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Abstract. We design heat exchangers using two topology optimization approaches: the density, i.e.
volume fraction and level set methods. Our goal is to maximize the heat exchange between two fluids
in separate channels while constraining the pressure drop across each channel. The heat exchanger is
modeled with a coupled thermal-flow formulation. The flow is governed by an isothermal and incom-
pressible Stokes-Brinkman equation and the heat transfer is governed by a convection-diffusion equation
with high Peclet number. We solve one set of Stokes-Brinkman equations per fluid. Each Brinkman
term in the flow equation serves to model the other phase as a solid, thereby preventing mixing. We first
represent the solid and fluid phases using a volume fraction variable and apply a SIMP-like penalization
in the Brinkman term to drive the optimization to a discrete design. The cost and constraint function
derivatives are automatically calculated with the library pyadjoint and the optimization is performed by
the Method of Moving Asymptotes. In a second optimization formulation, we use the level set approach
to define the interface that separates the two fluids. Pyadjoint calculates the shape derivatives of the cost
and constraint functions and the Hamilton-Jacobi advects the interface, allowing for topological changes.
We present results in two dimensions and discuss the advantages and disadvantages of each approach.

1 Introduction

Heat exchangers, that transfer heat between two or more fluids in separate channels, play an impor-
tant role in a multitude of industries: power generation, chemical plants, automobiles, HVAC systems,
etc. The main mechanism for heat transfer is conduction through the walls that separate the channels,
therefore maximizing the channel surface area is key for performance. However, as the surface area
increases so too does the pressure drop across the channels and hence the power required to operate the
heat exchanger increases.
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Recent advances in manufacturing have permitted the miniaturization of heat exchangers. Greater effec-
tiveness due to increased surface area to volume ratio, smaller thermal resistance and a larger range of
applications to areas that require miniaturization, e.g. electronic circuits, biomedical processes, robotics,
etc., cf. [81], [79]. High surface area to volume ratio comes nonetheless at the expense of a greater
pressure drop across the flow channels which translates into a higher operating costs [40]. Designing a
heat exchanger is therefore a compromise between heat transfer and pressure drop.

Most heat exchanger design studies are limited to a low-dimensional design space. The geometric config-
uration is typically fixed and a parametric optimization on channel cross sections or lengths is performed
[72, 40, 12, 48]. These design limitations come from manufacturing limitations. However, with the ad-
vent of additive manufacturing, these limitations can be relaxed. Engineers must, accordingly, develop
new design tools to leverage this freedom.

One such design tool is topology optimization which finds the optimal geometry to minimize a given cost
function and satisfy constraint functions. These functions depend on the solution of Partial Differential
Equations (PDE) that model the physical phenomena of interest. The first applications of topology
optimization were in structural mechanics. Notably, [19] formulated a material distribution problem
wherein a volume fraction field models the solid, void and intermediate material phases. By penalizing
the intermediate phase, e.g. by the SIMP (Solid Isotropic Material with Penalization) method, [91]
designs with optimized hole placements and geometry are generated with distinct material and void
phases. An alternative approach based on the level set method [86, 7, 78] avoids the intermediate phase
by using the zero isocontour of a level-set function to define the solid-void interface. However, the ability
of introducing holes into the design with this method is not straightforward.

The aforementioned topology optimization studies concerned structural systems. Research on topology
optimization has subsequently expanded to other systems, e.g. flow problems [22], [51], electromag-
netism [60], [92] and acoustics [84]. An extensive review of topology optimization applications can be
found in [37]. A more in-depth review specific to level set topology optimization methods is provided
by [82] and a more recent review on topology optimization for fluid-based problems appears in [2].

Applications of topology optimization to heat transfer systems initially only considered heat conduction
[50, 66]. However, efficient heat transfer systems rely on forced convection, caused by pressure differ-
ences [38], [90], and natural convection, caused by buoyancy forces generated by temperature gradients
in the fluid [1]. An extensive review of the design of heat transfer systems can be found in [35].

Few articles have been devoted to the design of heat exchangers and they often assume predetermined
configurations of one flow channel [54], [61]. New methods are necessary to simultaneously optimize
both the cooling and heating channel configurations. To the best of our knowledge, the first effort to do
this is described in the [71] thesis, upon which this article is inspired. To keep the fluids in their separate
channels, [71] solves two Stokes-Brinkman equations, one for the heating channel and one for the cooling
channel. The material distribution of each channel is complementary to the other, e.g. the open channel
region for the hot fluid channel is the solid region of the cold fluid channel. The walls separating the two
fluids channels are assumed to be infinitesimally thin. [45] applies the level set method to heat exchanger
design, wherein both channels are analyzed in one flow problem. A minimum distance constraint is
imposed between the channels and thusly a finite wall thickness is obtained. The optimized results,
however, use a predefined configuration. Therefore, the [45] method is shape optimization, rather than
topology optimization. [76] obtains three-dimensional heat exchanger designs, however, very few details
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of the methodology are explained due to proprietary reasons. [54] design a two dimensional unit cell of
an air-water heat exchanger. However, they do not simulate the water flow, rather the water temperature
is prescribed as a boundary condition over the air-water interface. During the preparation of this work,
two new articles on topology optimization of heat exchangers were published. [62] also uses [71] method
as foundation and extends their work to three dimensions with the Navier-Stokes equation to model the
flow. [58] also solves a three dimensional heat exchanger with the Navier-Stokes equation, although their
designs feature walls with finite thickness by means of an erosion-dilation identification method.

