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SUMMARY 

 

The objective of this thesis is the research on numerical algorithms to develop numerical tools to 

simulate seakeeping problems as well as wave resistance problems of ships and floating structures. 

The first tool developed is a wave diffraction-radiation solver. It is based on the finite element 

method (FEM) in order to solve the Laplace equation, as well as numerical schemes based on FEM, 

streamline integration, and finite difference method tailored for solving the free surface boundary 

condition. 

It has been developed numerical tools to solve solid body dynamics of multibody systems with 

body links across them. This tool has been integrated with the wave diffraction-radiation solver to 

solve wave-body interaction problems. 

Also it has been tailored coupling algorithms with other numerical tools in order to solve multi-

physics problems. In particular, it has been performed coupling with a MEF structural solver to solve 

fluid-structure interaction problems, with a mooring solver, and with a solver capable of simulating 

internal flows in tanks to solve couple seakeeping-sloshing problems. 

Numerical simulations have been carried out to validate and verify the developed algorithms, as 

well as to analyze case studies in the areas of marine engineering, offshore engineering, and offshore 

renewable energy. 
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RESUMEN 

 

El objetivo de la tesis es la investigación de algoritmos numéricos para el desarrollo de 

herramientas numéricas para la simulación de problemas tanto de comportamiento en la mar como de 

resistencia al avance de buques y estructuras flotantes. 

La primera herramienta desarrollada resuelve el problema de difracción y radiación de olas. Se 

basan en el método de los elementos finitos (MEF) para la resolución de la ecuación de Laplace, así 

como en esquemas basados en MEF, integración a lo largo de líneas de corriente, y en diferencias 

finitas desarrollados para la condición de superficie libre. 

Se han desarrollado herramientas numéricas para la resolución de la dinámica de sólido rígido en 

sistemas multicuerpos con ligaduras. Estas herramientas han sido integradas junto con la herramienta 

de resolución de olas difractadas y radiadas para la resolución de problemas de interacción de cuerpos 

con olas. 

También se han diseñado algoritmos de acoplamientos con otras herramientas numéricas para la 

resolución de problemas multifísica. En particular, se han realizado acoplamientos con una herramienta 

numérica basada de cálculo de estructuras con  MEF para problemas de interacción fluido-estructura, 

otra de cálculo de líneas de fondeo, y con una herramienta numérica de cálculo de flujos en tanques 

internos para problemas acoplados de comportamiento en la mar con “sloshing”. 

Se han realizado simulaciones numéricas para la validación y verificación de los algoritmos 

desarrollados, así como para el análisis de diferentes casos de estudio con aplicaciones diversas en los 

campos de la ingeniería naval, oceánica, y energías renovables marinas. 
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Chapter 1. INTRODUCTION 
 

1.1 Numerical simulation of seakeeping problems 

Seakeeping is a topic of great interest in marine and offshore engineering. The assessment of safety 

of ships and any device operating in rough seas is still a challenge. Moreover, this interest is growing 

in the last years due to the boost given by the development of marine renewable energies. In this 

context, the development of time domain seakeeping programs is a main request from the industry. 

Moreover, the simulation of multi-body systems is a key point in the development of more efficient 

marine renewable energy technologies, such as wave energy converters and floating wind turbines 

among others. 

Up to date the numerical simulation of seakeeping problems has been mostly carried out in the 

frequency domain. The reason might be that computational cost of time-domain simulations was too 

high when compared to those of frequency-domain. Moreover, assumptions like linear waves and the 

harmonic nature of water waves made the frequency-domain to be the right choice. However, 

nowadays computing capabilities make possible to carry out numerical simulations in the time domain 

in a reasonable time. Time-domain has the advantage of simulating phenomena that cannot be handled 

in the frequency domain such as parametric resonance and other nonlinear effects. Furthermore, in the 

frequency domain, the simulation of multi-body systems requires calculating the interaction among 

the bodies, which increases quickly the computational effort as the number of bodies increase, and 

requires of acceleration techniques like the fast multipole technique (see Borgarino et. al  [1]). On the 

other hand, when simulating in the time domain, the interaction among bodies is solved in a natural 

way without leading to a big increase of computational effort. Nowadays, more works are being carried 

out in the time domain (see Watai et. al [2] and Watai [3]). 

Regarding the numerical method traditionally adopted for seakeeping simulations, the boundary 

element method (BEM) has dominated over others like finite element method (FEM). We might find 

the reason in the fact that most of the computational effort is spent in solving the Laplace equation. 

Then it might look like BEM offers a lower computational effort since it does not require to discretize 

the whole fluid volume. However, Cai et al. [4] carried out a heuristic study regarding the 

computational effort required for solving the Laplace equation by BEM and FEM. This study 

concluded that for a similar three-dimensional problem and a discretization size, the number of 

unknowns of BEM and FEM are O(N2) and O(N3), respectively, being N the number of unknowns 

needed in one dimension to achieve the desired discretization. But the computational costs are O(N4) 
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and O(N3) respectively. Therefore, while BEM might be more efficient for problems with low number 

of unknowns, FEM becomes more efficient respect to BEM as the number of unknowns N increases. 

Considering that computational capabilities continuously increases, so does the complexity of 

problems to be undertaken, and the number of unknowns required. Hence FEM might become more 

efficient than BEM as the number of unknowns gets larger. Other than BEM and FEM, the finite 

difference or high order spectral methods have been also used to solve non-linear free surface flows. 

For instance, Ducrozet et. al [5] carried out a comparison study on the latter methods to solve ocean 

waves propagation.  

Another advantage of FEM is the fact that it has been conceived for naturally solving the Laplace 

equation on unstructured meshes. This makes easier the discretization of complex computational 

domains. 

In the last decade, there have been extensive applications of the finite element method (FEM) to 

free surface problems. For example, Oñate and García [6] presented a stabilized FEM for fluid structure 

interaction in the presence of free surface where the latter was modeled by solving a fictitious elastic 

problem on the moving mesh. In [7,8], Löhner et al. developed a FEM capable of tracking violent free 

surface flows interacting with objects. Also García et al. [9] developed a new technique to track 

complex free surface shapes. However, many works like the previous ones are based on solving the 

Navier–Stokes equations, too expensive computationally speaking when it comes to simulating real 

problems regarding ocean waves interacting with floating structures. These sorts of problems can be 

more cheaply simulated using potential flow along with Stokes’ wave theory. For details on Stokes’ 

wave theory, the reader is referred to [10]. 

With regards to wave-body interaction problems, there has been extensive work as well in the last 

decade. In [11], Wu and Eatock Taylor used both the FEM and the mixed FEM to analyze the two-

dimensional (2D) nonlinear transient water wave problems. Later Wu and Eatock Taylor [12] made a 

detailed comparison between FEM and the boundary element method (BEM) for the nonlinear free 

surface flow problem and found that the former was more efficient in terms of both CPU and memory 

requirement. Greaves et al. [13] employed quad-tree-based unstructured meshes to model fully 

nonlinear waves in 2D, using an ALE formulation in structured meshes. In [14] a spectral technique 

was adopted to simulate the 2D free surface flow problem. In [15] and [16], an implementation of FEM 

schemes to simulate 3D wave-body interaction was introduced using moving meshes along with an 

explicit time marching scheme for the free surface boundary condition. However, in those cases, re-

meshing and interpolation were needed, which leads to a high CPU cost. Westhuis [17] in his PhD 

dissertation developed a FEM code for nonlinear waves and focused in the development of groups of 

waves. The code relied in some specific structured mesh configurations and did not considered wave-
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body interaction. Hu et al. [18] applied FEM to study the case of a vertical cylinder under forced 

motions based on the works [11] and [12]. Turnbull et al. [19] coupled structured and unstructured 

meshes to simulate 2D wave-body interactions, and the estimation of vertical velocities at the free 

surface nodes required a prescribed number of nodes to be vertically aligned. Wu et al. [20] solved a 

3D problem using a semi-structured mesh in the vertical direction. This way the nodes will be aligned 

vertically and the vertical component of the velocity at the free surface can be easily estimated by finite 

difference. Wang et al. [21] used FEM to study the effect of second-order wave sloshing within a tank 

in 2D. The fourth-order Runge-Kutta method was used as a time marching scheme for the free-surface 

boundary condition. A FEM solver for a second-order wave diffraction by an array of vertical cylinder 

using semi-structured mesh has been presented in [22]. Again, in order to estimate vertical velocity at 

the free surface nodes it is required a prescribed number of nodes to be aligned vertically. An explicit 

fourth-order Adams-Bashforth scheme was used as a time marching scheme for the free surface 

boundary condition. Later on, the same authors in [23] used a structured mesh based on rectangular 

elements to study second-order resonance effects. Yan et al. [24] applied the fully nonlinear potential 

for modeling overturning waves. To achieve that, a moving mesh technique was adopted to track down 

the free surface. Consequently, computational times are large. Recently, Song et al. developed a new 

Scaled Boundary Finite Element Method (SBFEM) for linear waves and structure interaction [25]. The 

SBFEM works in the frequency domain, and base functions for boundary elements based on Hankel 

functions were used for unbounded sub-domains where waves asymptotically disappear. This leads to 

a decrease in the number of elements needed for the simulation which improves the numerical 

efficiency of the method. 

