dealing with this phenomenon in a realistic
manner. Starting from the observed evidence that this particular behavior
is in fact consequence of the above described strain-rate dependency of
the internal damage evolution, they proposed a material model based
on the Continuum Damage Mechanics (Suaris and Shah (1985)), with a
vectorial representation for the internal damage, the evolution of which being
governed by a linear differential equation of second-order, accounting for the
“microcrack inertia effect”.

It is obvious that for the purposes intended by the present work} an
algorithm should evolve from the previous plastic-damage version, keeping
its closed-form nature as much as possible. Due to the coupling between
nonlinear rate-sensitivity and damage, the appropriate environment for
dealing with this strain-dependency is the Continuum Damage Mechanics,
yet with an easier formalism than the above cited sophisticated one from
Suaris and Shah (1985), in order to obtain high algorithmic efficiency.

In this chapter an extension will be introduced into the plastic-damage
model, by considering a viscous regularization of the rate-independent
damage evoution laws defined through equations (2.26-2.27), following a
procedure inspired in & viscous-damage model from Simo and Ju (1987a-b).

3.2 — Viscous-damage evolution laws

With a reasoning similar to the classical Perzina viscoplastic
regularization, Simo and Ju (1987a) proposed an evolution law for an internal
damage variable which had the following features:

1 1t must be reminded thet the scope of the present work is to capture the seismic behavior of large-scale
concrete structures, the emphasys being mainiy on capturing overall (or global) structural effects,
excluding excessive detail at local level,
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(i} a damage fluidity parameter 9 is introduced, supposed to be a material
property;

(i) with an infinity value for this parameter, the rate-independent (or
inviscid) damage evolution law is recovered;

(iii} with a zero value for ¥, damage variable is prevented to have evolution,
thus rendering an instantaneous elastic response.

Inspired on these cousiderations, and maintaining the previous
decomposition into d* and d~ damage variables, the following evolution laws
will the adopted in the present work:

¢ Tension _ -

. I+ _ o OGH(FT)

d+ pred W (T+ - 7"+) . _""“5“""?"‘_‘;‘“" (3.10;)

. Al e ot

4 ’P+ e W (T+ — ’f'+) (3.15)

e Compression :

T = (20

Ve 9 e _\a—

T = ————(f_)a_/z <‘T -7 ) (3‘26)

where 9%, ¥~ are the concrete fluidity parameters associated to tensile and
compressive damage mechanisms, and ¢¥, a~ are positive exponents. All of
these parameters are supposed to be material properties, the determination
of which being performed by means of uniaxial tensile and compressive tests.
Note that the separeted values which can be attributed to these temsile or
compressive parameters and exponents will permit to account for the distinct
concrete rate sensitivities (greater under tensile than under compressive

loading).

3.3 — Thermodynamics and dissipation

The changes introduced into plastic-damage model to account for rate
dependency are limited to the particular forms attributed to damage
evolution laws (3.1) and (3.2). Considerations performed on Chapter 2
around thermodynamic dissipation remain absolutely valid for the present
plastic-viscous-damage model, because for ensuring positive dissipation the
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only demand from damage evolution laws is that they have to satisfy the
following conditions?:

dt >0

d~ >0

Inspection of equations (3.1a) and (3.2a) enables to conclude that
non-decreasing damage variables are obtained, hence automatically satisfying
condition of dissipation.

For the Cauchy stress tensor, equation (2.55) keeps absolute validity for
the present extension, that is:

c=(1-d")yet + (1-d")o~ (3.3)

3.4 — Computation of thresholds and damage variables

For evaluating damage variables and damage thresholds, a numerical
algorithm needs to be implemented, preferably with the most closed-form
structure as possible. For didactic reasons presentation will be made only
for tensile variables, although an interily analogous scheme applies for
compressive damage variable and threshold.

Defining auxiliar variables ¥} and ¢*, such that

gt

8t = W (3.4)
Gt (7)
¢t = g (3.5)

and adopting a backward-Euler difference scheme for integrating equations
(3.1a, 3.1b), the equivalent stress threshold and its correspondent damage
variable can be evaluated for the instant ¢ 4 At according to the following
expressions (recall of notation defined for equation (2.71) is made once more):

at

"'tim == 7'2_ + At 9f (ﬂﬁ-At - T;*:I-At) (3.6)

¢ Obviously, it is already supposed that
¢ < dr

0<d”

owing to the intrinsic concept of damage variables.