Our work solves the exact same problem with the two most commonly used methods in topology op-
timization (the volume fraction and the level set methods) to highlight their differences. We also pro-
vide the source code used in this study for replication purposes and as a solid starting point for future
researchers. More importantly, the codebase represents a methodology for the design of generalized
two-phase systems that exchange species such as fuel cells, batteries, etc. In Section 2, we present the
equations to model a two fluid heat exchanger, namely the Stokes-Brinkman and heat transfer equations.
Section 3 discusses the numerical strategies to solve the topology optimization problem pertaining to
the volume fraction and the level set methods. In Section 4, both methods are used to solve the same
optimization problem: a parallel flow two dimensional heat exchanger. Finally, Section 5 discusses the
conclusions and future research directions.

2 Governing equations

Heat exchangers are thermal fluid systems, where fluid mechanics and heat transfer interact with each
other in a highly complex manner. For simplicity, our fluids simulations assume steady-state behavior,
incompressibility and low Reynolds numbers, i.e. we assume Stokes flow. We also assume isothermal
flow and neglect buoyancy forces. We consider two fluids that are confined to separate channels. To
model their respective flows, we follow [71] and solve one set of Stokes equations per fluid for the
velocity pressure pair (ui, pi), where i =C(H) denotes the cold (hot) fluid

−µ∇
2ui +∇pi = fi in Di ,

∇ ·ui = 0 in Di ,

ui = 0 in D\Di ,

ui = uiin on Γiin ,

pi = 0 on Γiout ,

ui = 0 on ∂Di \ (Γiin ∪Γiout) ,

(1)

where µ is the fluid viscosity. Note that we assume the same properties for the hot and cold fluids, e.g.
µ = µC = µH . The spatial domains DC and DH are complementary subsets of the total domain D, i.e.
D = DC ∪DH . To avoid fluid mixing, we consider each complementary domain D \Di as a solid phase
with ui = 0, e.g. uC = 0 in DH = D \DC in the analysis of the cold fluid. This strategy assumes an
infinitesimally thin interface separates the fluids. Fluid i enters the chamber through surface Γiin with an
imposed velocity uiin and exits the chamber through Γiout at the constant pressure pi = 0. The remaining
boundary ∂Di \Γiin ∪Γiout is subjected to the no-slip boundary condition.

Thermal energy is transported by advection and conduction and does not distinguish the phases, i.e. the
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temperature field T is computed over the entire domain D by solving

ρcp∇T · (uC +uH)+ k∇
2T = 0 in D , (2a)

T = T̂C on ΓCin , (2b)

T = T̂H on ΓHin , (2c)

∇T ·n = 0 on Γ\ (ΓHin ∪ΓCin ∪ΓHout ∪ΓCout) , (2d)

where cp is the specific heat capacity at constant pressure, ρ is the fluid density and k is the conduction
coefficient. Again, note that we assume the same properties for the hot and cold fluids. The flow veloc-
ities uC and uH give rise to the advection energy transport. Adiabatic boundary conditions are enforced
over all surfaces with the exception of the channel inlets and outlets.

The cold and hot fluid domains, DC and DH respectively, evolve during the optimization and hence their
geometries are not known a priori. To model their domains we follow an Ersatz approach and simulate
the solid phases D \Di via a Brinkman penalization term αχi(x)ui [22] where α is a sufficiently high
scalar and χi : D→{0,1} are the indicator functions defined such that

χC(x) =

{
0 in DC

1 else
(3)

and

χH(x) = 1−χC(x) , (4)

For a realistic modeling of solid material with zero flow velocity, we would set α = ∞. However, this
leads to numerical issues, so in practice we use a large value, i.e. α� 1. Thus, we approximate the
original problem in Equation (1) as finding ui such that

−µ∇
2ui +∇pi +αχiui = fi in D , (5)

∇ ·ui = 0 in D , (6)

ui = uiin on Γiin ,

pi = 0 on Γiout ,

ui = 0 on ∂Di \ (Γiin ∪Γiout) .

We discretize the Stokes equation with the finite element method over the triangular partition Th of D.
We multiply Equations (5) and (6) with the test functions vi and qi, integrate over the domain D and
apply integration by parts to obtain the weak formulation: Find (ui, pi) ∈ Vi(Th)×Qi(Th) such that

a(χi;ui,vi)+b(pi,vi) = l(vi) ,

b(qi,ui) = 0 ,
(7)

for all test functions (vi,qi) ∈ Vi(Th)×Qi(Th) and i =C,H, where

a(χi;ui,vi) =
∫

D
µ∇ui : ∇vi dV +

∫
D

αχiui ·vi dV ,

b(pi,vi) =
∫

D
pi∇ ·vi dV ,

l(vi) =
∫

D
fi ·vi dV

(8)
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with the finite element function spaces

Vi(Th) =
{

v ∈
[
C0(D)

]d
: vh|K ∈

[
P2(K )

]d ∀K ∈ Th | v = uiin on Γiin

}
, (9)

V0i(Th) =
{

v ∈
[
C0(D)

]d
: vh|K ∈

[
P2(K )

]d ∀K ∈ Th | v = 0 on Γiin

}
, (10)

Qi(Th) =
{

q ∈C0(D) : qh|K ∈ P1(K ) ∀K ∈ Th | q = 0 on Γiout

}
, (11)

where d is the mesh geometric dimension. This pair of finite element spaces Vi(Th) and Qi(Th) are
synonymous with the Taylor-Hood element pair of lowest order (second order Lagrange elements for
the velocity and first order Lagrange elements for the pressure) and satisfy the Ladyzhenskaya-Babuska-
Brezzi (LBB) conditions [24]. For conciseness, we henceforth refer to Vi(Th), V0i(Th) and Qi(Th) as Vi,
V0i and Qi.

