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Abstract. Over the past decades, different approaches, physical and geometrical, were 

implemented to identify the optimal shape, reducing the internal stresses, of grid shells and 

vaults. As far as their original organic shape is concerned, the design of grid shell structures 

inspired architects and structural engineers worldwide and in any time. The method, here 

presented, is developed and extended, from its original formulation, employing a self-made 

code based on the dynamic equilibrium, ensured by the d'Alembert principle, of masses 

interconnected by rope elements in the space-time domain. The equilibrium corresponding the 

optimized shape to be defined, is obtained through an iterative process in the falling masses 

connected by a net for the definition of the "catenary surface" coinciding with the best shape of 

the shell (form minimizing the bending moment) according to the conditions of zero velocities 

and accelerations of the nodes. The implementation of the method is realized in MATLAB and 

set up for Python in an interpreted high-level general-purpose programming language. By the 

use of this code as well as its object-oriented architecture the MRA Python code will be linked 

to the Grasshopper environment for the direct visualization of the shapes and their fast-

parametrization phase. 

 

1 INTRODUCTION 

In the last times, new architectural requirements like internal distribution flexibility and 

the practise of free-form for large span roofing structures, encouraged the use of ground-

breaking double curved shells and domes as a valid result for column-free buildings [1]. To this 

purpose the reticulated, lattice or grid shells is giving a valid option able to propose advanced 
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solution joining aesthetic purposes and structural necessities in a sole product. As mentioned, 

by many authors, a grid shell is essentially a structure with a single thin layer with a thickness 

very small in comparison to the main span of the roof. The grids are frequently optimized in 

order to reduce the bending moment inside the structural elements [1,2]. As in the case of very 

famous examples of the recent past this kind of structures are even today progressively used 

and characterized by double curvature geometrical domains and parts of the roof with very high 

shallowness ratio. The captivating constructions of the roof of the Yas Viceroy Hotel in Abu 

Dhabi built in 2009 and the Chadstone grid shell (Chadstone, Australia), recently finished, are 

just some of the most recent examples of these kind of structures (see Figs 1a and b). Certainly, 

these architectures and particularly their shapes were designed considering the aesthetic 

influence as one of the most important and underlying idea.  

Different approaches, physical and mathematical, were used to discovery the shape 

diminishing the internal stresses [1-5]. This kind of structures are characterized by high 

technology levels in the construction and by the necessity of stability analysis during the design 

phase. The optimized shape very often if altered by partial or global collapse due to buckling, 

snap-through and coupled instability. [6-10]. The form-finding usually accepted (optimization 

techniques, genetic algorithms etc.) leads to the description of a particular shape in which the 

stresses are minimized for a certain loading arrangement. The importance of finding a funicular 

shape for 3D shells lies in the fact that the evenly distributed gravity load underwrites largely 

to the load to be resisted. For over 40 years Heinz Isler used physical suspended models as the 

most suitable way to describe three dimensional systems [11]. Similarly, Frei Otto, during his 

research activity in Stuttgart in the ‘70s, developed accurate physical models for the form 

finding methodology definition (e.g. the models for the Multihalle of Manneheim construction). 

In the early 20th Century, Antoni Gaudì employed hanging models in the form-finding process 

for the chapel of the Colonia Guell [11] and the arches of the Casa Mila. Robert Hooke 

recognized in the eighteen century that tension forms could be inverted to find the shape of 

structural forms acting in pure compression under the same loading conditions. In a unique 

sentence: “As hangs the flexible line, so but inverted will stand the rigid arch.” [11]. However, 

today, most commercially available structural analysis software are suited for analysing grid 

shell structures. Very often, large displacements are not supported and the form finding based 

on the suspended shape results to be hardly appropriate [11,12].  

Shape optimization of grid shells has been carried out using different techniques 

including among them linear software design [13] and gradient optimization [14]. At the same 

time, discrete truss topology method [15], graphed based design [16], simulated anelling [17], 

and cut-and-branch methods [18] have been used. Moreover, genetic algorithms have been 

recently employed for the optimization of three-dimensional discrete system, such as spatial 

structures planar structures and geodetic domes [19]. Multi-objectives optimization scheme 

have been developed by Winslow for free form grid shell constituted by elements with variable 

orientation [20]. At the same time, a coupled form-finding and grid optimization has been 

anticipated by Richardson et al. [2]. Form-finding approaches such as the force density method 

[21] and the dynamic relaxation (DR) [22] have been introduced to weightless configurations. 

