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Abstract: Energy efficient semiconductor chips are in high demand to cater the needs of today’s smart
products. Advanced technology nodes insert high design margins to deal with rising variations at the
cost of power, area and performance. Existing run time resilience techniques are not cost effective due
to the additional circuits involved. In this paper, we propose a design time resilience technique using
a clock stretched flip-flop to redistribute the available slack in the processor pipeline to the critical
paths. We use the opportunistic slack to redesign the critical fan in logic using logic reshaping, better
than worst case sigma corner libraries and multi-bit flip-flops to achieve power and area savings.
Experimental results prove that we can tune the logic and the library to get significant power and
area savings of 69% and 15% in the execute pipeline stage of the processor compared to the traditional
worst-case design. Whereas, existing run time resilience hardware results in 36% and 2% power and
area overhead respectively.

Keywords: better than worst case design; error tolerance; slack re-distribution; time borrowing

1. Introduction

Cost effective variation tolerance is hard to achieve in nanometer scale technology nodes [1,2].
Manufacturing process limitations in advanced nodes cause random dopant fluctuations and line edge
roughness [3–5] which require additional process margins. High device density in nanoscale chips
results in an increase in dynamic voltage and temperature variations [6,7] which widens the design
margins further. As a result, the chip life cycle has shrunk tremendously. Dynamic variations are
random in nature and depend heavily on the workload. Moreover, the magnitude of delay variations
in the near- threshold regime is exponential with respect to supply voltage. Traditional variation
tolerance techniques use worst case design margins which results in huge wastage of chip resources.
We need novel error tolerance techniques that can improve the performance, power and area of chips
without affecting the chip reliability. The proposed Variation Tolerant Design (VTD) improves the
above design parameters for the same reliability margins as the Worst-Case Design (WCD) as shown
in Figure 1.

Post-silicon tuning [8] and adaptive techniques help to recover fixed design margins to combat
process variability. Sensor and monitor-based techniques generate a hardware signature of the variation
which is then used in higher abstraction layers to tune the operating condition [9,10]. However,
sensor response is not fast enough to dynamic variations, which limits the amount of design margin
improvement. This prevents the use of sensors in better than worst case (BTWC) design techniques.
In addition, sensor calibration, to determine the safe region of operation, contributes to the post-silicon
testing costs.
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Figure 1. Proposed Variation Tolerant Design (VTD). 

Performance variations, whether static or dynamic, are manifested as timing errors in the critical 
paths. Critical path replica [11] is a non-intrusive technique which duplicates and monitors the critical 
path to detect variations. Although this helps to avoid data corruption by short paths, they will not 
be able to detect the actual variation encountered by the critical path under consideration. In-situ 
error resilience techniques compare the input data with a delayed version to decide whether a timing 
error has happened. The operating point of the silicon is then tuned dynamically to regain the design 
margins until the error rate exceeds the threshold limit. Here, the error detection window decides the 
design margin improvement. Max delay constraint of the flip-flop is relaxed by the error detection 
window and the min delay constraint is tightened by the same amount to prevent short paths from 
corrupting the data and the error signal. This max delay min delay trade-off is a major design 
challenge when using in-situ error resilience. Razor I [12] uses a flip-flop as data path and a latch in 
shadow path to generate timing error signal. It suffers from meta-stability issues since the data 
changes too close to the clock edge. Meta-stability detector, short path buffer and MUX overheads 
make this technique power hungry. In Razor II [13] the meta-stability issue is avoided using a latch 
based data path. But latch makes the data path transparent to glitches and spurious transitions. In 
addition, hold buffers and duty cycle control overheads are significant. Double sampling with time 
borrowing (DSTB) [14] is similar to Razor I with flip-flops as the data path. Transition detection with 
time borrowing (TDTB) is similar to Razor II with latches as the data path. Another approach Bubble 
razor [15] breaks the dependency between speculation window and minimum delay using a two-
phase latch implementation. However, it has area and power penalties. In-situ techniques correct 
errors in the architecture level using instruction replay or counter flow pipelining. This adds a latency 
of few clock cycles for error recovery and makes the error path design constraints very stringent. 
Also, they suffer from sharp design margin deterioration with increasing error rate due to the error 
correction latency to recover from the critical wall of the slack behavior. 