A 1A
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o +
d;:-At = d?— + At 19: (Ttt—At - 7‘::|~At)a C:'+/_\t (3'7)

The analysis of the algorithmic expression (3.7) puts into evidence that
computation of df+ A becomes an easy task after threshold r;ﬁr ¢ have been
updated. In fact, 'thr ~e and ¢f " e are easily calculated because they strictly
depend on the effective stress tensor o}, " A (which is supposed to have already
been updated according to the procedure described on Box 2.1), and the other
entities present on equation (3.7) are known at the beginning of step ¢ + At.

So, the real numerical problem to be solved is the determination of
Ty s Which according to the nonlinear equation (3.6) can be performed
by means of an explicit procedure only if exponent a is an integer not
greater than 4 (at Simo and Ju (1987a) an exponent equal to 1 was used),
in which case mathematical solutions exist. However, in the present work
it has been observed that best fitting with concrete experimental tests
is obtained if greater exponents are adopted, which leads to high-order
equations, without known theoretical solutions. An iterative scheme must
hence be introduced for updating r* ; anyway, the operations needed for
iterating are very elemental, and by means of a Newton-Raphson method a
fast rate of convergence is obtained for the threshold updating solver.

3.4.1 — Thresholds updating

Considering the Newton-Raphson method for the @ root-finding of
equation f(z) = 0, an iterative algorithm of the form (Burden and Faires

(1985)):

! (@:) (3.8)

TN

can be set, with @;,; being the (i 4 1)-th improved approximation to the
exact root x, z; the previous (i)-th approximation, and with f' denoting the
first derivative of f.

Rearranging equation (3.6) and performing elemental mathematics, it
will be possible to define:

at

f+ ("':-4-&:) = _Tia-m + "'2- + At '19: (ﬁim - "”::1-.43:) (3'9)

+_
(f+)' (Ti{*At) = —1— a* At "9: (ﬁi&t - "":;-az)(a Y (3'10)
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Box 3.1 — Algorithm for updating of thresholds and damage wvariables on
rate-dependent model (substitutes item (5) at Box 2.2)

INPUT:

FF, 97, at, a7, T o Topa San Cornn Te s Te s 4y dp y AL, TOLER
OUTPUT:
o ags i

r d;
e+t Terae Cpaty Grpng

ALGORITHM:
(1) Set

1t =10
(T;.:‘AL); =7

(r;}m); =T

(2) Evaluate f+, (f*Y, f~, (f~) according to (3.9) and (3.10).
(3) Evaluate (r;&)‘,ﬂ and (T;+At)i-|-1 according to (3.11).
(4) Evaluate the errors

errort — (T:{-At)£+1 - (T«;-:At){
(r::FAt)H.l
(Tt_-{-At)H.1 - (rt‘._~i-At)£

(Tt_+At ) 41

il

error”

(5) Check for convergence: |errort], |error~| <K TOLER ?

YES: Convergence attained. Set

T::}-At = (T::l'At)i-*.]_

Tirot = ("";+z>.t),-+1

and GO TO step (6).
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Box 3.1 — (continua.tion)

NO: Further iteration needed. Set
g = ¢+1
and GO TO step (2).

(6) Update damage variables

+
+ gt + et + et 4
d¢+At = d; + A9 (Tt+At ‘“""H-At) Crrne

dipne = df + DI (Fropy —Toand) Copn

So, the sequence of improved approximations to v/ ., can be obtained

according to
B fr (("t++m ,-)
(F) ((far);)

which together with a convergence criterion will permit to update threshold

(3.11)

(T:-+./_\.t)-§+1 = (T:-I-At :

+
Terat:

3.4.2 — Numerical integration of constitutive law

In Box 2.2 (Chapter 2) the algorithmic procedure for implementing the
rate-independent constitutive law was defined. Except for item (5), devoted
to the evaluation of thresholds and damage variables, its structure remains
valid for the present rate-dependent extension, only being necessary to detail
the referred updating of »*, »~, d* and d~, which is performed at Box 3.1.