Despite of the great effort invested in the last years to the development of FEM algorithms, to the 

authors’ knowledge, yet it has not been developed a fast FEM for solving first-order wave structure 

interaction in the time domain using unstructured meshes. In this thesis it is presented a FEM for wave-

structure interaction that can be used with unstructured meshes. Besides, since it is based on Stokes’ 

free surface approximation, no re-meshing or moving mesh technique are needed, which keeps 

computational costs and computational times lower. The developed algorithm has been designed to 

handle nonlinear external forces of any nature (mooring, internal flows, etc.). 

1.2 Numerical simulation of wave resistance problems 

Wave resistance estimation is a key point in the design of ships, offshore structures, and in recent 

years also in the design of devices aiming at harvesting marine renewable energies. With the increase 

of computational capability, computational fluid dynamics (CFD) tools have gained popularity in order 

to estimate the wave resistance. However, model testing in towing tanks is still a common practice. 
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The main reason is that computing all aspects of the flow, such as wave making, vortex formation,  

boundary layers, and many other, is still very expensive computationally speaking, and require of 

expensive computers and large amounts of times. 

When estimating the ship resistance, a common practice is to assume that the total resistance can 

be divided in two: viscous and non-viscous resistance. While the viscous resistance is related to the 

effects of boundary layers, vortex formation, and turbulence, the non-viscous resistance is related to 

wave formation and interaction with the ship. And while accurate CFD simulation of the former ones 

require of extremely low time steps and mesh sizes, the simulation of the latter can be achieved with 

quite good accuracy using potential flow theory, which is computationally much cheaper in 

comparison with computing the viscous resistance. 

Looking at the non-viscous component, we can further decompose it into two main components: 

wave making resistance, and added resistance in waves. The first one is due to the wave formation 

when a body advances in still water, and is dominant component. The second one is the increase of 

resistance when the ship advance in waves respect to still water, and this is a second-order component 

compared to the wave making resistance (except for very low Froude numbers). 

The added resistance is an increase of resistance happening in the presence of waves. This 

resistance has three main components: the first due to wave diffraction; the second due to wave 

radiation (induced mainly by heave and pitch motions); and the third due to variations of the wetted 

surface. As a result, the average resistance can be increased in the order of 40% for some specific wave 

frequencies where resonance occurs. 

A common practice is to estimate viscous resistance by a simplified formulation based on a friction 

line for a flat surface (such as ITTC-57, Schoenherr) depending on the Reynolds number and on a 

constant form factor coefficient. Then subtracting the viscous component to the total resistance 

(obtained by model testing) gives the wave making component (residual resistance). This 

approximation assumes that the form factor is the same at any Froude number. However, estimations 

of the form factors of the same hull at different model basins show a large dispersion, and therefore 

experimental determination of wave making resistance may results in significant errors [26]. 

Wave making and added resistance cannot be approximated so easily by simplified formulae as 

the viscous resistance, and CFD analyses are becoming an useful tool for such a task. Probably the 

first computer method for solving steady-state wave making resistance was introduced by Dawson in 

[27]. Dawson used the Boundary Element Method (BEM), also called Rankine panel method, in 

combination with upstream finite difference schemes for the convective term of the free surface. 

Moreover, the free surface boundary conditions were expanded in Taylor series around the mean water 

level to simplify their imposition. It can be said that Dawson stablished the basis of the current methods 
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for estimating wave making resistance using potential flow. For instance in [28,29] the Dawson 

method´s is described and further analysis regarding linearizations and nonlinear terms are carried out. 

Despite of the importance of the added resistance in waves and its impact on the long term 

performance of a ship, there are not many works in the literature coping with this problem from a CFD 

point of view. Some formulations have been derived by different authors as an extension of the mean 

drift force induced by waves in the presence of a water current [30]. These approaches basically modify 

damping and added mass coefficients, as well as the mean drift forces, to account for the current effect. 

However, convective terms in the free surface boundary conditions are neglected, limiting this 

approach to low Froude numbers. A more sophisticated approach is to solve the three dimensional 

potential flow problem in the frequency domain (usually using BEM), and then obtain the added 

resistance using Maruo´s approach [31,32,33]. Maruo´s approach still does not account for the 

convective terms in the free surface boundary conditions, and therefore is also limited to low Froude 

numbers. Finally, few works can be found trying to solve the added resistance in waves in the time 

domain, considering the convective terms in the free surface boundary condition, which overcome the 

limitation of low Froude numbers [34]. 

Most of the computer methods used for estimating the wave resistance are based on expanding the 

free surface boundary conditions around the mean water level, and using a perturbation method in 

order to retain the leading order terms. This approach has the advantage of imposing the free surface 

conditions on a steady flat surface, rather than having to track the free surface and modify the 

computational domain accordingly. While the latter approach could solve the fully nonlinear free 

surface conditions, the former is commonly preferred because it reduces greatly the computational 

effort while providing good accuracy for the wave making resistance problem. 

Up to date, computer methods for the wave resistance problem, as described above, are based on 

BEM (see for instance [35,36]), and their algorithms require the use of structured meshes on the free 

surface. While these methods are widely and successfully used, the use of structured meshes can be a 

limitation in some cases. 

In this thesis, a computer method for estimating the wave making and added resistance is proposed. 

The method is based on potential flow with approximation of the boundary conditions on the mean 

water level for computational efficiency, as is commonly used. The main novelties are the use of the 

Finite Element Method (FEM), rather than (BEM), and the use of two numerical schemes that allow 

the use of unstructured meshes at the free surface.  

Nowadays, potential flow solvers offer the possibility of computing the wave making and added 

resistance in an affordable manner, economically and computationally speaking, which results cheaper 

and faster than model testing. Hence the author is interested in developing a new computer method to 
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handle this sort of problems that can be efficiently used in the design of a ship, as well as in offshore 

structures by quantifying the effect of water currents. 

1.3 Outline of this thesis 

This thesis is organized in three main parts. Each one contents a set of consecutive chapters 

focusing in three specific aspects: mathematical-numerical basis, verification-validation, and 

application. 

 The first block extends from Chapter 2 to 0 and presents the theory of the different solvers 

developed in this thesis. Within each chapter, and introduction to the mathematical model is given, 

presenting the governing equations and assumptions made. Then, the numerical schemes used for 

solving the governing equations are given in detail, as well as the implementation algorithms. 

The second block extends from Chapter 5 to Chapter 8 and presents verification and validation 

cases to assess the validity of the developed solvers. It also looks into the computing performance, 

presenting and analyzing some solver acceleration techniques. 

The third block extends from Chapter 9 to Chapter 13. In each chapter, an analysis is carried out 

for a specific application example. The main objective of this block is to provide an idea about the 

wide range of application of the developed solvers. 
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Chapter 2. SEAKEEPING PROBLEMS 
 

2.1 Mathematical model for seakeeping problems 

2.1.1 Glossary 

𝒗 Fluid velocity field 

𝒗𝜑 Fluid velocity 

𝜑 Velocity potential 

ξ Free surface elevation 

𝒗𝜓 Incident wave induced velocity 

𝜓 Incident velocity potential 

ζ Incident wave elevation 

𝒗𝜙 Diffraction-radiation wave induced velocity 

𝜙 Diffraction-radiation velocity potential 

η Diffraction-radiation wave elevation 

𝑃𝑓𝑠 Free surface pressure 

𝑃𝑝ℎ
0  Hydrostatic pressure at point P. 