In-situ methods like soft edge flip-flops [16] and TIMBER [17] masks the error by borrowing 
time from the next pipeline stage. Compared to error detection methods, there is no latency overhead 
for error masking, which makes it a good candidate for performance-driven designs. Soft edge flip-
flops are able to reclaim only small fixed design margins. Here the clock control circuit is internal to 
the flip-flop which limits the degree of softness attained. TIMBER uses discrete time borrowing 
coupled with error propagation to detect multistage timing errors. Here the design margin reduction 
is limited because the time borrow window is divided into smaller intervals to deal with multistage 
errors. Also, they suffer from significant error propagation and hold buffer overheads.  

Better than worst case design (BTWC) techniques [18–21] can be used to tune the operating 
corner of the chip to the typical corner together with error resilience elements in the critical path to 
detect and correct the dynamic errors. Processor pipelines have the critical wall of slack behavior [22]. 
This results in many critical paths which makes the cost of resilience even higher. Razor techniques 
deal with high error rates by adjusting the system frequency. TIMBER shares a fixed design margin 
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Performance variations, whether static or dynamic, are manifested as timing errors in the critical
paths. Critical path replica [11] is a non-intrusive technique which duplicates and monitors the critical
path to detect variations. Although this helps to avoid data corruption by short paths, they will not
be able to detect the actual variation encountered by the critical path under consideration. In-situ
error resilience techniques compare the input data with a delayed version to decide whether a timing
error has happened. The operating point of the silicon is then tuned dynamically to regain the design
margins until the error rate exceeds the threshold limit. Here, the error detection window decides the
design margin improvement. Max delay constraint of the flip-flop is relaxed by the error detection
window and the min delay constraint is tightened by the same amount to prevent short paths from
corrupting the data and the error signal. This max delay min delay trade-off is a major design challenge
when using in-situ error resilience. Razor I [12] uses a flip-flop as data path and a latch in shadow
path to generate timing error signal. It suffers from meta-stability issues since the data changes too
close to the clock edge. Meta-stability detector, short path buffer and MUX overheads make this
technique power hungry. In Razor II [13] the meta-stability issue is avoided using a latch based data
path. But latch makes the data path transparent to glitches and spurious transitions. In addition,
hold buffers and duty cycle control overheads are significant. Double sampling with time borrowing
(DSTB) [14] is similar to Razor I with flip-flops as the data path. Transition detection with time
borrowing (TDTB) is similar to Razor II with latches as the data path. Another approach Bubble
razor [15] breaks the dependency between speculation window and minimum delay using a two-phase
latch implementation. However, it has area and power penalties. In-situ techniques correct errors in
the architecture level using instruction replay or counter flow pipelining. This adds a latency of few
clock cycles for error recovery and makes the error path design constraints very stringent. Also, they
suffer from sharp design margin deterioration with increasing error rate due to the error correction
latency to recover from the critical wall of the slack behavior.

In-situ methods like soft edge flip-flops [16] and TIMBER [17] masks the error by borrowing time
from the next pipeline stage. Compared to error detection methods, there is no latency overhead for
error masking, which makes it a good candidate for performance-driven designs. Soft edge flip-flops
are able to reclaim only small fixed design margins. Here the clock control circuit is internal to the
flip-flop which limits the degree of softness attained. TIMBER uses discrete time borrowing coupled
with error propagation to detect multistage timing errors. Here the design margin reduction is limited
because the time borrow window is divided into smaller intervals to deal with multistage errors. Also,
they suffer from significant error propagation and hold buffer overheads.

Better than worst case design (BTWC) techniques [18–21] can be used to tune the operating corner
of the chip to the typical corner together with error resilience elements in the critical path to detect
and correct the dynamic errors. Processor pipelines have the critical wall of slack behavior [22]. This
results in many critical paths which makes the cost of resilience even higher. Razor techniques deal
with high error rates by adjusting the system frequency. TIMBER shares a fixed design margin among
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multiple pipeline stages. Also, the system frequency needs to be halved to recover from multistage
errors beyond three stages.