3.5 — Some limit situations

Numerical procedure defined by equation (8.7) can be derived to obtain
the algorithmic rate d, ., . Keeping in mind that

Fdeyat
d gt

a;'t+At = -ét-{-At (3-12)
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it is possible to state

—+ +
; + O (T ae — T ae)
S + ot + y(eT-1) L+ that 7 TerAt)
Ao =0 DU (Flp — o) Ceyane -Etrat t
aet+At
..I_
+ Oc
4+ i+ + a t+AL
+ DI (FE N — Torne)  mo— - Eran (3.13)

de i+t

Performing further mathematics, terms envolving derivatives can assume the
following aspect:

=+ + =t +
7 (Tt+£.\..t - Tt-i-/_\.t) . . 0 Terit . aTt+At .
) B A '5”"— <€ — Errne
Errane Errnt O&ernt
s =
= Tepar — Tipat
(3.14)
+ + =+ +
3Ct+At & . 8Cf,+z}.t aTH—At & . 3C¢+At et
At = Ertae B =t O
a €t+&t 8 Tt-l-'l—At a ££+At a T:;—At
(3.15)

Differentiating equation (3.6) with respect to time enables to express that
» — ﬂ+—1 a__l_ .
Tz++/_\.z = ot At 9] (TttAt - T;:-/_\.t)( ) ("'t+At - 7':‘+Ac) (3.16)
and consequently

. at -1
ot _ at AtdF (T;jrm - 7':+At>( ) #+ (3 17)
t+AE T + =t + (“+ ~1) bt .
1 + a+ At ?944 (Tt+/_\t - Tt-l—At)

Substituting this result into (3.14) and transforming equation (3.13)
according to expressions (3.14) and (3.15) finally renders:

+ ot
. ~ @t 1 C° Copnt
d::mt = At "9:5 (""z:m - Tttm)( ) { + P +  f(at-1) +
1+ atAt 93 (T¢+A¢ - "'M-At)
4 ac+ FAY L
o= rhad g2 s (315)
t4-dut

For compression a similar expression would be obtained:

. _ a” ¢,
divpne =D (Fa — Torad) ! [ _ __H-At w f(e™-1) +
1+ a” At ds (Tt+At - Tz+At>
N
+ (ﬂim - n"°t~t—m) —j_jéi} T+t (3'19)
Tt
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Inspection of these expressions enables to conclude that:

null values for 9+ and 9~ ¥ impose that d* and d~ are equal to zero,
which means that damage evolution can not take place — this implies
that an instantaneous linear-elastic solution is obtained;

9+ and ¥~ approaching infinity will determine that damage rate
(exemplifying only for tension) will tend to

+
. ) + Oc .
+ + &t + (zt i t+ot =+
dt+At = Clpt Tepar T AN R (Tt+m - Tt+At) 97T Tetit
b4 AL

in which the first additive term corresponds to the already obtained
inviscid evolution law defined by equation (2.31). The second term is a
spurious contribution due to the linearization which has been considered
at equations (3.6) and (3.7), which will be cancelled as refinement is
introduced, that is, as At — 0. In this situation (9* — o0, At — 0),
the previous rate independent model is recovered (obviously an identical
set of conclusions would be vallid for compression).

3.6 — Numerical applications

Performance of the proposed rate dependent algorithm will be evaluated

with reference to a set of experimental tests performed by Suaris and Shah
(1985), for a concrete with a Young’s modulus E = 34 GPa. Concrete
behavior was registered for two distinct sets of straining rates:

(i)

(i)

a quasi-static one, with é = 107%/s, where rate dependency can be
considered almost absent;

a very fast one, with ¢ = 1 /s for tension and ¢ = 0.088 /s for compression,
where viscous effects have to be modelled. These straining rates can
be considered an upper-limit for those which can be expected under
earthquake loading,.