Equation (2) is dominated by convection and it is well known that the standard Galerkin finite element
method does not converge for convection dominated problems [25]. As such, we use the Discontinuous
Galerkin method to solve Equation (2). The convective component is accommodated with an upwind
scheme and the elliptic component is discretized with the symmetric interior penalty Galerkin formula-
tion (SIPG). We apply both the upwind scheme and the SIPG to Equation (2) to obtain the weak form:
Find T ∈W (Th) = {vh ∈ L2(D) : vh|K ∈ P1(K ) ∀K ∈ Th} such that

aT (u;T,w) = lT (w) , (12)

for all w ∈W (Th), where

aT (u;T,w) =
∫

D
(k∇T −ρcpT u) ·∇w dV

− ∑
F∈Fi

∫
F

(
〈∇T 〉 ·nJwK+ 〈∇w〉 ·nJT K− γ

h
JT KJwK−ρcpT JwKJûK

)
dA

+ ∑
F∈FΓCout∪ΓHout

∫
F

ρcpT u ·n dA

+ ∑
F∈FΓCin

∪ΓHin

∫
F

(
wρcpT u ·n+wT +

γ

h
kTw− k∇w ·nT − k∇T ·nw

)
dA ,

(13)

and

lT (w) = ∑
F∈FΓCin

∫
F

(
T̂Ck∇w ·n+wT̂C +

γ

h
T̂Cw

)
dA+ ∑

F∈FΓHin

∫
F

(
T̂Hk∇w ·n+wT̂H +

γ

h
T̂Hw

)
dA ,

(14)
in which u = uC +uH ,

û = u ·n+
∣∣∣u ·n

2

∣∣∣ , (15)

is the upwind flux, γ is a penalty parameter equal to 5× 104 herein, h is the cell diameter and n is the
element face F normal vector. The integration set Fi is comprised of all interior element faces, whereas
FΓ, FΓCin

, FΓHin
, FΓCout

and FΓHout
are comprised of the element faces on the boundaries Γ, ΓCin , ΓHin , ΓCout

and ΓHout respectively. Note that the Dirichlet boundary conditions, cf. Equations (2b), (2c), are weakly
enforced.
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3 Topology optimization of heat exchangers

Heat exchangers are designed to maximize energy transfer. As such, we formulate the topology opti-
mization problem in terms of our design field, i.e. the cold fluid domain characteristic function (from
which the hot fluid domain is defined, cf. Equation (4)) χC ∈ X = { f : D→{0,1}} such that

max
χC∈X

J(χC) =
∫

ΓCout

T ρcpuC ·n dA ,

s.t. (uC,uH , pC, pH ,T ) ∈ VC×VH ×QC×QH ×W satisfy

a(χC;uC,vC)+b(vC, pC)+b(uC,qC) = l(vC) ,

a(χH ;uH ,vH)+b(vH , pH)+b(uH ,qH) = l(vH) ,

aT (uC +uH ;T,w) = lT (w) ,

for all (vC,vH ,qC,qH ,w) ∈ V0C ×V0H ×QC×QH ×W

G1(χC) =
∫

ΓCin

pC dA≤ Pdrop ,

G2(χC) =
∫

ΓHin

pH dA≤ Pdrop ,

(16)

i.e. our goal is to maximize the energy flux through the cold fluid outlet ΓCout . To prevent an excessive
power requirement, the constraints G1(χC) and G2(χC) limit the pressure drop across each fluid channel
to be less than Pdrop. This constraint also serves to regularize the problem. Indeed, without a pressure
constraint, the optimal solution will have infinitely long channels of infinitesimally small cross sectional
areas to maximize the interface area and hence the heat transfer, but at the expense of an infinite pressure
drop.

Our optimization problem (16) is not tractable for numerous reasons, namely the binary valued nature of
the characteristic function yields a discrete optimization problem which is notoriously hard to solve. In
the following paragraphs we devise two strategies to transform this problem into ones that are solvable
by gradient-based algorithms: the volume fraction and level set methods

3.1 Volume fraction method

The so called volume-fraction method (also known as density or material distribution method) consists
of replacing the binary-valued design field χC : D→ {0,1} with the convex volume fraction (of cold
versus hot material) field νC : D→ [0,1] and penalizing intermediate values so that νC best resembles
the indicator function χC. For this purpose, we use the SIMP formulation [20] and define the penalized
volume fraction as

ν̂(ν) = ν
pSIMP (17)

where pSIMP is a penalization parameter. SIMP originated in structural optimization where there is a
natural trade-off between stiffness and weight. Here, a similar trade-off exists between heat transfer and
pressure drop.
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Replacing χC for νC penalized by SIMP, cf. Equation (17), in Equation (16), we obtain

max
νC∈V

J(νC) =
∫

ΓCout

T ρcpuC ·n dA , (18a)

s.t. (uC,uH , pC, pH ,T ) ∈ VC×VH ×QC×QH ×W satisfy

a(ν̂(νC);uC,vC)+b(vC, pC)+b(uC,qC) = l(vC) , (18b)

a(ν̂(νH);uH ,vH)+b(vH , pH)+b(uH ,qH) = l(vH) , (18c)

aT (uC +uH ;T,w) = lT (w) , (18d)

for all (vC,vH ,qC,qH ,w) ∈ V0C ×V0H ×QC×QH ×W ,

G1(νC) =
∫

ΓCin

pC dA≤ Pdrop , (18e)

G2(νC) =
∫

ΓHin

pH dA≤ Pdrop , (18f)

where we note νH = 1− νC. The function space V = {ν ∈ L2(D) | 0 ≤ ν ≤ 1} is discretized using
element-wise uniform values.