𝑃𝑝ℎ
1  First-order hydrostatic pressure variation at point P ∈ S𝐵. 

𝑃𝑝ℎ
1+2 Up to second-order hydrostatic pressure variation at point P ∈ S𝐵. 

𝑃𝜓𝑝
1  First-order pressure at point P induced by INCIDENT wave 

𝑃𝜓𝑝
1+2 Up to second-order Pressure at point P induced by INCIDENT wave 

𝑃𝜙𝑝
1  First-order pressure at point P induced by DIF-RAD wave 

𝑃𝜙𝑝
1+2 Up to second-order Pressure at point P induced by DIF-RAD wave 

𝒓𝑝
1  First-order body surface displacement at point P 

𝒓𝑝
1+2 Up to second-order body surface displacement at point P 

𝒏𝑝
0  Initial body surface normal vector at point P 

𝒏𝑝
1  Body surface normal vector after first-order movement at point P 

𝑹0 Origin of coordinates of body initial reference frame 

𝑷0 Point on initial body surface 

𝑯 Second-order transformation matrix 

𝑣𝑝 Body velocity over body surface at point P 

𝒗𝑝
1  First-order body velocity over body surface at point P 

𝒗𝑝
1+2 Up to second-order body velocity over body surface at point P 

Ω Fluid domain 

S𝐵 Instantaneous body boundary 
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S𝐵
0  Initial body boundary 

S𝐵
1  Instantaneous body boundary corresponding to first-order movements 

S𝐵
1+2 Instantaneous body boundary corresponding to up to second-order movements 

𝑆𝑆 Seabed boundary 

𝐴 Wave amplitude 

𝜔 Wave angular frequency 

𝐾 Wave number 

𝐿 Wave length 

𝑇 Wave period 

𝛾 Wave direction respect to OX axis 

𝛿𝑖 Wave phase delay 

𝐻 Water depth 

2.1.2 Introduction 

Section 2.1 presents the governing equations, based on potential flow and incompressible fluid, of 

the wave problem. First, the general governing equations are presented. Second, the traditional 

perturbation solution approach is introduced. And third, first and second-order governing equations 

for the wave problem are derived. 

2.1.3 Governing equations 

2.1.3.1 Flow equation and boundary conditions 

Assuming incompressible flow (∇ ∙ 𝐯 = 0) and irrotational flow (∇ × 𝐯 = 0 ⇒ 𝐯 = ∇φ), then, the 

flow governing equations are given by: 

Δ𝜑 = 0 𝑖𝑛 Ω incompressible and irrotational flow, (2-1) 

∂ξ

𝜕𝑡
+

∂𝜑

∂x

∂ξ

𝜕𝑥
+

∂𝜑

∂y

∂ξ

𝜕𝑦
−

∂𝜑

∂z
= 0 𝑜𝑛 𝑧 = ξ 

free surface kinematic boundary 

condition, 
(2-2) 

∂𝜑

∂t
+

1

2
∇𝜑 ⋅ ∇𝜑 +

𝑃𝑓𝑠

𝜌
+ 𝑔ξ = 0 𝑜𝑛 𝑧 = ξ free surface dynamic boundary condition, (2-3) 

𝒗𝑝 ⋅ 𝒏𝑝 + 𝒗𝜑 ⋅ 𝒏𝑝 = 0 𝑜𝑛 P ∈ S𝐵 body boundary condition, (2-4) 

𝒗𝜑 ⋅ 𝒏𝑝 = 0 𝑜𝑛 P ∈ S𝑆 seabed boundary condition, (2-5) 

and the pressure at any given point P is: 

𝑃𝑝 = −𝜌
𝜕𝜑

𝜕𝑡
−

1

2
𝜌∇𝜑 ⋅ ∇𝜑 − 𝜌𝑔𝑧𝑝  pressure at a point P. (2-6) 
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2.1.3.2 Solution procedure 

Taylor series expansion 

Free surface and body boundary conditions (BCs) will be applied on 0z   and S𝐵
0  respectively. 

Then, Taylor series expansion is carried out to both BCs around  𝑧 = 0 and S𝐵
0  to approximate the BC 

on 𝑧 = ξ and S𝐵 respectively. 

Perturbed solution 

A perturbed solution based on Stokes’ waves approximation is used, where the velocity potential 

and free surface elevation are perturbed as (see for instance Newman 1977, chapter 6 [37]): 

𝜑 = ϵ1𝜑1 + ϵ2𝜑2 + ϵ3𝜑3 + ⋯, (2-7) 

ξ = ϵ1ξ1 + ϵ2ξ2 + ϵ3ξ3 + ⋯. (2-8) 

Body movement solution is also assumed to be a perturbed solution:  

𝑿 = 𝜖1𝑿1 + 𝜖2𝑿2 + 𝜖3𝑿3 …, (2-9) 

𝑽 = 𝜖1𝑽1 + 𝜖2𝑽2 + 𝜖3𝑽3 …. (2-10) 

Then the translational vector of any point P on the body surface can be perturbed as: 

𝒓𝑝 = 𝜖1𝒓𝑝
1 + 𝜖2𝒓𝑝

2 + 𝜖3𝒓𝑝
3 …. (2-11) 

The linear and angular displacements of a point 𝐏0 ∈ S𝐵
0  are given by (see Figure 1): 

𝑿𝑖 = (𝛿𝑥
𝑖 , 𝛿𝑦

𝑖 , 𝛿𝑧
𝑖 , 𝜃𝑥

𝑖 , 𝜃𝑦
𝑖 , 𝜃𝑧

𝑖) = (𝜹𝑖 , 𝜽𝑖), (2-12) 

𝒓𝑝
1 = 𝜹1 + 𝜽1 × 𝑹0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , (2-13) 

𝒓𝑝
1+2 = 𝜹1+2 + 𝜽1+2 × 𝑹0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑯̿𝑹0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , (2-14) 

𝑯̿ =
1

2
(

−(𝜃𝑦
2 + 𝜃𝑧

2) 0 0

2𝜃𝑥𝜃𝑦 −(𝜃𝑥
2 + 𝜃𝑧

2) 0

2𝜃𝑥𝜃𝑧 2𝜃𝑦𝜃𝑧 −(𝜃𝑥
2 + 𝜃𝑦

2)

), (2-15) 

𝑽𝑖 = (𝑣𝑥
𝑖 , 𝑣𝑦

𝑖 , 𝑣𝑧
𝑖 , 𝜔𝑥

𝑖 , 𝜔𝑦
𝑖 , 𝜔𝑧

𝑖) = (𝒗𝑖, 𝝎𝑖), (2-16) 

𝒗𝑝
1 = 𝒗1 + 𝝎1 × 𝑹0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , (2-17) 

𝒗𝑝
1+2 = 𝒗1+2 + 𝝎1+2 × 𝑹0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑯̇̿𝑹0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , (2-18) 

𝒏𝑝
1 = 𝒏𝑝

0 + 𝜽1 × 𝒏𝑝
0 . (2-19) 

2.1.4 First-order approach 

2.1.4.1 First-order governing equations 

After carrying out the Taylor series expansions, introduced the perturbed solution, and retaining 

terms of order 𝜖, the first-order governing equations become: 

Δ𝜑1 = 0 𝑖𝑛 Ω, (2-20) 
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∂ξ1

𝜕𝑡
−

∂𝜑1

∂z
= 0 𝑜𝑛 𝑧 = 0, (2-21) 

∂𝜑1

∂t
+

𝑃𝑓𝑠

𝜌
+ 𝑔ξ1 = 0 𝑜𝑛 𝑧 = 0, (2-22) 

𝒗𝑝
1 ⋅ 𝒏𝑝

0 + 𝒗𝜑
1 ⋅ 𝒏𝑝

0 = 0 𝑜𝑛 𝑃 ∈ 𝑆𝐵
0, (2-23) 

𝒗𝜑
1 ⋅ 𝒏p = 0 𝑜𝑛 𝑃 ∈ 𝑆𝑆 (2-24) 

and the first-order pressure at a point 𝑃𝑝
1 on the body surface is 

𝑃𝑝
1 = 𝑃𝐻

0 + 𝑃𝐻
1 + 𝑃𝐷

1,  (2-25) 

where 𝑃𝐷
1 = −𝜌

𝜕𝜑1 

𝜕𝑡
, 𝑃𝐻

0 = −𝜌𝑔𝑧𝑝, and 𝑃𝐻
1 = −𝜌𝑔𝑟𝑝𝑧

1 . 