Among these last kinds of systems Kilian and Ochsendorf [11] proposed a shape-finding tool 

for statically determinate systems based on particle-spring model. At the same time, Block and 

Ochsendorf proposed the thrust network analysis to establish the shape of pure compression 

systems in particular for masonry structures [23]. Recently, in addition to the overall grid shell 
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form also the selection of the grid type is considered as an important key point. As reported by 

Richardson et al. [1] the grid configuration generated by computer aided design software is 

transposed to static layout. Triangulated grids are the most basic and intuitive means of 

configuring the grid on a curved surface. However, this grid is not essentially the most efficient 

choice for a given form: triangulated grids tend to be higher-priced [2], since not all elements 

are essential for stability. Quadrangular grid configurations with planar faces are a good 

substitute of triangulated grids. Adriaenssens et al. [2] used a strain energy origami approach to 

enforce planar face constraints in the form-finding of an irregular configured grid shell to 

achieve ideal planarity of the faces. In this context, it is also necessary to discriminate the 

solutions in which the selected mesh is shaped by triangular units founded by elements of 

dissimilar length but with the same section and configurations in which the mesh is instead 

quadrangular and the elements that are forming the diagonal layer are absent (pure quadrangular 

mesh) as in the case of the Manneheim Multihalle (1975), or belong to another hierarchy, 

constituting the bracing effect, as in the case of the courtyard roof of the Museum of Hamburg 

History (1989) [1].  

In the present paper, different shapes were obtained by the dynamic study of a hanging grid 

formed by free masses connected by flexible ropes with a certain slack coefficient (sc). In this 

case, any kind of loads can be assumed as the input for the step-by-step analysis and both 2D 

and 3D systems can be taken on. With this approach, named multi-bodies-rope approach 

(MRA), solving the mathematical model describing the model of the whole system, it is possible 

to achieve the equilibrium configuration of the net for the masses [24,25]. Originally, due to 

the large numbers of variable of the model the author adopted a numerical approach to solve 

the scheme by a multi-bodies numerical code using Runge-Kutta solution method. By this way, 

it is possible to define the configuration of the structure as the upturned model consistent to the 

last step (equilibrium step. In addition, in the case of roofs with a very large number of nodes, 

a calculation procedure is presented here. It is based, obviously, on the dynamic model 

proposed, providing, in the preliminary phase, a geometric model built using NURBS surfaces 

based on Bézier curves [26,27]. This combined approach allowed to obtain good results with a 

lower cost in term of time consuming if compared to simulations for complex form in which 

the form-finding is obtained for grid where the initial conditions very far from the optimal 

shape. The MRA approach is used to define the shape of three circular grid shell varying the 

sc. The implementation of the method is realized in Matlab and Python in an interpreted high-

level general-purpose programming language. The adopted design philosophy emphasizes the 

code readability by other languages with respect to the traditional model realized in Visual 

Nastran 4D. By the use of this code as well as its object-oriented architecture the MRA Python 

code will be linked to the Grasshopper environment for the direct visualization of the shapes 

and their fast-parametrization phase. 

 

2 MRA APPROACH FOR THE FORM-FINDING 

As mentioned before different approaches have been examined in the last periods in order 

to range the target shapes for grid shells structures. Among these, very interesting outcomes 

have been obtained by particle-spring models, consisted of particles linked by rotational and 

translational springs elongating during the forming phases [11,12]. In these models the self-
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weight of the nodes and the load of the rods are focused in the nodes (elements). In the present 

paper, the proposed model considers real ropes in order to simulate the part of the hanging net 

creating the suspended shape. The ropes are characterized by different s.c. permitting shapes 

more or less curvilinear for the final shapes [24,25]. The main difference between particle 

spring model (PSM), the dynamic relaxation model (DRM) and the MRA (multi-body rope 

approach) consisted into the system of forces acting on the nodes. In the first cases the forces 

due to the linear (ku) or the non-linear translational spring stiffens (ku
n) and the bending due to 

the rotational contribution (krθ) are considered together with the external load to describe the 

resultant for each node, see Eq. (1) and (2). In the method, here offered, the connection 

(constraints) between two nodes is realized by a proper rope. From this point of view, the rope 

does not put on reactions at all when the distance between the endpoints (x), starting from initial 

positions corresponding to an initial distance (li), are less than the prefixed rope length (lf). 