We use a reduced space optimization formulation to solve Problem (18) and calculate the cost and con-
straint functions J(νC), G1(νC) and G2(νC) and their sensitivities DJ(νC), DG1(νC) and DG2(νC) using
Firedrake [75, 67, 57] and the adjoint method with pyadjoint [68]. For the sensitivity computations, we
consider the dependency of uC, pC, uH , pH and T on the design νC so that, e.g., J(νC) = Ĵ(νC,uC(νC),
pC(νC),uH(νC), pH(νC),T (νC)). Once DJ(νC), DG1(νC) and DG2(νC) are calculated, we feed them to
the MMA algorithm [80]1 to update the design νC. Iterations continue until a pre-specified convergence
tolerance is satisfied.

3.2 Level set method

The level set method [70] is a numerical technique to describe the evolution of an interface as the zero
isocontour of a scalar function φ : D 7→ R. We use this approach to define the interface between the fluid
channels, which we denote as ∂DC such that

φ(x)> 0, x ∈ DH Hot fluid , (19)

φ(x) = 0, x ∈ ∂DC Interface ,

φ(x)< 0, x ∈ DC Cold fluid .

In each optimization iteration, the shape derivative with respect to DC is used to advect the φ(x) = 0
isocontour. As such, it is possible to merge existing holes, but not nucleate new holes.

The level-set function φ is discretized over a regular mesh via linear interpolation, i.e. Lagrange shape
functions. Because of this, the material interface ∂DC is rarely aligned with the mesh elements. This mis-
alignment compromises the accuracy of the forward problem (8). This well known problem is resolved
by using conformal meshes that adhere to the interface [4, 89], applying immersed boundary techniques
[31, 83, 18, 63] and by implementing an Ersatz material approach [8]. For more details on these three
approaches, we refer to [82].

1More specifically, we use an adapted MMA python implementation from the GetDP finite element library [42].
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In this work, we implement the Ersatz method. We proceed by replacing the indicator function χC in
Equation (8) with H ◦ φ : D→ R where H is the unit step function, whereupon, e.g.

∫
D\DC

f (x)dV =∫
D f (x)H(φ(x))dV . In the finite element discretization, the function H ◦ φ is interpolated with linear

Lagrange elements. Therefore, in elements where the level set φ changes sign, the effective penalization
coefficient α · (H ◦φ) varies linearly between α and zero. As such we have a blurred interphase region
rather than a sharp interface between the hot and cold fluid channels. Fortunately, the size of the in-
terphase region can be reduced through mesh refinement. The lack of differentiability of H is only a
concern in the unlikely scenario when φ(x) = 0 at the element nodes. If, e.g. some of the level set values
of an element’s nodes are negative and the others equal zero then the design will be non-differentiable.
Indeed, a “positive” design change to a zero level set valued node will move the entire element into the
cold fluid domain whereas a “negative” change will keep the entire element in the hot domain. The effect
of this anomaly is also lessened with mesh refinement.

The optimization problem in Equation (16) is now formulated as a shape optimization problem. Letting
O denote the set of all admissible domains:

max
DC∈O

J(DC) =
∫

ΓCout

T ρcpuC ·n dA , (20a)

s.t. (uC,uH , pC, pH ,T ) ∈ VC×VH ×QC×QH ×W satisfy

a(H(φ);uC,vC)+b(vC, pC)+b(uC,qC) = l(vC) , (20b)

a(H(−φ);uH ,vH)+b(vH , pH)+b(uH ,qH) = l(vH) , (20c)

aT (uC +uH ;T,w) = lT (w) , (20d)

for all (vC,vH ,qC,qH ,w) ∈ V0C ×V0H ×QC×QH ×W ,

G1(DC) =
∫

ΓCin

pC dA≤ Pdrop , (20e)

G2(DC) =
∫

ΓHin

pH dA≤ Pdrop . (20f)

Similar to the volume fraction formulation, shape optimization is performed with respect to the cold fluid
domain DC since the hot fluid domain DH = D \DC. In the above, we remind the reader that φ and DC

define the same domain, cf. Equation (19).

3.2.1 Shape derivatives

In the level set method literature, the shape sensitivities are calculated by either differentiating the con-
tinuum equations and then discretizing the resulting expressions for computational purposes or vice
versa, i.e. discretizing the PDEs and cost and constraint functions and then differentiating them. Other
terms for the same concept are differentiate-discretize and discretize-differentiate approaches respec-
tively. Our choice is to calculate the shape derivatives DJ(DC),DG1(DC) and DG2(DC) using the
differentiate-discretize approach. This choice allows us to take advantage of the automatic shape deriva-
tive calculation in the Unified Form Language (UFL) [55] within the pyadjoint library [41], [68]. As
in the volume-fraction method, we also use a reduced space formulation and hence we consider the
dependency of the primal variables uC, pC,uH , pH and T on the design DC so that, e.g. J(DC) =
Ĵ(DC,uC(DC), pC(DC),uH(DC), pH(DC),T (DC)).
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Following [64], a general functional J(DC) evaluated on the design DC admits a shape derivative DJ(DC)[ξ]
in the direction ξ ∈Ψ(D) = {ξ ∈Cs(Rd) | ξ ·n|∂D = 0} (with integer s≥ 0) in the form

DJ(DC)[ξ] =
∫

D
(Π : ∇ξ+ ι ·ξ) dV (21)

where Π and ι are sufficiently smooth tensor and vector fields. Given enough regularity assumptions, the
Hadamard-Zolésio theorem [39] shows that Equation (21) only depends on the restriction to the boundary

DJ(DC)[ξ] =
∫

∂DC

gξ ·n dA (22)

where g :=
[(

Π|DC −Π|D\DC

)
n
]
·n. We opt however, to use the Equation (21) option because it is easier

to automatically calculate with pyadjoint, as surface integrals in our Ersatz approach are difficult to
evaluate. Moreover, it also offers better accuracy [33, 56], and it is identical to the discretize and then
differentiate approach [21].