Cost-effective alternatives like EVAL (Environment for Variation Afflicted Logic) [23] uses
adaptive body bias and supply voltage scaling to optimize slow paths and fast paths. Blue Shift [24]
varies the timing constraints and bias voltage to optimize selected critical paths. Power-aware
slack distribution (SlackOptimizer) [24] sizes the cell to distribute slack evenly in a power and
cost-efficient manner. Selective End Point Optimization (SEOpt), Clock Skew Optimization (SkewOpt)
and Combined Optimization (CombOpt) [25,26] inserts additional margins and thus reduce the cost of
resilience by replacing error tolerant registers with conventional ones. They need significant design
time and computational complexity.

Our work utilizes the slack imbalances inherent in processor pipelines to strengthen the critical
paths. We use static timing analysis (STA) to find positive slack paths which immediately succeeds the
critical paths. We use a simple clock stretched flip-flop (CSFF) to redistribute this slack to the critical
stage. This enables us to redesign the combinational fan-in of the critical path proportionate to the
extra slack margin. The relaxed slack margins result in power and area savings in the critical fan-in
logic cone. In this paper, we propose two power optimization techniques to redesign the critical stages
of a 40nm processor pipeline. One approach uses path optimization directives to adjust the timing
slack during the synthesis stage. The second approach uses BTWC sigma corner library to resign
critical modules with sufficient consecutive slack in the processor pipeline. The slack apportioning is
done in such a way that pessimistic design margins are maintained with respect to the stretched clock
edge. The whole scheme is non-speculative and does not involve any runtime voltage or frequency
scaling. This guarantees power and area savings without high error rates associated with speculative
techniques. Timing is closed at design time keeping the worst design margins relative to the delayed
clock edge which avoids any meta-stability issues in the design. Table 1 summarizes the features of the
different error resilience techniques discussed so far.

Table 1. Comparison of Error Resilience Techniques.

Feature Design Level
Optimization

Sequential
Optimization

Based on Error
Detection

Combinational &
Sequential

Optimization

Sequential
Optimization

Based on Error
Masking

Proposed

Speculation
Mechanism

ABB, ASV, OSB,
PCT

Adaptive
voltage/frequency

scaling

Adaptive
voltage/frequency

scaling

Adaptive
voltage/frequency

scaling

Non-speculative,
based on cell
downsizing
and BTWC

library

Error Handling Duplicate paths Duplicate
Latch/FFs

Duplicate
Latch/FFs

Duplicate
Latch/FFs No error

Clock Tree Loading No Yes Yes Yes No

Short Path Padding No Yes Yes Yes Yes

Sequential Overhead Large Large Large Large None

Combinational
Overhead Small Small Small Small None

Meta-stability Yes Yes Yes Yes No

Techniques EVAL,
Blueshift

Razor I, Razor II,
Bubble Razor
DSTB, TDTB

Slack Optimizer,
Skew Optimizer,

CombOpt

TIMBER, soft edge
flip-flop

Clock stretched
flip-flop

MS = Meta stability, Tw = error detection window, Tck = clock period.

The major contributions of this paper are as follows.

(1) We propose a simple clock stretcher to borrow slack available in the processor pipeline stage.
Timing closure with pessimistic design margins with respect to the delayed clock prevents
meta-stability and critical operating point behavior issues in the pipeline.
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(2) We come up with two critical path reshaping techniques to convert the extra slack margins created
by the clock stretcher into power and area savings as shown in Figure 2b,c. The first approach
relaxes the slack margins and redesigns the logic based on the new slack. The second approach
replaces the logic library with BTWC sigma corner library.

(3) The proposed approaches downsize the short path logic along with the critical paths, which
removes hold buffer overheads. The non-speculative nature of our approach removes error
management and latency overheads which minimizes the cost for error resilience.
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The rest of this paper is organized as follows. Section 2 details the motivation to use the proposed
technique. Section 3 explains the proposed design methodology. Section 4 describes our proposed
power optimization techniques and experimental results are shown in Section 5. Finally, conclusions
are summarized in Section 6.