 

 
Figure 1: First and second-order rigid body movement. 

2.1.4.2 First-order decomposition solution 

The total velocity potential can be decomposed as: 

𝜑1 = 𝜓1 + 𝜙1, (2-26) 

ξ1 = ζ1 + 𝜂1, (2-27) 

where 𝜓1 and ζ1 are the incident wave velocity potential and free surface elevation respectively, and 

𝜙1 and 𝜂1 are the diffraction-radiation wave velocity potential and free surface elevation respectively.  

First-order incident wave solution 

The incident wave velocity potential 𝜓1 fulfils the following equations: 

Δ𝜓1 = 0 𝑖𝑛 Ω, (2-28) 

∂ζ1

𝜕𝑡
−

∂𝜓1

∂z
= 0 𝑜𝑛 𝑧 = 0, (2-29) 

∂𝜓1

∂t
+ 𝑔ζ1 = 0 𝑜𝑛 𝑧 = 0, (2-30) 
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∂𝜓1

∂z
= 0 𝑜𝑛 𝑧 = −𝐻, (2-31) 

Eqs. (2-28)-(2-30)  has an analytical solution, given by the Airy´s wave theory [37]: 

𝜓1 = ∑
𝐴𝑖𝑔

𝜔𝑖

cosh(|𝒌𝑖|(𝐻+𝑧))

cosh(|𝒌𝑖|𝐻)
sin(𝒌𝑖𝒙 − 𝜔𝑖𝑡 + 𝛿𝑖)𝑖 , (2-32) 

ζ1 = ∑ 𝐴𝑖 cos(𝒌𝑖𝒙 − 𝜔𝑖𝑡 + 𝛿𝑖)𝑖 , (2-33) 

where 𝒌 =
2𝜋

𝐿
(cos(𝛾) , sin(𝛾)). The following dispersion relation holds: 

𝜔𝑖
2 = 𝑔|𝒌𝑖| tanh(|𝒌𝑖|𝐻), (2-34) 

and the fluid pressure induced at a point P is given by: 

𝑃𝑝𝜓
1 = ∑ 𝜌𝑔𝐴𝑖

cosh(|𝒌𝑖|(𝐻+𝑧))

cosh(|𝒌𝑖|𝐻)
cos (𝒌𝑖𝒙 − 𝜔𝑖𝑡 + 𝛿𝑖)𝑖 . (2-35) 

In the asymptotic case of infinite water depth 𝐻 → ∞ and the factor cosh(|𝒌|(𝐻 + 𝑧))  /

cosh(|𝒌|𝐻)    → exp(|𝒌|𝑧). 

First-order diffraction-radiation wave problem 

The governing equations for the diffraction-radiation velocity potential 𝜙1 si given by [37]: 

Δ𝜙1 = 0 𝑖𝑛 Ω, (2-36) 

∂η1

𝜕𝑡
−

∂𝜙1

∂z
= 0 𝑜𝑛 𝑧 = 0, (2-37) 

∂𝜙1

∂t
+

𝑃𝑓𝑠

𝜌
+ 𝑔η1 = 0 𝑜𝑛 𝑧 = 0, (2-38) 

𝒗𝜙
1 ⋅ 𝒏𝑝

0  = −𝒗𝑝
1 ⋅ 𝒏𝑝

0 − 𝒗𝜓
1 ⋅ 𝒏𝑝

0  𝑜𝑛 𝑃 ∈ 𝑆𝐵
0, (2-39) 

𝒗𝜙
1 ⋅ 𝒏𝑝    = −𝒗𝜓

1 ⋅ 𝒏𝑝 𝑜𝑛 𝑃 ∈ 𝑆𝑆, (2-40) 

and the fluid pressure at a point P on the body surface is given by: 

𝑃𝑝
1 = 𝑃𝑝ℎ

0 + 𝑃𝑝ℎ
1 +𝑃𝑝𝜓

1 + 𝑃𝑝𝜙
1 ,  (2-41) 

where 𝑃𝑝𝜙
1 = −𝜌

𝜕𝜙1 

𝜕𝑡
, 𝑃𝑝ℎ

0 = −𝜌𝑔𝑧, and 𝑃𝑝ℎ
1 = −𝜌𝑔𝑟𝑝𝑧

1 . 

2.1.5 Second-order approach 

2.1.5.1 Second-order governing equations 

After carrying out the Taylor series expansion, introducing the perturbed solution, and retaining 

terms up to second order 𝜖2, and considering that 𝜑1+2 = 𝜑1 + 𝜑2, ξ1+2 = ξ1 + ξ2 , 𝑃𝑝
1+2 = 𝑃𝑝

1 + 𝑃𝑝
2, 

𝑿𝐵
1+2 = 𝑿𝐵

1 + 𝑿𝐵
2 , 𝑽𝐵

1+2 = 𝑽𝐵
1 + 𝑽𝐵

2 , 𝒗𝑝
1+2 = 𝒗𝑝

1 + 𝒗𝑝
2 , 𝒗𝜑

1+2 = 𝒗𝜑
1 + 𝒗𝜑

2 , 𝒓𝑝
1+2 = 𝒓𝑝

1 + 𝒓𝑝
2 , the 

governing equations become: 

Δ𝜑1+2 = 0 𝑖𝑛 Ω, (2-42) 
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𝜕ξ1+2

𝜕𝑡
−

𝜕𝜑1+2

𝜕𝑧
= ξ1

𝜕

𝜕𝑧
(
𝜕𝜑1

𝜕𝑧
) −

𝜕ξ1

𝜕𝑥

𝜕𝜑1

𝜕𝑥
−

𝜕ξ1

𝜕𝑦

𝜕𝜑1

𝜕𝑦
 𝑜𝑛 𝑧 = 0,  (2-43) 

𝜕𝜑1+2

𝜕𝑡
+

𝑃𝑓𝑠

𝜌
+ 𝑔ξ1+2 = −ξ1

𝜕

𝜕𝑧
(
𝜕𝜑1

𝜕𝑡
) −

1

2
∇𝜑1 ⋅ ∇𝜑1 𝑜𝑛 𝑧 = 0, (2-44) 

(𝒗𝑝
1 + 𝒗𝜑

1 ) ⋅ 𝒏𝑝
1 + (𝒗𝑝

2 + 𝒗𝜑
2 ) ⋅ 𝒏𝑝

0 = −(𝒓𝑝
1 ⋅ ∇)𝒗𝜑

1 ⋅ 𝒏𝑝
0  𝑜𝑛 𝑃 ∈ 𝑆𝐵

0, (2-45) 

𝒗𝜑
1+2 ⋅ 𝒏𝑝 = 0 𝑜𝑛 𝑃 ∈ 𝑆𝑆, (2-46) 

and the pressure at a point P on the body surface is: 

𝑃𝑝
1+2 = 𝑃𝐻

0 + 𝑃𝐻
1+2 + 𝑃𝐷

1+2,  (2-47) 

where  𝑃𝐻
0 = −𝜌𝑔𝑧𝑝, and 𝑃𝐻

1+2 = −𝜌𝑔𝑟𝑝𝑧
1+2, and 𝑃𝐷

1+2 = −𝜌
𝜕𝜑1+2

𝜕𝑡
− 𝜌𝒓𝑝

1 ⋅ ∇ (
𝜕𝜑1

𝜕𝑡
) − 𝜌

1

2
∇𝜑1 ⋅ ∇𝜑1. 