3.2.2 Velocity extension and regularization

The domain shape derivative DJ(DC)[ξ] of Equation (21) requires the specification of a shape velocity
field ζ throughout D, rather than just over the boundary ∂D as required by the Equation (22) expres-
sion. This domain specification is known as the extension problem [82]. Here, we follow [36] and use
a Hilbertian extension which helps to accelerate convergence when using the Ersatz approach, regular-
izes the shape derivative and endows it with a scalar product. Once we formulate the shape derivative
DJ(DC)[ξ], we proceed to find the velocity field ζJ ∈Ψ(D) such that

ζJ = argmin
ξ∈Ψ(D)√
bζ(ξ,ξ)=1

DJ(DC)[ξ] , (23)

whose solution [30] satisfies
bζ(ζ

′

J,ξ) = DJ(DC)[ξ] ∀ ξ ∈Ψ(D)

ζJ =
ζ
′

J√
bζ(ζ

′

J,ζ
′

J)

(24)

where
bζ(ζ,ξ) =

∫
D

γ∇ζ : ∇ξ dV +
∫

D
ζ ·ξ dV + c1

∫
∂D

(ζ ·n)(ξ ·n) dA . (25)

The parameter γ regularizes the problem and helps to accelerate convergence [36, 27]. It must be set
large enough so that ζ extends beyond the boundary ∂DC region, but small enough that values of ζ in
one boundary subregion do not greatly affect the other boundary subregions. The boundary integral on
∂D weighted by the parameter c1� 1 helps to enforce a zero normal component of the velocity ζ on the
boundary ∂D. The same regularization is performed on DG1(DC) and DG2(DC) to obtain ζG1

and ζG2
.
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3.2.3 Optimization algorithm

Once ζJ,ζG1
and ζG2

are calculated, we use them to calculate a search direction that decreases the cost
function and accommodates the constraint functions G1(DC) and G2(DC) in Problem (20). Some re-
searchers minimize a Lagrangian obtained by adding the constraint functions weighted by a crude esti-
mation of the Lagrange multipliers to the cost function. This approach does not ensure satisfaction of
the constraints, but it is sometimes sufficient to obtain reasonable designs. Other approaches use the
Augmented Lagrange method [3], the sequential linear programming method [44] and the null space
gradient flow algorithm [47]. In this work, we opt for the latter algorithm due to the easy availability as
open source code in python [46]. The null space algorithm calculates a search direction θ ∈Ψ(D) using
the cost function and constraint functions gradients obtained with Equation (24). For more details, we
refer to [47].

3.2.4 Level set evolution and reinitialization

The scalar function φn : D→ R at the optimization iteration n is advected in the search direction θ by
taking m time steps with time step dt of the Hamilton-Jacobi equation

∂φ

∂t
= θ ·∇φ 0≤ t ≤ m dt ,

φ(x,0) = φn(x) .
(26)

We represent the solution of Equation (26) as the operator φn+1 =M(φn,θ,dt). A line search is performed
on the time step dt using the merit function merit(φ) described in [47]. dt is accepted if the sufficient
decrease criteria merit(φn+1) ≤ merit(φn) is satisfied, otherwise a new φn+1 = M(φn,θ,

dt
2k ) is evaluated

until satisfaction of the sufficient decrease criteria or the number of trials k reaches a limit maxtrials.
Details on the numerical method used to solve Equation (26) are in the Appendix A.

We apply a reinitialization procedure on φn every five optimization iterations to prevent it from becoming
too steep or too flat. The reinitialization is performed by solving for ϕ to steady-state in Equation (27)

∂ϕ

∂τ
+

φn√
φ2

n + ε |∇φn|2
(1−|∇ϕ|) = 0 ,

ϕ(x,0) = φn(x) ,

(27)

as presented by [73]. In the above, τ is a pseudo-time variable, φn is the level set function we intend to
reinitialize and ε is a stabilization parameter related to the mesh size. In practice, the reinitialization is not
performed to steady-state but only few time steps are taken. Once ϕ is obtained, we update φn = ϕ and
proceed to the next optimization iteration. We describe the numerical procedure used to solve Equation
(27) in Appendix B.

The optimization procedure is summarized in Algorithm 1.

4 Numerical Examples

Our simulation domain is similar to the one found in [71], cf. Figure 1. The cold and hot fluids of equal
viscosity µ enter the chamber from the left at the inlets ΓCin and ΓHin and exit through the right at the

10



Salazar de Troya, Miguel A.; Tortorelli, Daniel A.; Beck, Victor A.

Algorithm 1: Level set method for topology optimization

Initialize level set function;
n = 0;
while ‖θ‖

Ψ
< tol do

Solve Equations (20b), (20c) and (20d);
Calculate the shape derivatives DJ(DC),DG1(DC) and DG2(DC);
Regularize the shape derivatives with Equation (24) to obtain the velocities ζJ , ζG1

, ζG2
;