2. Motivation

Typical processor pipelines are highly unbalanced with respect to the slack present in various
combinational logic stages. Traditional logic synthesis tools optimizes the combinational logic and
do not support any optimization between the combinational paths separated by sequential elements.
Sequential optimizations like retiming may introduce additional power and area overheads. Figure 3
shows the effect of retiming on the processor pipeline. It is obvious that the number of critical endpoints
has doubled after retiming and there is hardly any slack improvement. In contrast to the existing
techniques, we come up with a design-time optimization which is energy efficient and reliable. We use
a 40 nm processor core with 26 K logic gates and 7000 flip-flops. We chose the critical endpoints with
slack less than 2% of the clock period. Based on our investigation, we see that for most of the timing
paths in the near critical slack region (pipe_1 slack) there is sufficient consecutive stage slack (pipe_2
slack) as shown in Figure 3. Results show that 85% of the critical paths get a mean slack improvement of
42× if they borrow slack from the consecutive stage. We leverage this slack to relax the design margins
of the critical paths and the delayed inputs are sampled using a clock stretched flip-flop. We reshape
the combinational logic along the critical paths to get power and area savings. The proposed approach
under designs the critical logic of the pipeline instead of reducing design margins at runtime. This
approach minimizes the speculative overheads associated with a typical error resilience techniques.
Also, the design margin improvement helps the pipeline to be more variation tolerant. Worst case
design margins are still met with respect to the delayed clock edge of the flip-flop. This helps to
eliminate all the timing speculation overheads and critical wall of slack issues related to adaptive
in-situ error correction schemes. Unlike a fixed speculation window, the proposed method uses an
elastic window which allows timing speculation proportional to the available slack.
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the processor.

3. Proposed Design Methodology

3.1. Slack Balancing

To explain the proposed slack balancing technique [27–29] we consider the pipeline shown in
Figure 4 with four registers. Combinational path (d, b) is the critical path with minimum feasible clock
period T = 11. Path (d, b) can borrow time from the consecutive stage (b, d) whose delay is 9. So, we
replace the flip-flop b by a clock stretched flip-flop with a clock delay 2. Now we have an extra margin
of 2 in the critical path (d, b) which is used to under design the logic for power and area savings. We
use two techniques to under design the critical path logic. The first one relaxes the critical path slack
by the extra slack margin available and redesigns the logic with smaller cell equivalents from the same
logic library. The second technique identifies modules with sufficient consecutive path slacks and
swaps the critical path logic library with a BTWC sigma corner library. Thus, we trade-off the extra
slack margin for power and area savings using the slower cells in the sigma corner library.
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Figure 4. A processor pipeline with CSFF and under designed logic.

3.2. Clock Stretched Flip-Flop (CSFF)

In this section, we will explain the proposed clock stretching flip-flop [27] to relax the design
margins on the critical paths. As shown in Figure 5a, the flip-flop architecture is similar to master slave
flip-flop with the additional clock control signal P. The stretched clock P allows delayed transition
of data. P is derived from the original clock CK and the delayed clock DCK. We also propose a multi
bit flip-flop structure as shown in Figure 5a to combine the individual flip-flop data paths which
gives additional power and area savings as detailed in the results section. As shown in Figure 5b,
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during the low phase of P, transmission gate TG0 is open whereas TG1 is closed and master latch L0
samples the input data. During the high phase of P, transmission gate TG1 is open and TG0 closed
and the shadow latch L1 sample the data to output. The transparency window for the master latch L0
determines the time borrowed from the consecutive stage. The time borrowed TB is equal to the phase
difference between CK and DCK. We choose four TBs which are multiples of Tck/8 for each critical end
point register based on the available slack in the consecutive stage, where Tck is the clock period. Our
approach has no redundant data sampling and error handling circuitry compared to other resilience
circuits because we relax a fixed amount of slack at each end point during design time. The data input
D is timed in such a way it maintains pessimistic design margins with the clock edge P which avoids
meta-stability overheads in the design. The transistor count of the proposed error resilience flip-flop is
half of that of other error resilient architectures resulting in considerable area and power savings.
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Figure 5. (a) Multi-bit CSFF architecture and (b) timing diagram.

3.3. Design Flow

The proposed design flow using CSFF is shown in Figure 6. We take the processor design through
Cadence RTL Compiler synthesis run and did the placement and optimization in Encounter. The
design signed off at worst corner is taken as the baseline. We used the critical endpoints report and
the slack report to filter those paths whose slack is below threshold Th. After this, we analyze the
consecutive stage slack of these critical endpoints and categorize them with a time borrowing window
TB based on the slack available. This is followed by their clocks being stretched by DCK which is phase
shifted by TB. In the next step, we optimize the combinational fan-in logic of those endpoints whose
slack is relaxed. The logic modules for which all the critical paths have sufficient consecutive slack is
filtered. The logic library of those modules is replaced by a BTWC sigma corner library and the pipeline
is redesigned with the new library. For the other critical endpoints outside the module, the individual
slacks are relaxed and the pipeline is re-synthesized based on the new slack. For benchmarking, we
characterized 16 flavors of TIMBER [17] flip-flops using Cadence Liberate to compare the results of
our approach with typical error resilience circuits. The BTWC sigma corner libraries were developed
using Cadence Variety. We used Cadence Multi-bit flow to combine the flip-flops using add-on scripts
during the synthesis phase.
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4. Power Optimization Algorithm