2.1.5.2 Second-order decomposition solution 

Second-order incident wave solution 

The second-order total velocity potential can be decomposed as: 

𝜑2 = 𝜓2 + 𝜙2, (2-48) 

ξ2 = ζ2 + 𝜂2, (2-49) 

where 𝜓2 and ζ2 are the second-order incident wave velocity potential and free surface elevation, and 

𝜙2 and 𝜂2 are the second-order diffraction-radiation wave velocity potential and free surface elevation. 

Up to second-order incident wave potential and free surface elevation fulfils the following equations: 

Δ𝜓1+2 = 0 𝑖𝑛 Ω, (2-50) 

∂ζ1+2

𝜕𝑡
−

∂𝜓1+2

∂z
= ζ1

𝜕2𝜓1

𝜕𝑧2
−

𝜕ζ1

𝜕𝑥

𝜕𝜓1

𝜕𝑥
−

𝜕ζ1

𝜕𝑦

𝜕𝜓1

𝜕𝑦
 𝑜𝑛 𝑧 = 0, (2-51) 

∂𝜓1+2

∂t
+ 𝑔ζ1+2 = −ζ1

𝜕

𝜕𝑧
(
𝜕𝜓1

𝜕𝑡
) −

1

2
∇𝜓1 ⋅ ∇𝜓1 𝑜𝑛 𝑧 = 0, (2-52) 

∂𝜓1+2

∂z
= 0 𝑜𝑛 𝑧 = −𝐻, (2-53) 

The solution to Eqs.(2-50)-(2-53)  is as follows (see Appendix B): 

𝜓1+2 = 𝜓1 + ∑𝐵𝑖𝑗
0 sin (2(𝒌𝑖𝒙 − 𝜔𝑖𝑡 + 𝛿𝑖))   

𝑖

 

+∑∑𝐵𝑖𝑗
+ cosh (|𝒌𝑖 + 𝒌𝑗|(𝐻 + 𝑧)) sin ((𝒌𝑖𝒙 − 𝜔𝑖𝑡 + 𝛿𝑖) + (𝒌𝑗𝒙 − 𝜔𝑗𝑡 + 𝛿𝑗))

𝑖𝑗

 

+∑ ∑ 𝐵𝑖𝑗
− cosh (|𝒌𝑖 − 𝒌𝑗|(𝐻 + 𝑧)) sin ((𝒌𝑖𝒙 − 𝜔𝑖𝑡 + 𝛿𝑖) − (𝒌𝑗𝒙 − 𝜔𝑗𝑡 + 𝛿𝑗))𝑖𝑗 , 

(2-54) 

where the coefficients are given in Table 1. 

 



21 

 

In the asymptotic case of infinite depth (H → ∞) the coefficients 𝐵𝑖𝑗
0 → 0 , 𝐷𝑖𝑗

+ → ∞, 𝐷𝑖𝑗
− → ∞, 

𝐵𝑖𝑗
+ → 0, 𝐵𝑖𝑗

− → 0. Then, the second-order velocity potential becomes null. 

The wave elevation up to second order is obtained from: 

ζ1+2 = −
1

𝑔
(
∂𝜓1+2

∂t
+

𝑃

𝜌
+ ζ1

𝜕

𝜕𝑧
(
𝜕𝜓1

𝜕𝑡
) +

1

2
∇𝜓1 ⋅ ∇𝜓1), (2-55) 

and the fluid pressure induced by the second-order wave potential at a point P is: 

𝑃𝑝𝜓
1+2 = −𝜌 (

∂𝜓1+2

∂t
+

1

2
∇𝜓1 ⋅ ∇𝜓1) − 𝜌 (𝒓𝑝

1 ⋅ ∇ (
𝜕𝜓1

𝜕𝑡
)). (2-56) 

 

Table 1: Stokes’ second-order wave velocity potential coefficients 

𝐵𝑖𝑗
0 =

3𝐴𝑖
2𝑔|𝒌𝑖|

8𝜔𝑖

cosh(2|𝒌𝑖|(𝐻 + 𝑧))

sinh3(|𝒌𝑖|𝐻) cosh(|𝒌𝑖|𝐻)
 

𝐵𝑖𝑗
+ =

∑ 𝐶𝑖𝑗𝑘
+3

𝑘=1

𝐷𝑖𝑗𝑘
+  

𝐵𝑖𝑗
− =

∑ 𝐶𝑖𝑗𝑘
−3

𝑘=1

𝐷𝑖𝑗𝑘
−  

𝐶𝑖𝑗1
+ =

𝐴𝑖𝐴𝑗

2𝑔
𝜔𝑖

2(𝜔𝑖 + 𝜔𝑗) 

𝐶𝑖𝑗1
− =

𝐴𝑖𝐴𝑗

2𝑔
𝜔𝑖

2(𝜔𝑖 − 𝜔𝑗) 

𝐶𝑖𝑗2
+ =

𝐴𝑖𝐴𝑗

4𝑔
(𝜔𝑖𝜔𝑗 − 𝑔2

𝒌𝑖 ⋅ 𝒌𝑗

𝜔𝑖𝜔𝑗
 )(𝜔𝑖 + 𝜔𝑗) 

𝐶𝑖𝑗2
− = −

𝐴𝑖𝐴𝑗

4𝑔
(𝜔𝑖𝜔𝑗 + 𝑔2

𝒌𝑖 ⋅ 𝒌𝑗

𝜔𝑖𝜔𝑗
 )(𝜔𝑖 − 𝜔𝑗) 

𝐶𝑖𝑗3
+ = −

𝐴𝑖𝐴𝑗

2

𝑔

𝜔𝑖
(|𝒌𝑖|

2 + 𝒌𝑖 ⋅ 𝒌𝑗) 

𝐶𝑖𝑗3
− =

𝐴𝑖𝐴𝑗

2

𝑔

𝜔𝑖
(|𝒌𝑖|

2 − 𝒌𝑖 ⋅ 𝒌𝑗) 

𝐷𝑖𝑗
+ = |𝒌𝑖 + 𝒌𝑗|𝑠𝑖𝑛ℎ(|𝒌𝑖 + 𝒌𝑗|𝐻) −

1

𝑔
(𝜔𝑖 + 𝜔𝑗)

2
cosh(|𝒌𝑖 + 𝒌𝑗|𝐻) 

𝐷𝑖𝑗3
− = |𝒌𝑖 − 𝒌𝑗|𝑠𝑖𝑛ℎ(|𝒌𝑖 − 𝒌𝑗|𝐻) −

1

𝑔
(𝜔𝑖 − 𝜔𝑗)

2
cosh(|𝒌𝑖 + 𝒌𝑗|𝐻) 

 

 

Second-order diffraction-radiation wave problem 

The governing equations for the wave diffraction-radiation up to second-order are given by: 

𝛥𝜙1+2 = 0 𝑖𝑛 Ω, (2-57) 
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𝜕𝜂1+2

𝜕𝑡
−

𝜕𝜙1+2

𝜕𝑧
= 𝜂1

𝜕2𝜙1

𝜕𝑧2
+ 𝜂1

𝜕2𝜓1

𝜕𝑧2
+ 𝜁1

𝜕2𝜙1

𝜕𝑧2
 

                               −
𝜕𝜙1

𝜕𝑥

𝜕𝜂1

𝜕𝑥
−

𝜕𝜙1

𝜕𝑦

𝜕𝜂1

𝜕𝑦
−

𝜕𝜙1

𝜕𝑥

𝜕𝜁1

𝜕𝑥
 

                               −
𝜕𝜙1

𝜕𝑦

𝜕𝜁1

𝜕𝑦
−

𝜕𝜓1

𝜕𝑥

𝜕𝜂1

𝜕𝑥
−

𝜕𝜓1

𝜕𝑦

𝜕𝜂1

𝜕𝑦
 

𝑖𝑛 𝑧 = 0, (2-58) 

𝜕𝜙1+2

𝜕𝑡
+

𝑃𝑓𝑠

𝜌
+ 𝑔𝜂1+2 = −𝜂1

𝜕

𝜕𝑧
(
𝜕𝜙1

𝜕𝑡
) − 𝜁1

𝜕

𝜕𝑧
(
𝜕𝜙1

𝜕𝑡
) 