Apply Null-space search algorithm to obtain a search direction θ;
Update level set function φn+1←M(φn,θ,dt) using Equation (26) with time step dt for m time

steps;
for k=1 ... maxtrials do

if merit(φn+1) ≤ merit(φn) then
break;

end
Update level set function φn+1←M(φn,θ,

dt
2k );

end
if n modulo 5 then

Apply reinitialization on level set function φn by solving ϕ in Equation (27);
φn = ϕ;

end
n = n + 1;

end

outlets ΓCout and ΓHout respectively. For the cold fluid Stokes equation, the Dirichlet condition uCin at the
inlet ΓCin is a horizontal parabolic profile with a maximum velocity Vmax = 2× 10−3 m/s. At the outlet
ΓCout , zero pressure is imposed. The remaining boundary Γ\ (ΓCin ∪ΓCout) has no-slip condition uC = 0.
The hot fluid Stokes equation has the same boundary conditions, but on ΓHin , ΓHout and Γ\ (ΓHin ∪ΓHout)
respectively. For the temperature field, the Dirichlet conditions are T̂C = 10 on ΓCin and T̂H = 100 on
ΓHin . The specific heat capacity is cp = 5×105 J/(kg ◦C); the density ρ, 1 kg /m3, and the conductivity,
k = 1 Watts/(m ◦C). The non-design domain D \DD are the colored regions. The hot (red) fixed region
is treated as solid material in the cold fluid analysis while the cold (blue) fixed region is treated as solid
material in the hot fluid analysis. The reason to exclude these colored regions from the design domain is
to prevent the optimization algorithm from placing material at these locations in an attempt to increase
the heat transfer, but at the expense of blocking the flow. The value for the Brinkman penalty term α

is 5
6 × 104 1/s. We found this value to return the most reasonable results. Even though higher values

of α approximate the solid domain better, we observed that the optimization algorithm converges to a
poorer design minimum. We decided not to pursue a continuation strategy to increase α, but it will be
considered in future work. The mesh is created with Gmsh [52]. We provide a python script to generate
the Gmsh file using pygmsh [77].

The Stokes-Brinkman and heat transfer equations for both the volume fraction, cf. Equations (18b ,
18c and 18d) and level set methods, cf. Equation (20b, 20c and 20d) are implemented in Firedrake
[75, 67, 57], which uses PETSc [15, 14, 34] as the backend for the linear algebra. Due to the small size
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Figure 1: Simulation domain. All dimensions are in meters.

of the problem, we use the direct solver MUMPS [9, 10]. The simulations were run on a single 2.60 GHz
Intel XeonE5-2670 processor.

In the volume fraction optimization, we start with a uniform initial value of νC = 0.5. The derivatives
are calculated automatically with pyadjoint [68] and we use MMA [80] as the optimization algorithm.
During the optimization, we use

∥∥ν
n+1
C −νn

C

∥∥
∞
≤ tol as termination criteria. To obtain better discrete

designs, we use a continuation strategy on the SIMP coefficient pSIMP. Starting from a value of pSIMP = 5,
the optimization proceeds until the termination criteria is below 10−4 or 10−2 for more than ten iterations.
We then decrease pSIMP in Equation (17) to 3 so that intermediate densities impose greater penalization
on the pressure drop and the optimized design is crisper. Afterwards, the optimization continues until
the termination criteria is below 10−8 or 10−3 for more than ten iterations, or a total simulation time of
twenty hours has passed. This sequence of pSIMP values is opposite to traditional topology optimization
compliance problems. Nevertheless, decreasing pSIMP from 5 to 3 generated much better designs than
increasing it from 3 to 5.

We plot the results in Table 1 for varying viscosity values of µ = 0.01,0.02,0.04 and 0.08 m2/s. All
designs feature similar tortuous flow paths as seen in [71] to maximize the interface area between both
flows. For the same design, a lower viscosity translates into a lower pressure drop. Therefore, the
optimized designs have more narrow channels with more interface area between the fluid channels and
hence greater heat transfer. A greater interface area also implies a greater design complexity, and perhaps
this is why the optimization algorithm takes more design iterations, cf. Figure 2. The optimized design
for µ = 0.01 m2/s shows very thin fins due to a lack of control on the minimum length scale. Indeed, the
pressure constraint only prevents narrow flow cross sections, but cannot prevent thin fins from forming.
We intentionally did not to use any filtering length scale control techniques commonly used in volume
fraction based topology optimization [65, 23, 26] to constrain the widths of these fins. These filtering
methods increase the size of the interphase regions. We will investigate other methods to constrain the
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minimum length scale while controlling the extent of the interphase region. Examples of such techniques
are projection methods [85] or higher order parametrizations of the volume fraction such as B-splines
[74] or geometry projection methods [69].

Figure 2 shows the cost function histories in the optimization for µ = 0.01,0.02,0.04 and 0.08 m2/s. The
discontinuity is due to the change in the SIMP exponent in Equation (17) from 5 to 3.

µ = 0.01 m2/s µ = 0.02 m2/s

Fins
<latexit sha1_base64="BNXd6cFiWWUi0rnTcZbnfu/dTAA=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FgUxGMF+wFtKJvtpl262YTdiVhCf4YXD4p49dd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbRSp4v8CbNbocykVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezkCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimGV34mVJIiV2y+KEwlwZhM/yd9oTlDObaEMi3srYQNqaYMbUpFG4K3+PIyaVYr3nmlen9Rrl3ncRTgGE7gDDy4hBrcQR0awCCGZ3iFNwedF+fd+Zi3rjj5zBH8gfP5A8pikZU=</latexit>

Fins
<latexit sha1_base64="BNXd6cFiWWUi0rnTcZbnfu/dTAA=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FgUxGMF+wFtKJvtpl262YTdiVhCf4YXD4p49dd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbRSp4v8CbNbocykVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezkCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimGV34mVJIiV2y+KEwlwZhM/yd9oTlDObaEMi3srYQNqaYMbUpFG4K3+PIyaVYr3nmlen9Rrl3ncRTgGE7gDDy4hBrcQR0awCCGZ3iFNwedF+fd+Zi3rjj5zBH8gfP5A8pikZU=</latexit>

µ = 0.04 m2/s µ = 0.08 m2/s

Table 1: Optimized designs for the heat exchanger using the volume fraction approach.