When the distance between the nodes is equal to the rope length, forces are applied at the 

endpoints equal in magnitude and opposite in direction, while no bending is applied excluding 

the limitation of any degrees of freedom, see Eq. (3) and (4).  

 

, ,nF ku F ku aku= = +    (1) 

,rM k =     (2) 

0, ,i fF l x l=     (3) 

max ,fF F x l=     (4) 

From this point of view the proposed method demonstrated to be consistent to the experimental 

models and to the form finding. The static configuration of the hanging net can be got by an 

iterative technique applied to the grid using the equations of the equilibrium of the nodes in a 

three-dimensional in the time domain [24,25]. Between one stage and the next, the node 

coordinates matched to a time step, their difference is characterized by the velocity of the falling 

masses (nodes) and their accelerations. In order to guarantee the convergence of the iterative 

process, using an actual step time, it is possible to simulate numerically the falling of the net by 

the dynamic equilibrium with inertial actions.  

In Figure 1c a generic node"i" of a grid with quadrilateral mesh is reported. The node is a 

generic internal node adjacent to four other nodes. At this element four rope elements (a,b,c,d) 

are converging. The node is identified by the coordinates xi, yi, zi, expressed respect to the 

Cartesian space. The elements connected the node i to the four adjacent nodes j, k, l, m. In the 

node i a generic load pi represented the external load and the proper load (pix , piy , piz) due to 

the mass node (mi). In the equation system of equilibrium, the inertial and dissipative actions 

are taken into account as proportional to the velocity and the acceleration of each nodes of the 

suspended model. The equilibrium of the node i, as referring in Figure 1, is the following: 
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Figure 1: Example of free-form grid shell (Chadstone shopping centre Grid shell, Melbourne 2016) (a). 

Suspended model for the 3D definition of the catenary surface (b). Elementary portion of the grid: the node 

to which the rope elements converge (node i) connected four adjacent nodes (c) [25]. 

i

N
I

e i

i i

R
=

+ = =F F 0      (5) 

where the summation is equal to Ri representing the resultant in the node i (generic node in the 

net). FI is representing the effects of the inertial force (F') with a module equal to the product 

between the mass of the node and the amplitude of the acceleration vector with a direction equal 

to the opposite direction of the acceleration and the dissipative force (F'') assumed equal to the 

product of a constant times the velocity vector with a direction equal to the opposite of the 

velocity. The contribution of Fei is constituted by Sa, Sb, Sc and Sd represented the resultants 

along the ropes a, b, c and d (see Fig. 1 c) and by the external loads. In this way, it is possible 

to take as the initial position of the grid nodes a configuration also very far from the final 

balance (final suspended shape). The convergence of the system, indeed, was guaranteed by the 

convergence of the iterative process as a physical process of the three-dimensional suspended 

grid. In this case the non-linear system of equations (6), (7) and (8) was a system of non-linear 

differential equations to be solved by numerical methods in the time domain. According to this 

system the solutions are found according to the dynamic balance equations by a step-by-step 

analysis [25]: 
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𝑥𝑖−𝑥𝑘

𝑙𝑏
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𝑙𝑐
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𝑙𝑑
𝑠𝑑 + 𝑝𝑖𝑦 −𝑚𝑖�̈�𝑖 − 𝑐𝑖�̇�𝑖 = 0,  (7) 

𝑧𝑖−𝑧𝑗

𝑙𝑎
𝑠𝑎 +

𝑧𝑖−𝑧𝑘

𝑙𝑏
𝑠𝑏 +

𝑧𝑖−𝑧𝑙

𝑙𝑐
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𝑙𝑑
𝑠𝑑 + 𝑝𝑖𝑧 −𝑚𝑖�̈�𝑖 − 𝑐𝑖�̇�𝑖 = 0.   (8) 

The contribution of velocity and acceleration for each node can be expressed as: 

�̇�𝑖 =
𝜕𝑥𝑖
𝜕𝑡

; �̇�𝑖 =
𝜕𝑦𝑖
𝜕𝑡

; �̇�𝑖 =
𝜕𝑧𝑖
𝜕𝑡

 

�̈�𝑖 =
𝜕2𝑥𝑖

𝜕𝑡2
; �̈�𝑖 =

𝜕2𝑦𝑖

𝜕𝑡2
; �̈�𝑖 =

𝜕2𝑧𝑖

𝜕𝑡2
 ,   (9a,b) 

and the length of le ropes (such as rope a) were obtained as the following respect to the 

Cartesian coordinates: 

𝑙𝑎 = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
+ (𝑧𝑖 − 𝑧𝑗)

2
.    (10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: The node typologies are reported. Considering different types of nodes composing the net it is possible 

to consider the correspondent hypostatic mechanism. 