                                              −𝜂1
𝜕

𝜕𝑧
(
𝜕𝜓1

𝜕𝑡
) −

1

2
𝛻𝜙1 ⋅ 𝛻𝜙1 − 𝛻𝜓1 ⋅ 𝛻𝜙1 

𝑖𝑛 𝑧 = 0, (2-59) 

𝒗𝜙
2 ⋅ 𝒏𝑝

0 + 𝒗𝜙
1 ⋅ 𝒏𝑝

1 = −(𝒗𝑝
1+𝒗𝜓

1 ) ⋅ 𝒏𝑝
1  

                                      − (𝒗𝑝
2+𝒗𝜓

2 + (𝒓𝑝
1 ⋅ 𝛻)(𝒗𝜙

1 + 𝒗𝜓
1 )) ⋅ 𝒏𝑝

0  
𝑜𝑛 𝑃 ∈ 𝑆𝐵

0, (2-60) 

𝒗𝜙
1+2 ⋅ 𝒏𝑝 = −𝒗𝜓

1+2 ⋅ 𝒏𝑝 𝑜𝑛 𝑃 ∈ 𝑆𝑆, (2-61) 

and the fluid pressure at a point P on the body surface is given by: 

𝑃𝑝
1+2 = 𝑃𝑝ℎ

0 + 𝑃𝑝ℎ
1+2+𝑃𝑝𝜓

1+2 + 𝑃𝑝𝜙
1+2,  (2-62) 

where 𝑃𝑝ℎ
0 = −𝜌𝑔𝑧, 𝑃𝑝ℎ

1+2 = −𝜌𝑔𝑟𝑝𝑧
1+2  and: 

𝑃𝑝𝜙
1+2 = −𝜌

𝜕𝜙1+2

𝜕𝑡
− 𝜌

1

2
∇𝜙1 ⋅ ∇𝜙1 − 𝜌∇𝜓1 ⋅ ∇𝜙1 − 𝜌𝑟𝑝

1 ⋅ ∇ (
𝜕𝜙1

𝜕𝑡
).  (2-63) 

2.2 Numerical models for seakeeping problems 

2.2.1 Glossary 

𝜙 Diffraction-radiation velocity potential 

η Diffraction-radiation wave elevation 

𝑃𝑓𝑠 Free surface pressure 

ΓR Surface limiting the computational domain in the horizontal directions 

R1 First-order source terms in combined FS BC for second-order solution 

S1 First-order source terms in kinematic BC for second-order solution 

𝐋̿ Laplacian FEM matrix 

𝛟 Vector of diffraction-radiation velocity potential at nodes 

𝐛𝐵 FEM  Neumann body boundary condition  

𝐛𝑅 FEM  Neumann radiation boundary condition 

𝐛𝑍0 FEM  Neumann free surface boundary condition 

𝐛𝑍𝐻  FEM Neumann bottom boundary condition 

Δ𝑡 Time step 

𝜅(𝒙) Wave absorption coefficient 
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2.2.2 Finite element formulation 

Section 2.2 presents the formulation based on the finite element method (FEM) to solve the system 

of equations governing the wave diffraction-radiation problem. This formulation has been developed 

to be used in conjunction with unstructured meshes in order to enhance geometry flexibility and speed 

up the initial modelling time. 

Let 𝑄ℎ
∗   be the finite element space to interpolate functions, constructed in the usual manner. From 

this space, we can construct the subspace 𝑄ℎ,𝜙
∗ , that incorporates the Dirichlet conditions for the 

potential 𝜙. The space of test functions, denoted by 𝑄ℎ, is constructed as 𝑄ℎ,𝜙, but with functions 

vanishing on the Dirichlet boundary. The weak form of the problem can be written as follows: 

Find [𝜙ℎ] ∈ 𝑄ℎ,𝜙
∗ , by solving the discrete variational problem: 

∫ ∇𝜐ℎ · ∇𝜙ℎ𝑑Ω

Ω

= ∫ 𝜐ℎ · 𝜙̂𝑛
𝐵𝑑Γ

ΓB

+ ∫ 𝜐ℎ · 𝜙̂𝑛
𝑅𝑑Γ

ΓR

 

+ ∫ 𝜐ℎ · 𝜙̂𝑛
𝑍0𝑑Γ +

ΓZ0

∫ 𝜐ℎ · 𝜙̂𝑛
𝑆𝑑Γ    

ΓS

 ∀𝜐ℎ ∈ 𝑄ℎ, 

(2-64) 

where 𝜙̂𝑛
𝐵, 𝜙̂𝑛

𝑅, 𝜙̂𝑛
𝑍0 and 𝜙̂𝑛

𝑆 are the potential normal gradients corresponding to the Neumann boundary 

conditions on bodies, radiation boundary, free surface and seabed surface, respectively. At this point, 

it is useful to introduce the associated matrix form of Eq. (2-64): 

𝐋̿𝛟 = 𝐛𝐵 + 𝐛𝑅 + 𝐛𝑍0 + 𝐛𝑆, (2-65) 

where L is the standard Laplacian matrix, and 𝐛𝐵, 𝐛𝑅, 𝐛𝑍0, and 𝐛𝑆 are the vectors resulting of 

integrating the corresponding boundary condition terms. 

2.2.3 Free surface boundary conditions 

Combining the kinematic and dynamic free surface boundary conditions, the free surface condition 

reads: 

𝜕2𝜙

𝜕𝑡2
+ 𝑔

𝜕𝜙

𝜕𝑧
+

𝜕

𝜕𝑡
(
𝑃𝑓𝑠

𝜌
) + {𝑄1} = 0, (2-66) 

and is implemented as a Neumann boundary condition that fulfils the flux boundary integral: 

𝐛𝑍0 = 𝑴̿ΓZ0 , (2-67) 

where 𝑴̿ΓZ0   is the corresponding boundary mass and 𝑄1 are the transfer terms from the first-order to 

the second-order problem (see Eqs. (2-58)-(2-59)): 

𝑄1 = 𝜕𝑡𝑅
1 − 𝑆1, (2-68) 
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𝑅1 = 𝜂1
𝜕

𝜕𝑧
(
𝜕𝜙1

𝜕𝑡
) + ζ1

𝜕

𝜕𝑧
(
𝜕𝜙1

𝜕𝑡
) + 𝜂1

𝜕

𝜕𝑧
(
𝜕𝜓1

𝜕𝑡
) +

1

2
∇𝜙1 ⋅ ∇𝜙1 + ∇𝜓1 ⋅ ∇𝜙1, (2-69) 

𝑆1 =
∂𝜙1

∂x

∂η1

𝜕𝑥
+

∂𝜙1

∂y

∂η1

𝜕𝑦
+

∂𝜙1

∂x

∂ζ1

𝜕𝑥
+

∂𝜙1

∂y

∂ζ1

𝜕𝑦
+

∂𝜓1

∂x

∂η1

𝜕𝑥
+

∂𝜓1

∂y

∂η1

𝜕𝑦
 

           −𝜂1
𝜕2𝜙1

𝜕𝑧2
− 𝜂1

𝜕2𝜓1

𝜕𝑧2
− 𝜁1

𝜕2𝜙1

𝜕𝑧2
, 

(2-70) 

where: 

(𝜕𝑡𝑅
1)𝑛+1  = 25/12(𝑅1)𝑛+1 − 4(𝑅1)𝑛 + 3(𝑅1)𝑛−1 − 4/3(𝑅1)𝑛−2 + 1/4(𝑅1)𝑛−3. (2-71) 

Eq. (2-66) is discretized in time using the following numerical scheme: 

𝜙𝑛+1 − 2𝜙𝑛 + 𝜙𝑛−1

Δ𝑡2
= −

1

12
𝑔(𝜙𝑧

𝑛+1 + 10𝜙𝑧
𝑛 + 𝜙𝑧

𝑛−1) −
𝑃𝑓𝑠

𝑛+1 − 𝑃𝑓𝑠
𝑛−1

𝜌2Δ𝑡
 

                                            − {
1

12
((𝑄1)𝑛+1 + 10(𝑄1)𝑛 + (𝑄1)𝑛−1)}, 

(2-72) 

where for the specific case where 𝑃𝑓𝑠 = 0, the above scheme becomes a fourth order compact Padé 

scheme. The free surface elevation is discretized in time using the following fourth order in time 

numerical scheme: 

𝜂𝑛+1 = −
1

𝑔Δ𝑡 
(
25

12
𝜙𝑛+1 − 4𝜙𝑛 + 3𝜙𝑛−1 −

4

3
𝜙𝑛−2 +

1

4
𝜙𝑛−3) −

𝑃𝑓𝑠
𝑛+1

𝜌𝑔
{−(𝑅1)𝑛+1}. (2-73) 

2.2.4 Radiation condition and wave absorption 

Waves represented by 𝜙 are born at the bodies and propagate in all directions away from the bodies. 