3 This is equivalent to set 9F = 0 and 97 = 0.
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3.6.1 — Rate-dependent tensile test

In figure 3.1 the experimental results and the predictions from the present
model can be compared, when concrete was submmitted to tensile loading,.
The following values have been adopted for the relevant model properties
(set 1):

ot =17.0 Vlz
9t =215 1% 7 ET e
fF =537 MPa
fi =3.00 MPa
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Figure 3.1 — Rate-dependent tensile results (set 1)
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It can be observed that good approximation to the test results is
obtained, with the predicted response curves having little deviation from
the experimental ones.

However, the above considered a’ exponent provided worse predictions
for intermediate straining rates (not represented), with the material viscous
model exhibiting a strong tendency to return to the rate independent
situation. To circunvent this undesirable behavior higher exponents have
to be considered, as for the case illustrated in figure 3.2, where the following
parameters were used (set 2):

at =8.0
It =4.99 x 107

S :ll]illiiiiI‘l'llll|ll|I\llnilII[I'lllIllllIITIIIIIIiEII'IIIIIli1:llIIlIII||||lllll]]lllifl\\llll\'('lllll:
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Figure 3.2 — Rate-dependent tensile results (set 2)
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Now, it can be observed that numerical model exhibits a “smoother”
performance, that is, dynamic strength grows continuously with increasing
strain-rates, in accordance with what is experimentally observed. In this
situation, predictions for the ratio

Dynamiec Strength

Ratio =
e Static Strength

(3.20)

can be taken from the present model, which, as it can be seen on figure 3.5,
are in excellent agreement with the experimental results from the reference

Suaris and Shah (1985).

3.6.2 — Rate-dependent compressive test

Performing a similar set of predictions for compressive behavior, and
adopting the following material properties (set 3):

a =20

9 = 936 x 104
fo = 46.80 M Pa
f5 =10.00 M Pa

in figure 3.3 numerical and experimental results are compared. Once more
it can be observed that good agreement is obtained.

However, with the selected parameters some underestimation of strength
enhancement would be observed for strain-rates bellow ¢ = 0.088 /s (the
same phenomenon as for tensile test), reason by which another set of viscous
parameters was selected (set 4):

o = 10.0
97 = 8,98 x 107

In figure 3.4 the obtained numerical results are plotted against the
experimental observations. It can be observed that an overall accordance
is obtained, namely in what concerns the peak strength predicted for
¢ = 0.088 /s, with the present constitutive law exhibiting some tendency
for underestimating the peak deformations.

When the ratio defined by expression (3.20) is plotted both for
experimental and numerical results (see figure 3.5), once more it is evident the
ability of the proposed model to account for the phenomenon of compressive
strength enhancement.
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3.7 — Final remarks

The numerical applications which were performed by means of the
plastic-viscous-damage concrete material model showed its good capability
for full capturing the observed strength enhancement associated to increasing
strain-rates, including the distinct rate dependency patterns exhibiled under
tensile and compressive loading.

Furthermore, predicted and experimental stress-strain curves showed a
satisfactory accordance.

The present plastic-viscous-damage model provides a general formulation
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Figure 3.4 - Rate-dependent compressive results (set 4)

for the intended concrete constitutive law, enabling an hierarchical model
approach to concrete behavior, that is: the elastic linearity, and the
nonlinearity (comprizing damage and /or plasticity) considered on its versions
with or without rate dependency. For so, only an appropriate choice has to
be made for the material parameters.

In what concerns the algorithm itself, a rather robust numerical
implementation is obtained, thus avoiding complex error-inducing and large
time-consuming codes.
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Appendix A.1

DEFINITION OF THE
EQUIVALENT STRESSES 7% AND 7~

The definitions for tensile and compressive equivalent stresses 77 and 7~
have been introduced on section 2.5, through equations (2.22) and (2.23). At
that stage no further explanation was given for the particular (and in fact
substantially different) forms postulated for these important entities. The
reasons for such a procedure were that, by one hand it was not indispensable
for the overall understanding of the material model which was about to
be presented, and by other hand excessive detail would then be needed,
introducing undesirable complexity.