The design complexity is high for advanced technology nodes. We need to tackle the power
performance trade-offs in a more efficient way. In the previous works [27,28] we had already introduced
the individual concepts of clock stretching and logic optimizations based on sigma corner and logic
reshaping. In this paper we uncover how the effective combination of these techniques help in power
and area savings. We introduce the combination of clock stretching with sigma corner optimization and
we arrived at a strategy where every module uses either size based or sigma based optimization in order
to achieve best savings. Once the design is reinforced with clock stretching circuits, we use custom logic
power optimization techniques to achieve power and area savings without compromising the reliability.
In this paper, we use logic reshaping and BTWC sigma corner libraries for power optimization.

4.1. Power Optimization by Logic Reshaping (SizeOpt)

The critical path logic of typical worst case corner designs is made up of power and area hungry
cells to meet the delay requirements. With rising design margins in advanced nodes, more power is
spent on optimizing this logic to meet the guard bands. We propose a technique [27] to utilize available
slack and redistribute it to the critical path logic using CSFF. This creates extra slack margins in the
combinational paths preceding the critical endpoints. We leverage this slack to relax the path timing
constraints. Once we relax the path slacks, we re-synthesize the pipeline. The synthesis tool picks
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smaller cell equivalents from the logic library which leads to smaller and fewer cells in the critical
path resulting in power and area savings. The area reduction and delay increase resulting from the
downsizing is depicted in Figure 7a,b respectively. The horizontal axis denotes the inverter serial
number with different drive strengths. The extra slack margin helps to downsize the logic at the
expense of cell delay increase. Algorithm 1 shows the pseudo code (SizeOpt) for the slack analysis and
critical path reshaping. P represents the critical paths and S represents the corresponding consecutive
slacks. For each critical path in P, we choose a DCK phase shift from TB = {TB1, TB2, TB3 or TB4}. We
fix the TB value as a multiple of Tck/8, with TB1 = Tck/8, TB2 = Tck/4, TB3 = 3Tck/8 and TB4 = Tck/2 for
our experiments. For reshaping, we relax the timing margin on selected paths by TB and resynthesize
the logic so as to get power and area savings. This process relaxes the short paths as well as long path
slacks in the critical fan-in. Thus, the short paths get the same delay increase as the long path. This
prevents the need for additional buffers along the short paths.
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Algorithm 1. Slack analysis & Downsizing (SizeOpt)

1. Procedure SizeOpt (Initial Netlist)
2. Run STA to find critical paths P and consecutive slacks
3. P← Φ

4. for all timing endpoints p in the netlist do
5. if slack(p) < Th then
6. P← P U {p}
7. end if
8. end for
9. for all TB = TB4, TB >= TB1, TB = TB − TB1 do
10. for all p ∈ P do
11. if consecutive slack (p) >= TB and < 2TB then
12. Replace register CLK with stretched CLK, with DCK = TB
13. Relax fan-in logic timing by TB
14. end if
15. end for
16. end for
17. Redesign the pipeline and close timing
18. Calculate Power and Area savings
19. return (netlist)
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4.2. Power Optimization by Library Tuning (SigmaOpt)