These waves have to either be dissipated or to be let go out of the domain so they will not come back 

to interact with the bodies. Then a Sommerfeld radiation condition at the edge of the computational 

domain is introduced: 

𝜕𝑡𝜙 + 𝑐𝛻𝜙 · 𝑛𝑅 = 0 𝑖𝑛 𝛤𝑅, (2-74) 

where 𝛤𝑅 is the surface limiting the domain in the horizontal directions, and 𝑐 is a prescribed wave 

phase velocity. This radiation condition will let waves moving at velocity 𝑐 to escape out of the domain. 

The numerical scheme used to implement the radiation condition is 

(𝜙𝒏
𝑅)𝑛+1 = −

𝜙𝑛+1 − 𝜙𝑛

𝑐𝛥𝑡
 𝑖𝑛 𝛤𝑅. (2-75) 

The prescribed phase velocity 𝑐 will be set for radiating those waves with the smallest frequency 

(largest wavelengths) considered in each specific case under study. However, waves with higher 

frequencies (smaller phase velocities) will not leave the domain at ΓR and will be reflected. Hence, 

wave absorption is introduced into the dynamic free surface boundary condition by varying the 

pressure such that: 
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𝑃𝑓𝑠(𝒙, 𝑡) = 𝜅(𝒙)𝜌
𝜕𝜙

𝜕𝑧
. (2-76) 

Eq. (2-76) increases pressure when the free surface is moving upwards, while decreases the 

pressure when the free surface is moving downwards. Then energy is transferred from the waves to 

the atmosphere and waves are damped. However, the coefficient 𝜅(𝒙) will be set to zero in the analysis 

area (near the bodies), so that damping will have no effect on the solution of the wave-body interaction 

problem. 

2.3 Hydrodynamic loads in seakeeping problems 

2.3.1 Glossary 

𝜑 Velocity potential 

ξ Free surface elevation 

𝒓𝑝
1  First-order body surface displacement at point P 

𝒓𝑝
1+2 Up to second order body surface displacement at point P 

𝒏𝑝
0  Initial body surface normal vector at point P 

𝒏𝑝
1  Body surface normal vector after first-order movement at point P 

S𝐵
0  Initial body boundary 

𝜹1 First-order body displacements 

𝜽1 First-order body rotations 

𝑲̿𝐻 Hydrostatic restoring matrix 

∀ Body displacement 

𝒙𝐵 Coordinates of body center of buoyancy 

𝒙𝐺  Coordinates of body center of gravity 

2.3.2 Introduction 

The aim of section 2.3 is to obtain the hydrodynamic forces and moments from direct pressure 

integration. These loads are split in hydrostatic and dynamic components, obtained by integrating the 

hydrostatic and dynamic pressure respectively. Furthermore, loads are split into first-order and second-

order depending on the order of approximation used. 

2.3.3 First-order loads 

Hydrodynamic forces and moments are obtained from direct pressure integration over the body 

surface. The body gravity center will be used as a reference for body movements and moments acting 

on it. The first-order forces and moments are: 
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𝑭1 = ∫ 𝑃𝑝
1𝒏𝑝

0

S𝐵
0

𝑑𝑠 = 𝑭𝐻
0 + 𝑭𝐻

1 + 𝑭𝐷
1 , (2-77) 

𝑴1 = ∫ 𝑃𝑝
1(𝒙𝐺−𝒙𝑝) × 𝒏𝑝

0

S𝐵
0

𝑑𝑠 = 𝑴𝐻
0 + 𝑴𝐻

1 + 𝑴𝐷
1 , (2-78) 

where sub-index H stands for hydrostatic loads and D stands for dynamic loads. The hydrostatic loads 

are split as follows: 

𝑭𝐻
0 = −∫ 𝜌𝑔𝑧𝒏𝑝

0

S𝐵
0

𝑑𝑠 = 𝜌𝑔∀, 
(2-79) 

𝑴𝐻
0 = −∫ 𝜌𝑔𝑧𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝

0

S𝐵
0

𝑑𝑠, 
(2-80) 

𝑭𝐻
1 = −∫ 𝜌𝑔𝑟𝑝𝑧

1 𝒏𝑝
0

S𝐵
0

𝑑𝑠, 
(2-81) 

= −∫ 𝜌𝑔𝑟𝑝𝑧
1 𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝

0

S𝐵
0

𝑑𝑠, 
(2-82) 

where ∀ is the body displacement. Hydrostatic forces and moments are obtained via the hydrostatic 

restoring matrix 𝐊̿𝐻: 

[
𝑭𝐻

1

𝑴𝐻
1 ] = 𝑲̿𝐻 [𝜹

1

𝜽1] = [
𝑲̿𝐻

𝐹

𝑲̿𝐻
𝑀
] [𝜹

1

𝜽1]. 
(2-83) 

The body displacement, center of buoyancy, and restoring matrix are obtained as follows: 

∀= −∫ 𝑧𝑛𝑝𝑧𝑑𝑠
S𝐵
0

, (2-84) 

𝑥𝐵 = −
1

2∀
∫ 𝑥2𝑛𝑝𝑥𝑑𝑠;
S𝐵
0

   𝑦𝐵 = −
1

2∀
∫ 𝑦2𝑛𝑝𝑦𝑑𝑠
S𝐵
0

;    𝑧𝐵 = −
1

2∀
∫ 𝑧2𝑛𝑝𝑧𝑑𝑠
S𝐵
0

, (2-85) 

𝐾𝐻(3,3) = 𝜌𝑔 ∫ 𝑛𝑝𝑧𝑑𝑠
S𝐵
0

, (2-86) 

𝐾𝐻(3,4) = 𝐾𝐻(4,3) = 𝜌𝑔 ∫ (𝑦𝑝 − 𝑦𝐺) 𝑛𝑝𝑧𝑑𝑠
S𝐵
0

, (2-87) 

𝐾𝐻(3,5) = 𝐾𝐻(5,3) = −𝜌𝑔 ∫ (𝑥𝑝 − 𝑥𝐺) 𝑛𝑝𝑧𝑑𝑠
S𝐵
0

, (2-88) 

𝐾𝐻(4,4) = 𝜌𝑔 ∫ (𝑦𝑝 − 𝑦𝐺)
2
 𝑛𝑝𝑧𝑑𝑠

S𝐵
0

+ 𝜌𝑔∀(𝑧𝐵 − 𝑧𝐺), (2-89) 

𝐾𝐻(4,5) = 𝐾𝐻(5,4) = −𝜌𝑔 ∫ (𝑥𝑝 − 𝑥𝐺)(𝑦𝑝 − 𝑦𝐺) 𝑛𝑝𝑧𝑑𝑠
S𝐵
0

, (2-90) 

𝐾𝐻(4,6) = −𝜌𝑔∀(𝑥𝐵 − 𝑥𝐺), (2-91) 
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𝐾𝐻(5,5) = 𝜌𝑔 ∫ (𝑥𝑝 − 𝑥𝐺)
2
 𝑛𝑝𝑧𝑑𝑠

S𝐵
0

+ 𝜌𝑔∀(𝑧𝐵 − 𝑧𝐺), (2-92) 

𝐾𝐻(5,6) = −𝜌𝑔∀(𝑦𝐵 − 𝑦𝐺), (2-93) 

where B stands for the body center of buoyancy, and G for the body center of gravity. For all other 

values of the indices (i,j), 𝐾𝐻(𝑖, 𝑗) = 0. The dynamic loads are computed as: 