For the optimized design with µ = 0.02 m2/s, we plot the temperature field in Figure 3 and the velocity
magnitude for both fluids in Figure 4. In Figure 3, the temperature gradient across the interface separating
the fluids is greater at the inlet region, and continually decreases towards the outlet region due to fact that
the hot(cold) fluid becomes colder(hotter) downstream from the inlet and thus the temperature difference
across the interface decreases downstream, as expected. The velocity magnitude in both fluids, cf. Figure
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Figure 2: Optimization histories for viscosity values µ = 0.08,0.04,0.02,0.01 m2/s when using the volume frac-
tion method.

Viscosity µ (m2/s) Cost function (Watts)
0.08 2777.48
0.04 3177.52
0.02 3596.67
0.01 4082.71

Table 2: Cost function values using the volume fraction method.

4 shows a fairly uniform profile along the entire flow paths.

We solve the same problem using the level set method. Our initial design is always φ(x,y)= sin( yπ

5 )cos( xπ

5 )−
4
5 , cf. Figure 5 as is the γ = 1 regularization parameter. The scalar field φ : D→R and the velocity fields
ζJ , ζG1

and ζG2
components are discretized with first order Lagrange elements on the same mesh that is

used to discretize the Stokes-Brinkman equations (7). We plot the final designs in Table 3 and denote the
values of the cost function in Table 4. The results are similar to those obtained by the volume fraction
method, i.e. higher complexity for lower viscosity µ values.

A one-to-one comparison between both methods is not rigorous because different optimization algo-
rithms were employed. However, it is worthwhile to highlight the differences between them. Namely,
the level set method requires fewer iterations to converge, at the expense of two shortcomings: First, the
level set method is not able to nucleate new holes in the domain, it is only capable of merging existing
ones. In the case of the heat exchanger, the level set method is not capable of rounding the upper left and
right corners to decrease the pressure drop in the hot fluid. This inability to create new holes has been
addressed for elasticity problems using topological derivatives [49, 11] to determine the optimal location
of the holes during the optimization [5, 28] or via a complementary volume-fraction/density field [16].
Secondly, the lack of a mechanism to control the minimum length scale affects the convergence of the
level set method for µ = 0.01 and µ = 0.02 m2/s, cf. Figure 6. We observe the optimization algorithm
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Figure 3: Temperature field for the optimized design with µ = 0.02 m2/s.

Figure 4: Velocity magnitude for cold and hot fluids for the optimized design with µ = 0.02 m2/s.

struggling as it is incapable of creating thinner features, as evidenced by multiple failed line searches.
Several methods address this issue by exploiting the geometric information given by the signed-distance
function. For instance, length-scale constraints can be formulated by monitoring the distance from the
boundary to the skeleton of the structure [6, 88, 53] or by comparing the areas enclosed by a boundary
offset and by a level set offset [87]. Approaches that parametrize the level set with an explicit rep-
resentation utilize the length-scale constraints introduced in structural topology optimization methods
[59, 43]. Another contributor to the erratic convergence is attributed to the current linear interpolation of
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Figure 5: Initial design.

the heaviside function H ◦φ in elements where φ changes sign. Indeed, this mapping creates an irregular
interface that can cause undesirable oscillations in the shape derivatives. This is specially noticeable
when a geometry feature is not sufficiently refined. For this reason, in our future work, we will consider
the implementation of an immersed type finite element method such as CutFEM [29] or XFEM [17].
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Figure 6: Optimization histories for viscosity values µ = 0.08,0.04,0.02,0.01 m2/s when using the level set
method.
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µ = 0.01 m2/s µ = 0.02 m2/s

µ = 0.04 m2/s µ = 0.08 m2/s

Table 3: Optimized designs for the heat exchanger using the level set approach. The designs have been post
processed with Paraview [13] to obtain the interface defined by φ(x) = 0.

Viscosity µ (m2/s) Cost function (Watts)
0.08 2737.51
0.04 3155.25
0.02 3587.45
0.01 4007.62

Table 4: Cost function values for the examples using the level set method.

5 Conclusions

We present the two dimensional topology optimizations of a two fluid heat exchanger using the volume
fraction and level set methods. To prevent both fluids from mixing, we solve the Stokes equation for
each fluid with a Brinkman penalization modeling the other phase as solid. The velocity fields from
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both fluids are then fed into the heat transfer equation as the advection field to obtain the temperature.
Using these governing equations, we proceed to maximize the heat transfer between both fluids with a
constraint on the pressure drop across each fluid channel. The volume fraction method uses the SIMP
penalization and the level set method reformulates the problem as a shape optimization with the domains
defined by a level set. We solve the same optimization problem for several values of the viscosity using
both methods and compare the results. The optimized designs obtained share similar geometry and heat
transfer efficiencies. However, the level set method converges in fewer design of iterations at the expense
of heavy oscillations for lower viscosity values due to a lack of minimum length control.

The most immediate improvement for the presented framework is the enforcement of a length scale
control method for the level set method. Such methods have already been proposed in the literature
[6, 87] and their implementations are not difficult. Our plan is to also perform optimizations for three
dimensional domains, where more interesting designs can be obtained. Likewise, in three dimensions it
will be worth investigating different flow configurations, i.e. a comparison between parallel, cross flow,
shell and tube heat exchangers, etc. Lastly, we have assumed an infinitesimally thin membrane separating
both fluids. A wall with non-zero thickness and different conductivity properties will offer more realistic
designs.