In conventional design flows, we use worst-case libraries for timing sign off, which results in
power and area overheads. So, we developed a BTWC sigma corner library with relaxed process and
voltage corners. We used this library to synthesis design modules which has extra slack presence. After
investigating the three-stage processor pipeline, we see that we have a module in the execute (EXE)
pipeline stage in which all the critical paths (~390) have considerable slack in the consecutive stage as
shown in Figure 8. We used the BTWC sigma corner library to design that logic module. Figure 9a
shows the area speed trade-off for a typical processor pipeline for the worst case (WC) 3-sigma and a
BTWC 2-sigma process library. The results show that for the same logic area, a BTWC design can be
signed off at a higher frequency B than the 3-sigma design frequency A. Also for the same synthesis
period, a 2-sigma design consumes a lesser logic area C compared to the logic area A of a 3-sigma
design. This proves the area as well as power reduction capabilities of a BTWC sigma library design.
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We characterized the libraries using different sigma parameters ranging from 0 to 1. The sigma
parameter of 1 represents Sigma3 which is the worst-case corner with pessimistic design margins.
Sigma2, Sigma1 and Sigma0 have scaling parameters of 0.66, 0.33 and 0, respectively, while Sigma0
is the optimistic library corner. Figure 9a shows the area and speed gain for Sigma2 compared to
Sigma3. Each sigma corner library was characterized using two sets of voltage corners. The V10p
library variant represents the WC voltage corner and the V5p version represents the BTWC voltage
corner with relaxed voltage margins. Figure 9b shows the delay values of a standard inverter cell for
the different library variants. As we sweep the sigma values right to left from WC sigma corner to
BTWC corner, the inverter delay reduces. Also, when we tune the voltage from V10p to V5p corner,
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the inverter delay reduces. Thus, we achieve faster timing closure with fewer resources to meet the
design margins. We use the BTWC corner libraries for power optimization while leveraging CSFFs
for pessimistic worst-case variations in real silicon. Based on this, we propose an algorithm BTWC
sigma library cell swap (SigmaOpt) for power optimization as shown in Algorithm 2. The procedure
takes an Initial Netlist designed for worst case corners. The procedure runs static timing analysis and
filters the paths P with slack less than a predetermined threshold Th. In our experiments, we mark
paths with less than 2% slack margin as critical paths. The procedure looks for design modules Mi
which can be relaxed by TB = {TB1, TB2, TB3 or TB4}. We use TB1 = Tck/8, TB2 = Tck/4, TB3 = 3Tck/8
and TB4 = Tck/2 for our experiments. Once we find a module Mi which can be relaxed by TB, we use
the clock stretcher to delay their clocks by TB. This is followed by swapping the critical fan in logic
with a BTWC sigma corner library and redesigning the pipeline for power and area savings. Once a
module is relaxed with the chosen sigma corner library, we look for other modules which satisfy the
same consecutive slack criteria. This procedure generates a netlist netlistsigma for the sigma corner input
library set.

Algorithm 2. BTWC sigma library cell swap (SigmaOpt)

1. Procedure SigmaOpt (Initial Netlist)
2. Run STA to find critical paths P and consecutive slacks
3. P← Φ

4. for all timing endpoints p in the netlist do
5. if slack(p) < Th then
6. P← P U {p}
7. end if
8. end for
9. for all sigma = 0, sigma <= 2, sigma = sigma + 1 do
10. for all I = 0, i <= m, i = i + 1 do
11. if module Mi consecutive slack (Pi) >= TB then
12. Replace register CLK with stretched CLK, with DCK = TB
13. Swap the logic library with sigma library
14. end if
15. end for
16. Redesign the pipeline and close timing
17. Calculate Power and Area savings
18. return (netlistsigma)
19. end for

5. Results and Analysis

5.1. Flip-Flop Level Savings

We use a simplified flip-flop structure to balance the slack between different pipeline stages.
Compared to the reference TIMBER [17] flip-flop, the proposed circuit is similar to a standard
master-slave flip-flop which makes it easy for the design tools to use it in the design flow. An
area reduction of 60% compared to TIMBER is attained per flip-flop for the proposed scheme. Table 2
shows the flip-flop level savings in terms of C to Q delay, minimum power and maximum power
compared to TIMBER. We get a rising C to Q delay reduction of 18.21%, falling C to Q delay reduction
of 13.83%, maximum power saving of 23% and minimum power saving of 25.6% compared to the
reference TIMBER flip-flop.
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Table 2. Power and Delay Savings of Proposed Circuit.