A1l - Ft

For the equivalent stress 7+ it was assumed the following scalar function
of ¢+:

7t = /gt : Dol : Gt (4.1.1)

From this definition it is clear that the 3D stress states having the same
equivalent norm 7% define an ellipsoid centered on the origin of a space with
axis &, 0, and &3 (the principal undamaged tensile stresses). If v = 0 the
ellipsoid reduces to a sphere, and in the positive quadrant of the & — &3
effective stress space a quarter of a circle is obtained (see figure A1.2),
which can be considered a conservative envelope for the experimental results
for concrete under tension-tension loading (see figure 1.2, form Kupfer et al
experiments).

Al2~—- 7

As it was pointed out in sections 2.11.3 and 2.11.4, under biaxial and
triaxial compression concrete exhibits an enhanced strength, when compared
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to the uniaxial peak strength. This feature cannot be captured by an
equivalent stress like it was defined by equation (A.1.1), because 7~ would
increase as soon as some compressive confinement would be introduced
together with a compressive axial stress, and so additional damage would
be introduced for 2D and 3D compressive tests than for the uniaxial one.

To circunvent this situation, a different expression for ¥~ needs to be
implemented. In this work the scalar function of &~

Fooe \/\/37 (K &g + Tt (A.1.2)
was adopted, inspired on the Drucker-Pragger criterion.

As it is well known, the Drucker-Pragger criterion

F(p,&yar) = avV6é +p— V2r =0 (4.1.3)
£ = \/:;Toct
5 = \/go-oct

defines a cone centered along hydrostatic axis, whose intersection with the
octhaedral planes define circles with radius linearly increasing with the
hydrostatic pressure. For this reason, tensile and compressive meridians are
linear and symmetric respective to the hydrostatic axis (Oller (1988)), and
so they can be represented on figure A.1.1 by a single straight line, which
intersects axis O¢ and Op at coordinates « / (a\/?_;) and V2 «.

\C: J(2)k
{; N
0

k/(oV(3))

4

Figure A.1.1 — Drucker-Pragger criterion
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Hence, it is geometrically evident that

G“P . \/§K' - \/g'roct
6 \/-3-0-0&

which constitutes an alternative form for the Drucker-Pragger criterion.

tand = (A.1.4)

The results from two distinct concrete compressive tests may then be
considered for a proper evaluation of parameters (s, 8). So, consider a 1D
test (oy = 0, g3 = 0, 03) and a 2D one (g1 = 0, 03 = 03), both driven so as
to load concrete up to attaining threshold of nonlinearity. Denoting by fq ,
and f;,, the maximum oy elastic stresses obtained for the 1D and the 2D
tests, it can be deduced that:

o Uniaxial test

1 1 ._
Toct1pp = '3_t’r (0) = §f01D (A.1.5CL)
2 V2
Toct1pp = §J2 = ——3— fOID (A].Sb)
¢ Biaxial test
2 .
Toctap § foZD (AI.GC!’;)

V2

Toctap ™ __3_' f(gD (A.l.ﬁb)

These compressive tests are associated to the same limit situation — the onset
of nonlinearity — thus being represented by two distinct points on the initial
Drucker-Pragger cone which separates the linear {elastic) and the nonlinear
domains. According to expression (A.1.4) this conclusion can be expressed

by
\/5!{, - \/:O;ToctlD _ \/5& - \/B_Toctzp

- (A.L7)
\/§ Goctlp \/3- Toctap

tan 8 =

which is equivalent to

(\/ﬁm - \/3—70@11)) Ooctap == (\/Q—Iﬁ - ﬁToctzD) Ooct1p =

3 Toct;p Toct — Toctyp Toct
= g o= \/g 1D 2D 2D 1D (A.l.S)
Toctayy — Toet1p

Substituting expressions (A.1.5) and (A.1.6) into (A.1.8), it is possible to
express that
1 fopfopp

— A1.9
V3 forp — 2 forp ( )

K =
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So, constant

K = tanéd (4.1.10)

can be evaluated substituting equation (A.1.9) into (A.1.7) and performing
some mathematics:

Joyp, To,
2 01p J0ap + £ )
K — V2r — ‘/g'roctm e \/;(f*ip~2f0_w Joup
\/§0'oct1D "\}'—é’fip