Replication of results

The code to replicate the volume fraction results is in the repository https://github.com/LLNL/
2DHEVF and it requires the installation of the MMA python implementation found in https://github.
com/LLNL/pyMMAopt and Signac (https://signac.io/) to run the parameter sweep. The level set
method results can be replicated with the library lestofire https://github.com/LLNL/lestofire,
which contains the heat exchanger design in one of the examples, i.e. https://github.com/LLNL/
lestofire/tree/main/examples/heat_exchanger. Both repositories require the Firedrake library
(https://www.firedrakeproject.org/).
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[77] N. Schlömer, A. Cervone, G. McBain, tryfon mw, R. van Staden, F. Gokstorp, toothstone, J. S.
Dokken, anzil, J. Sanchez, D. Kempf, M. Bussonnier, Y. Feng, awa5114, T. Maric, S. Chen, nil-
swagner, Nate, ivanmultiwave, and F. Fu. nschloe/pygmsh v6.1.1, Apr. 2020.

[78] J. Sethian and A. Wiegmann. Structural boundary design via level set and immersed interface
methods. Journal of Computational Physics, 163(2):489 – 528, 2000.

[79] R. K. Shah. Advances in science and technology of compact heat exchangers. Heat Transfer
Engineering, 27(5):3–22, 2006.

[80] K. Svanberg. The method of moving asymptotes—a new method for structural optimization. In-
ternational journal for numerical methods in engineering, 24(2):359–373, 1987.

[81] A. D. Tharkar and S. P. Mahulikar. Size Effect on Thermal Characteristic of Tubular Heat Ex-
changer at Miniscale and Microscale. Journal of Thermal Science and Engineering Applications,
11(2), 10 2018. 021001.

[82] N. P. van Dijk, K. Maute, M. Langelaar, and F. Van Keulen. Level-set methods for structural
topology optimization: a review. Structural and Multidisciplinary Optimization, 48(3):437–472,
2013.

[83] C. H. Villanueva and K. Maute. Cutfem topology optimization of 3d laminar incompressible flow
problems. Computer Methods in Applied Mechanics and Engineering, 320:444–473, 2017.

[84] E. Wadbro and M. Berggren. Topology optimization of an acoustic horn. Computer Methods in
Applied Mechanics and Engineering, 196:420–436, 12 2006.

[85] F. Wang, B. S. Lazarov, and O. Sigmund. On projection methods, convergence and robust formu-
lations in topology optimization. Structural and Multidisciplinary Optimization, 43(6):767–784,
2011.

23



Salazar de Troya, Miguel A.; Tortorelli, Daniel A.; Beck, Victor A.

[86] M. Y. Wang, X. Wang, and D. Guo. A level set method for structural topology optimization.
Computer methods in applied mechanics and engineering, 192(1-2):227–246, 2003.

[87] Y. Wang, L. Zhang, and M. Y. Wang. Length scale control for structural optimization by level sets.
Computer Methods in Applied Mechanics and Engineering, 305:891–909, 2016.

[88] Q. Xia and T. Shi. Constraints of distance from boundary to skeleton: for the control of length scale
in level set based structural topology optimization. Computer Methods in Applied Mechanics and
Engineering, 295:525–542, 2015.

[89] S. Yamasaki, T. Nomura, A. Kawamoto, K. Sato, and S. Nishiwaki. A level set-based topology
optimization method targeting metallic waveguide design problems. International Journal for Nu-
merical Methods in Engineering, 87(9):844–868, 2011.

[90] G. H. Yoon. Topological design of heat dissipating structure with forced convective heat transfer.
Journal of Mechanical Science and Technology, 24(6):1225–1233, 2010.

[91] M. Zhou and G. Rozvany. The coc algorithm, part ii: Topological, geometrical and generalized
shape optimization. Computer Methods in Applied Mechanics and Engineering, 89(1):309 – 336,
1991. Second World Congress on Computational Mechanics.

[92] S. Zhou, W. Li, and Q. Li. Level-set based topology optimization for electromagnetic dipole an-
tenna design. Journal of Computational Physics, 229(19):6915–6930, 2010.

A Hamilton-Jacobi equation solver

To stabilize the solution to the Hamilton–Jacobi Equation (26), we follow [32] and add a term penalizing
he gradient jumps across elemen boundaries weighted by he stabilizaion parameter c2. Ultimately, we
find φ ∈ H1(D) such that∫

D

∂φ

∂t
ψ−θ ·∇φψ dV + c2 ∑

F∈Fi

∫
F

h2J∇φ ·nKJ∇ψ ·nK dA = 0 ∀ψ ∈ H1(D) . (28)

In all our examples, c2 = 1.0. We use linear Lagrange elements for the space discretization and the
Crank-Nicholson method for the time discretization with a time step dt given by

dt =
0.1hmin

max
D

(|θx|+ |θy|)
. (29)

where hmin is the diameter of the smallest element in the mesh. As described in Algorithm 1, the time
step dt is halved whenever the line search fails to decrease the merit function.

B Signed distance equation solver

We add an artificial term with diffusion κ = 6.25 to the reinitialization Equation (27) for stabilization
purposes

∂ϕ

∂τ
+

φ0√
φ2

0 + ε |∇φ0|2
(1−|∇ϕ|)−κ∇

2
ϕ = 0 , (30)
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then, we transform the Equation (27) into its weak form, i.e. we find ϕ ∈ H1(D) such that

∫
D

ψ
∂φ

∂τ
+ψ

φ0√
φ2

0 + ε |∇φ|2
(1−|∇φ|)−κ∇φ ·∇ψ

dV = 0 ∀ψ ∈ H1(D) . (31)

The space is discretized with linear Lagrange finite elements and in time with the Forward Euler method
with a time step dτ = 10−7 in our examples.
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