Variables TIMBER FF Proposed

C to Q delay rising 91.62ps 77.5ps

C to Q delay falling 91.83ps 80.67ps

Max power@ 1.1V 3.21uW 2.608uW

Min Power@1.1V 1.857uW 1.478uW

5.2. Chip-Level Savings

The proposed methodology is used to design the critical pipeline stages of an industrial processor.
Power and area comparisons are being done against the baseline designed for worst case and with a
TIMBER based error resilient architecture. The reference design (WC) used worst case 3-sigma process
corner and 10% voltage variation (P3sigma, V10p) with normal MSFFs. TIMBER [17] based pipeline used
the same worst process and voltage corner (P3sigma, V10p). Three power optimization techniques were
used to achieve power and area savings against the worst-case baseline design. The Multibit technique
combined the individual flip-flops in the design into dual bit and quad bit flip-flops. As shown in
Figure 10, the fetch stage has 39 critical paths with sufficient consecutive slack and execute stage
has 377 paths with sufficient slack. Module M1 in EXE stage has sufficient consecutive slack present
in all the 343 critical paths. The SizeOpt technique used clock stretching and combinational logic
reshaping along the critical paths with sufficient slack using the worst case 3-sigma process corner
and 10% voltage variation (P3sigma, V10p). The SigmaOpt technique used clock stretching and 1-sigma
process corner with 5% voltage variation (P1sigma, V5p) to design module M1 in the EXE pipeline
stage. Table 3 shows the power comparison results between WC baseline, TIMBER and the proposed
Multibit, SizeOpt and SigmaOpt schemes in the pipeline stages. Table 4 shows the area comparison
between baseline, TIMBER and proposed schemes. Figure 11a,b shows the normalized power and
area comparisons between TIMBER and the proposed schemes with respect to the worst case baseline.
Power comparison results show 81% power overhead for TIMBER, 1.4% power savings for Multibit
and 31% power savings for the SizeOpt in the fetch stage against the WC baseline design. In the execute
pipeline stage, TIMBER has a power overhead of 36% compared to the baseline whereas the proposed
schemes give a power saving of 3.5%, 63% and 37% for the Multibit, SizeOpt and SigmaOpt respectively.
Area comparisons in the EXE stage show an area overhead of 2% for TIMBER and a saving of 1%, 11%
and 3% respectively for the Multibit, SizeOpt and SigmaOpt schemes against the baseline.
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Figure 11. (a) Normalized power and (b) Normalized area for TIMBER and the proposed schemes
with respect to WC baseline.

The individual power and area comparison results in Figure 12a,b for module M1 in the EXE
stage, shows the effectiveness of SigmaOpt in that module to reduce power and area. So in this work,
we came up with an optimization strategy which use a combination of the individual techniques
introduced in the previous literature [27,28]. The combined optimizations with multibit flip-flops, size
optimization as well as sigma corner library represented by CombOpt gives an overall power and area
savings as shown in Tables 5 and 6 respectively. Figure 13a,b shows the normalized power and area
comparisons between TIMBER and the combined optimizations with respect to the worst case baseline.
The combined optimizations give a power savings of 32% and 69% in the fetch and execute stages
respectively. It also gives an area savings of 15% in the execute stage.
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Figure 12. (a) Normalized power and (b) Normalized area for TIMBER and the proposed schemes to
show the effectiveness of SigmaOpt in EXE/M1.
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Table 3. Power Savings of the Proposed Design Methodologies.

Power (µW)
Baseline TIMBER Multibit SizeOpt SigmaOpt

Leakage Dynamic Total Leakage Dynamic Total Leakage Dynamic Total Leakage Dynamic Total Leakage Dynamic Total

Fetch 1.5 265.1 266.6 1.5 482.4 483.9 1.5 261.2 262.7 1.1 184 185.1 1.5 265.1 266.6

Dec. 0.9 149.1 150 0.8 154.8 155.6 0.9 144.9 145.8 0.7 157.3 158 0.9 149.1 150

Exe. 14.8 1307.9 1322.7 14.7 1777.4 1792.2 14.8 1262.2 1277 11.2 471.7 482.9 15.5 1118.6 1134.1

Table 4. Area Savings of the Proposed Design Methodologies.

Area (mm2)
Baseline TIMBER Multibit SizeOpt SigmaOpt

#Cells Cell Net Total #Cells Cell Net Total #Cells Cell Net Total #Cells Cell Net Total #Cells Cell Net Total

Fetch 1976 0.005 0.007 0.012 2014 0.005 0.007 0.012 1920 0.005 0.007 0.012 1751 0.004 0.006 0.01 1976 0.005 0.007 0.012

Dec. 1874 0.003 0.007 0.01 1900 0.003 0.007 0.01 1867 0.003 0.007 0.01 1796 0.003 0.006 0.009 1874 0.003 0.007 0.01

Exe. 16414 0.045 0.063 0.108 16356 0.047 0.063 0.11 15964 0.045 0.062 0.107 15053 0.038 0.058 0.096 15734 0.043 0.061 0.105

Table 5. Power Savings of the Proposed Design Methodologies.