Torp foup + Jorp forp — 2fo1p 1o,
:ﬁ 1D Y%2p 1D JY9pn 1D “V2D
(fﬂ_w - 2f0—zo) fO—lD

forp = fop
= /2 A1
ff&w — 2fo,p ( :

Further simplification is introduced on this equation if the auxiliar variable

Ry = Jap (A4.1.12)
folD

is introduced, finally rendering for parameter K:

s 1-R
K =2 3R, (4.1.13)

Now, the Drucker-Pragger criterion expressed through equation
C(a) = V3 (K&, + 7o, (A.1.14)
provides the crucial idea from which the definition of the equivalent stress
7~ has derived. In fact, variable C on (A.1.14) (see also figure A.1.1) can be

regarded as a scalar norm of a 3D stress tensor, and so, if a square root of
this norm is considered for the negative split of the effective stress tensor, it

results:
P = OG) = VB (Kan + %) (4.1.15)

which coincides with expression (2.23).
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A.1.3 — Damage bounding surface

According to the damage criteria introduced by equations {2.24) and
(2.25), the bounding surface corresponding to the onset of damage is obtained

when it is set

= /ot 1 Dyl gt = o

h‘
I

Depicting the possible 2D effective stress tensors which satisfy these
conditions, a damage bounding surface similar to the one in figure A.1.2

is obtained

st e

Figure A.1.2 - Initial damage bounding surface
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DEFINITION OF PARAMETERS
FOR PLASTIC-DAMAGE MODEL

A.2.1 — Tensile damage parameters rj and 4%

As it was referred on section 2.9.1 about the evolution of tensile damage
variable

R I
g A0 (A2.1)

parameters v} and A% have to be specified. The former is very easy to
determine: if f is the 1D tensile strengih beyond which nonlinear behavior
initiates (see figure A.2.1), definition (2.22) allows to express that

fo (4.2.2)

4

Figure A.2.1 — Stress-strain curve for 1D tensile test
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Evaluation of A% is possible by introducing the concept of the specific
dissipated energy on a 1D tensile process (Oliver et al (1990)):

gt = f 5 dt (4.2.3)
¢

According to expression (2.65), on a pure tensile test the rate of dissipation
is computed through

i o= WEdt (4.2.4)
As it also occurs that
Ft =&
it is possible to express that
1 7y
Ut = 5 ot : Dyl et = %-)— (4.2.5)

Introducing this conclusion into equation (A.2.4) and also keeping in mind
the rate equation (2.31), it results that

(7H)2 G d7t

¥ o= A2.6
TE Ty 4 dt (4.2:6)
and so equation (A.2.3) can be expressed according to
1 [ dat drt
e 7)? — A2.7
973 fo ) g T ¥ (4.27)
or alternatively
1 [ dGt
e . 71y 7+ A2,
g 2[3— (T ) d7+ a7 (42:8)
Due to the definition considered on (A.2.1) for G, it is evident that
daQt T(T A (1—:;,—) At 4 (l-h:;p)
= e 0 + —e e
dF+ (7+)? 7t
_at izt + +
_ at o 7o AT
=e" e 0 ((7—-4-)2 + 1__+) (A.2.9)

and so, applying standard integration rules,

+ + —atEL]T
+ _To _at [ To =3
g = e 0 -}~
2 At
_I_
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=+ -+
+ +
AT 4+ rd —AT pIN2| AT 5
2 AT At
+ +
g *a

¢ D), ()
gar T3 T gas

= (741'47 + ;) (r$)? (4.2.10)

Denoting by Gy the concrete fracture energy, and by I* the charateristic
length for the finite element which is being considered (BaZant et al (1979a),
Bazant et ol (1983)), elemental thermodynamics leads to the conclusion that

Gy = g"l* (4.2.11)

and consequently parameter A* is obtained through the equation

-1
GiE 1) (A.2.12)

At =
(l* (FhH: 2

A.2.2 — Compressive damage parameters r;, A™ and B~

With reference to the compressive damage evolution law

g =1-10 (1 47) - Ao 0= (A4.2.13)
,}'.

parameters A~ and B~ need to be specified, as well as threshold r;.