The main conditions to create the model through the MRA approach are represented by an 

appropriate level of hypostatic condition of the suspended configuration at the initial step, and 

by the constraint typology defined for the rope elements. For the realization of the first condition 

it will be sufficient that the number of degrees of freedom (D.o.F) of the three-dimensional 

system is > to the number of degrees of tridimensional constraint of the whole system (D.o.C). 

In particular it is possible to define the number of D.o.C as: 

B 

C2 C1 

A 
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1 2. . (9) (6) (6) (3) (1)A B C C tD oC n n n n n= + + + +
   (11) 

where nA, nB,  nC1,  nC2 are the numbers of nodes in the mesh characterized by constraint level 

as reported in Fig. 2 (nt is the number of the node at all). At the same time, the number of degrees 

on freedom can be defined as: 

. . (6)tD o F n=
      (12) 

The final condition of true equilibrium is considered fulfilled when for each component of the 

system it will be possible to consider the velocity and acceleration tending to zero or otherwise 

≤ e with e as a negligible value. The form-finding found leads to the definition of a particular 

shape in which the stresses are minimized for a certain loading configuration. In this way, the 

same structural scheme of shells and arches may be affected by instability problems, even up 

to the collapse, changing the boundary conditions (loading and constraints) or with the 

emerging of defects [28-41]. 

3 APPLICATION OF MRA BY THE LENGTH CONTROL  

Within the framework of the code that was developed, a specific effort was made in order to 

explore the problems related to the creation of a shape through a form-finding process able to 

ensure the use of rods (ropes) characterized by the same length. The search for shapes that are 

optimized for force distribution (bending moment minimization) and that are, on the other hand, 

consisting a system, a layer (mesh), that allows to have the biggest number as possible of rods 

characterized by the same length. This condition is assumed to be a key concept in the design 

and construction of shells that are marked by extremely free and complex shapes. The use of 

free forms, in fact, for roofs and shells with increasingly large span is widely spread. Some 

examples may be the roof of the shopping center at Chadstone in Australia and the project for 

the roof of the shopping center Pompeii Maximall in Italy. Considering the process of finding 

the adopted form, however, the final configuration is the result of several parameters.  

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3: Mesh composed of 9 ×4 elements with 6 suspension points has been simulated. At the end 

of the steps according to the equilibrium condition all ropes where checked to ensure that they were 

stretched. Suspended model (a). Reversed shape: dome (b). 

a b 
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The initial slack coefficient, the shape of the edges (edge beams or suspension points), the 

number of nodes in the initial mesh and their initial distance, the last but not the least the 

constraint pattern assumed for the definition of the characteristics of the rope. As mentioned 

before, the developed code aims to solve problems related to the use of elements of equal length. 

In the figure 3 the case of a mesh composed of 9 ×4 elements with 6 suspension points has been 

simulated. Later it was possible to perform patterns with a much larger number of elements and 

characterized by many frames of the edges. Searching for a very complex configurations of the 

final shape (see Fig. 4). 

 

 
Figure 2: Page layout 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Patterns with a large number of elements and characterized by many frames of the edges. 

Suspended model (a). Reversed shape (b). 
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CONCLUSIONS 

The code developed offer the solution for a structural form-finding of shells where the 

equilibrium corresponding to the optimized shape to be defined, is obtained through an iterative 

process of falling masses connected by a net in order to define the "catenary surface" coinciding 

with the best shape of the shell (form minimizing the bending moment). The implementation 

of the method is realized in MATLAB and predisposed to be implemented in Python in an 

interpreted high-level general-purpose programming language. The adopted design philosophy 

emphasizes the code readability by other languages with respect to the traditional model 

realized in Visual Nastran 4D. By the use of this code as well as its object-oriented architecture 

the MRA Python code will be linked to the Grasshopper environment for the direct visualization 

of the shapes and their fast-parametrization phase. Moreover, the code was developed in order 

to explore the problems related to the creation of a shape through a form-finding process able 

to ensure the use of rods (ropes) characterized by the same length. The search for shapes that 

are optimized for force distribution (bending moment minimization) and that are, at the same 

time, consisting of a system allowing the biggest number as possible of rods with the same 

length, seems to be a key concept in the design and shells characterized by large span, extremely 

free and complex shapes. 
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