Power
(µW)

Baseline TIMBER CombOpt

# of Cells Leakage Dynamic Total # of Cells Leakage Dynamic Total # of Cells Leakage Dynamic Total

Fetch 1976 1.5 265.1 266.6 2014 1.5 482.4 483.9 1695 1.1 180.1 181.2

Dec. 1874 0.9 149.1 150 1900 0.8 154.8 155.6 1789 0.7 153.1 153.8

Exe. 16414 14.8 1307.9 1322.7 16356 14.7 1777.4 1792.2 14012 11.968 396.947 408.915

Table 6. Area Savings of the Proposed Design Methodologies.

Area
(mm2)

Baseline TIMBER CombOpt

# of Cells Cell Area Net Area Total # of Cells Cell Area Net Area Total # of Cells Cell Area Net Area Total

Fetch 1976 0.005 0.007 0.012 2014 0.005 0.007 0.012 1695 0.004 0.006 0.01

Dec. 1874 0.003 0.007 0.01 1900 0.003 0.007 0.01 1789 0.003 0.006 0.009

Exe. 16414 0.045 0.063 0.108 16356 0.047 0.063 0.11 14012 0.035 0.056 0.091
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6. Conclusions 

The proposed methodology retains the throughput advantages of error masking circuits and at 
the same time reduce the power/area overheads compared to TIMBER. The margins reclaimed by 
the slack aware clock stretching during design time is used to reshape the combinational circuits for 
power/area savings. The best optimization strategy is selected for the individual modules which 
results in best overall power and are savings from the combined optimizations. Experimental results 
show a power and area saving of 32% and 16% respectively in the fetch pipeline stage. In the execute 
stage we get a power and area saving of 69% and 15% respectively. On the other and speculative 
techniques like TIMBER have power and area overhead of 36% and 2% respectively in the execute 
pipeline stage. Timing closure is done at design time with respect to the stretched clock which 
removes meta-stability overheads. The combinational logic reshaping is done in such a way that it 
adds delay to the short paths as well which prevents the need for additional hold buffers. Moreover, 
the proposed technique does not exhibit the critical operating point behavior which makes it a reliable 
option for error resilience and power savings. 

Author Contributions: The main author, M.J., carried out the experiments and writing of the paper. A.C. 
recommended the idea/topic and provide the necessary platform to conduct the experiments. T.T.-H.K. guided 
the main author in the research and documentation.  

Funding: This work was supported by EDB-Industrial Post-graduate Program, Singapore and NXP 
Semiconductors, Singapore. 

Acknowledgments: This work was supported by EDB-Industrial Post-graduate Programme, Singapore and 
NXP Semiconductors, Singapore. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

N
or

m
al

iz
ed

 p
ow

er
 

N
or

m
al

iz
ed

 a
re

a 

TIMBER CombOpt TIMBER CombOpt

Figure 13. (a) Normalized power and (b) Normalized area for TIMBER and the combined optimizations
with respect to WC baseline.

6. Conclusions

The proposed methodology retains the throughput advantages of error masking circuits and at
the same time reduce the power/area overheads compared to TIMBER. The margins reclaimed by
the slack aware clock stretching during design time is used to reshape the combinational circuits for
power/area savings. The best optimization strategy is selected for the individual modules which
results in best overall power and are savings from the combined optimizations. Experimental results
show a power and area saving of 32% and 16% respectively in the fetch pipeline stage. In the execute
stage we get a power and area saving of 69% and 15% respectively. On the other and speculative
techniques like TIMBER have power and area overhead of 36% and 2% respectively in the execute
pipeline stage. Timing closure is done at design time with respect to the stretched clock which removes
meta-stability overheads. The combinational logic reshaping is done in such a way that it adds delay
to the short paths as well which prevents the need for additional hold buffers. Moreover, the proposed
technique does not exhibit the critical operating point behavior which makes it a reliable option for
error resilience and power savings.
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