Denoting by fo, ,, the uniaxial stress for onset of nonlinear behavior and
taking into consideration expressions (A.1.5) and (A.1.15), it is possible to
write:

vy = \/ _\g"_% (K = V2) farp (4.2.14)

and so, due to definition (A.1.13) for K, it is possible to calculate g

according to:
- 2 R -
"= \/ V3 e o (4.2.15)
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Evaluation of parameters A~ and B~ can be performed by imposing that
the constitutive law satisfy two selected points of a 1D compressive test, thus
rendering

o= (1-d7)F =

- B~ (1-12)
—([2@-4)+4e o |z (A.2.16)
T

Considering that these points can be characterized by the a priori known
entitiest:
e Point 1
Cauchy stress ¢
Effective stress 1 (¢;) = Equivalent stress 7
e Point 2
Cauchy stress oy
Effective stress &, (e,) => Equivalent stress 7,

it is then possible to state the following set of equations, which can be solved
for evaluating parameters A~ and B~:

— B— (1_____&__) —_
=25 + A e 0/ -0 (4.2.17a)
T Y

- (L)
o = =G + A7 e o/ 2|5, (4.2.17b)

Ty Ty

Handling equation (A.2.17a), it results for A™:

o — ':;'E;“&l
A7 = — 1 (A.2.18)
B~ (1»~11__—) -
€ o/ — L7
71

! The evaluation of 7; and &; will be trivial after having determined the plastic parameter 8, subject of
section A.2.3.
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which can be substituted into equation (A.2.17b), rendering

.
— ........2_. _
eB (1 1'0—) _— .:EQ._ 6'-2
- '?z_) _
r 7
Ty — “‘_%5‘2 = - (0'1 - "%6'1) (A2.19)
T2 B—(lwﬁr) r‘\ 1
e o/ — &5
T1

Now, introducing the following definitions for a; and ay (which in fact are
constants, because they only involve known entities)

o = (az - -’:i_az> & (A.2.20a)
T2

dg = (0’1 - i—?; 5’1) b7 2 (A.2.20b)
LFl

equation {A.2.19) can assume the form

B"(l—fl;> o B~ (1—f2__-) P
f(B_)male o/ — L | —ayfe wn/ — 21 =0
(4.2.21)

Solving of this nonlinear equation (with B~ being the unique unknown)
can be performed by means of the iterative Newton-Raphson method (see
expression (3.8)), according to the following recursive equation:

By, = B - 1B (A.2.22)

tr(B)
with f/ (B,-“ ) given by:

o o (-5) o\ o (-E)
f'(Bi_)mfh(—"%)e "o —a,z(l—--zw)e "o
To
(A4.2.23)
With such a procedure, combined with a convergence criterion, evaluation of
parameter B~ is possible. Consequently, parameter A~ can also be trivially
calculated, by substituting the already determined B~ into equation (A.2.18).
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A.2.3 — Plastic parameter 8

For evaluating parameter §, which accounts for plasticity, some reasoning
on the basis of results from concrete experimental tests must be introduced.

Yankelevsky and Reinhardt (1987) compiled conclusions from many
observed uniaxial cyclic compressive tests, introducing valuable guidelines
to quantify plastic contribution on concrete behavior. Among several
observations which they reported, it is possible to select the followings:

(i) The stress-strain envelope curves for a particular concrete submmited to
several cyclic compressive tests are almost unique, furthermore coinciding
with the one from a monotonic uniaxial experiment.

(i} The unloading-reloading cycles can be reproduced by means of a
graphical procedure, where use is made of six geometrical loci (termed
focal points), which support the construction of the unloading-reloading
cycles by means of picewise linear curves.

Concerning the attention to the most relevant feature within the context
of the present section, that is, the plastic (or irreversible) strain upon
unloading, figure A.2.2 schematizes a compressive envelope curve, as well
the straight line OF and the focal points E, F, G, H, I, J. Excepting for
J, the other focal points are located along line OF, which is tangent to the
envelope curve at the origin (hence, associated to the Young’s modulus E).

Considering that points A and B are the starting and the ending points of
a particular unloading cycle, it is evident that position of point B enables to
quantify the amount of plastic deformation already experienced by concrete.
It is also evident that point B can be determined by means of the intersection
with the strain axis of the ray which connects point A and focal point F.
Taking into consideration that coordinates for point A are (g4, 04) and for

point F' (by imposition of the focal points model, in reference Yankelevsky
and Reinhardt (1987)) are

Ja
TR
op = - f.

it 1s then obvious that
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g
Vi g
Urmx [
1
i
|
1
1 A{S.U)
i
| s
Ty M
(s, 0 ! B o} -
i 1.0 ® 5- £
vis, b &,
HIS, U,

E1S, )

Figure A.2.2 ~ Focal points model (Yankelevsky and Reinhardt

(1987))
g — —f
o4 _ ___u 0 =
€Ep — €4 Eu — &g
g4

EA ™ TF -
= g = —-=L 2 A.2.24
N ( )

Now, taking into consideration expression (2.5) and the hypothesis that
during unloading no plastic evolution is supposed to take place, it results for
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point Bt
g =0 = E(ep — €%) (A.2.25)

Furthermore, the postulated plastic strain evolution (equation (2.33))
enables to state (during compressive loading):

de? = fde (A.2.26)

Integration of this equation allows to obtain the plastic strain which has been
accumulated until the attainment of a certain level of global strain e:

el = /c;ﬁde = (e — &o) (A.2.27)

with ~
£o = % (4.2.28)

being the strain associated to the uniaxial compressive stress where onset of
damage and plasticity occurs, that is f; .

Since during unloading (curve AB) no evolution for plasticity occurs, it
is possible to write that

&= = (5,4 _ %—) (4.2.20)

hence allowing to obtain (in accordance with equations (A.2.24) and
(A.2.25)):

s4 — F fo
T e - = A.2.30
E0A+f; - ﬁE(sA E) 0 (4.2.30)

So, selected a given point 4 (¢4, ¢4) for quantifying plastic effects, the
evaluation of parameter 8 can be directly performed, according to

(ea — F) 12

’= (m—ig;)(m»%fi)

(A.2.31)

$ Notice that a 1D compressive test is being considered, hence with a unique non-null component.
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INTRUCTIONS FOR ACCESSING
THE PLASTIC-VISCOUS-DAMAGE
CONSTITUTIVE MODEL IN OMEGA2

The described concrete material model has been implemented on program
OMEGAZ2, and it can be selected by setting:

Model = 24

Besides the usual elastic constants

E — Young’s modulus

NU - Poisson’s coeflicient
the following variables need also to be specified for accessing the proposed
constitutive law, the meaning of each being evident from the notation which

was adopted troughout the present text:

FTULT - 1D concrete tensile strength, which also coincides with the
onset of nonlinearity, f = fi (see section A.2.1)

GF - concrete tensile fracture energy, Gy (see section A.2.1)

FCO1D - stress for onset of damage on 1D compressive tests, fg, (see
section A.1.2)

RAT45 — ratio Ry = ;—?—_ZQ (see section A.1.2)
Op

STRA1 — strain for point 1 which defines 1D compressive stress-strain
curve, €; {see section A.2.2)

STREL - respective stress, o (see section A.2.2)

71
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STRAZ2 - strain for point 2 which defines 1D compressive stress-strain
curve, ¢, (see section A.2.2)
STRE?2 - respective stress, o3 (see section A.2.2)
FCU1D - 1D concrete compressive strength, f; (see section A.2.3)

STRAP - strain for point A which controls plasticity, ¢4 (see section
A.2.3)

STREP - respective stress, o4 (see section A.2.3)

FTENS - fluidity parameter for the evolution law of tensile damage
variable (rate-dependency), ¥} (see sections 3.2 and 3.4). Setting a
negative value for this variable recovers the rate-independent model.

FCOMP - fluidity parameter for the evolution law of compressive
damage variable (rate-dependency), ¥ (see sections 3.2 and 3.4). Setting
a negative value for this variable recovers the rate-independent model.

EXPVT - exponent for the evolution law of tensile damage variable
(rate-dependency), a* (see sections 3.2 and 3.4)

EXPVC - exponent for the evolution law of compressive damage
variable (rate-dependency), a™ (see sections 3.2 and 3.4)
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