𝑭𝐷
1 = −∫ 𝜌

𝜕𝜑1 

𝜕𝑡
𝒏𝑝

0

S𝐵
0

𝑑𝑠, 
(2-94) 

𝑴𝐷
1 = −∫ 𝜌

𝜕𝜑1 

𝜕𝑡
𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝

0

S𝐵
0

𝑑𝑠. 
(2-95) 

2.3.4 Second-order loads 

Up to second-order forces and moments are split as: 

 

𝑭1+2 = 𝑭𝐻
0 + 𝑭𝐻

1 + 𝑭𝐻
2 + 𝑭𝐷

1 + 𝑭𝐷
2 , (2-96) 

𝑴1+2 = 𝑴𝐻
0 + 𝑴𝐻

1 + 𝑴𝐻
2 + 𝑴𝐷

1 + 𝑴𝐷
2 , (2-97) 

where the hydrostatic loads are: 

𝑭𝐻
1+2 = −∫ 𝜌𝑔(𝑧𝑝 + 𝑟𝑝𝑧

1+2)𝒏𝑝
1

S𝐵
0

𝑑𝑠

= 𝑭𝐻
0 + 𝑭𝐻

1 + 𝜽1 × 𝑭𝐻
1 + 𝑲̿𝐻

𝐹 [𝜹
𝟐

𝜽𝟐] − ∫ 𝜌𝑔 (𝑯̿𝑹0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑧
𝒏𝑝

0

S𝐵
0

𝑑𝑠, 

(2-98) 

𝑴𝐻
1+2 = −∫ 𝜌𝑔(𝑧𝑝 + 𝑟𝑝𝑧

1+2)𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝
1

S𝐵
0

𝑑𝑠

= 𝑴𝐻
0 + 𝑴𝐻

1 + 𝜽1 × 𝑴𝐻
1 + 𝑲̿𝐻

𝑀 [𝜹
𝟐

𝜽𝟐] − ∫ 𝜌𝑔 (𝑯̿𝑹0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑧
𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝

0

S𝐵
0

𝑑𝑠, 

(2-99) 

then: 

𝑭𝐻
2 = 𝑲̿𝐻

𝐹 [𝜹
𝟐

𝜽𝟐] + 𝜽1 × 𝑭𝐻
1 − ∫ 𝜌𝑔 (𝑯̿𝑹0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑧
𝒏𝑝

0

S𝐵
0

𝑑𝑠, (2-100) 

𝑴𝐻
2 = 𝑲̿𝐻

𝑀 [𝜹
𝟐

𝜽𝟐] + 𝜽1 × 𝑴𝐻
1 − ∫ 𝜌𝑔 (𝑯̿𝑹0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑧
𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝

0

S𝐵
0

𝑑𝑠. (2-101) 

The dynamic loads up to second order are split in four components: 

𝑭𝐷
1+2 = 𝑭𝐷

1 + 𝑭𝐷
2 = 𝑭𝐷

1 + 𝑭𝐷1
2 + 𝑭𝐷2

2 + 𝑭𝐷3
2 + 𝑭𝐷4

2 , (2-102) 

𝑴𝐷
1+2 = 𝑴𝐷

1 + 𝑴𝐷
2 = 𝑴𝐷

1 + 𝑴𝐷1
2 + 𝑴𝐷2

2 + 𝑴𝐷3
2 + 𝑴𝐷4

2 , (2-103) 
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where  

𝑭𝐷1
2 = −𝜌 ∫

𝜕𝜑2 

𝜕𝑡
𝒏𝑝

0

S𝐵
0

𝑑𝑠 + 𝜽1 × 𝑭𝐷
1 , (2-104) 

𝑭𝐷2
2 = −𝜌 ∫ (𝒓𝑝

1 ⋅ ∇ (
𝜕𝜑1

𝜕𝑡
))𝒏𝑝

0

S𝐵
0

𝑑𝑠, (2-105) 

𝑭𝐷3
2 = −

1

2
𝜌 ∫ (∇𝜑1 ⋅ ∇𝜑1)𝒏𝑝

0

S𝐵
0

𝑑𝑠, (2-106) 

𝑭𝐷4
2 = −

1

2
𝜌𝑔 ∫ (ξ1 − 𝑟𝑝𝑧

1 )
2 𝒏𝑝

0

√1 − 𝑛𝑝𝑧
0 2Γ𝐵

0
𝑑𝑙, 

(2-107) 

𝑴𝐷1
2 = −𝜌 ∫

𝜕𝜑2 

𝜕𝑡
𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝

0

S𝑏
0

𝑑𝑠 + 𝜽1 × 𝑴𝐷
1 , (2-108) 

𝑴𝐷2
2 = −𝜌 ∫ (𝒓𝑝

1 ⋅ ∇ (
𝜕𝜑1

𝜕𝑡
))𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝

0

S𝑏
0

𝑑𝑠, (2-109) 

𝑴𝐷3
2 = −

1

2
𝜌 ∫ (∇𝜑1 ⋅ ∇𝜑1)𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝

0

S𝑏
0

𝑑𝑠, (2-110) 

𝑴𝐷4
2 = −

1

2
𝜌𝑔 ∫ (ξ1 − 𝑟𝑝𝑧

1 )
2
 𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ×

𝒏𝑝
0

√1 − 𝑛𝑝𝑧
0 2Γ𝐵

0
𝑑𝑙. 

(2-111) 

2.3.5 Mean drift loads 

Being the first-order and second-order responses harmonic, and taking time average, the 

following relations holds: 

< 𝑭1 >= 0, (2-112) 

< 𝑴1 >= 0, (2-113) 

< 𝑭𝐻
2 >=< 𝜽1 × 𝑭𝐻

1 > −< ∫ 𝜌𝑔 (𝑯̿𝑹0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑧
𝒏𝑝

0

S𝐵
0

𝑑𝑠 >, (2-114) 

< 𝑴𝐻
2 >=< 𝜽1 × 𝑴𝐻

1 > −< ∫ 𝜌𝑔 (𝑯̿𝑹0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑧
𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝

0

S𝐵
0

𝑑𝑠 >, (2-115) 

< 𝑭𝐷1
2 >=< 𝜽1 × 𝑭𝐷

1 >, (2-116) 

< 𝑭𝐷2
2 >= −𝜌 < ∫ (𝒓𝑝

1 ⋅ ∇ (
𝜕𝜑1

𝜕𝑡
))𝒏𝑝

0

S𝐵
0

𝑑𝑠 >, (2-117) 

< 𝑭𝐷3
2 >= −

1

2
𝜌 < ∫ (∇𝜑1 ⋅ ∇𝜑1)𝒏𝑝

0

S𝐵
0

𝑑𝑠 >, (2-118) 
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< 𝑭𝐷4
2 >= −

1

2
𝜌𝑔 < ∫ (ξ1 − 𝑟𝑝𝑧

1 )
2 𝒏𝑝

0

√1 − 𝑛𝑝𝑧
0 2Γ𝐵

0
𝑑𝑙 >, 

(2-119) 

< 𝑴𝐷1
2 >=< 𝜽1 × 𝑴𝐷

1 >, (2-120) 

< 𝑴𝐷2
2 >= −𝜌 < ∫ (𝒓𝑝

1 ⋅ ∇ (
𝜕𝜑1

𝜕𝑡
))𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝

0

S𝑏
0

𝑑𝑠 >, (2-121) 

< 𝑴𝐷3
2 >= −

1

2
𝜌 < ∫ (∇𝜑1 ⋅ ∇𝜑1)𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝

0

S𝑏
0

𝑑𝑠 >, (2-122) 

< 𝑴𝐷4
2 >= −

1

2
𝜌𝑔 < ∫ (ξ1 − 𝑟𝑝𝑧

1 )
2
 𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ×

𝒏𝑝
0

√1 − 𝑛𝑝𝑧
0 2Γ𝐵

0
𝑑𝑙 >. 

(2-123) 

Second-order terms with non-zero time average depend on first-order quantities. Hence second-

order drifting loads only depend on the first-order problem solution. 
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Chapter 3. WAVE RESISTANCE PROBLEMS 
 

3.1 Mathematical models for wave resistance problems 

3.1.1 Glossary 

𝐓b Linear velocity of the moving body at the gravity center 

𝐖b Angular velocity of the moving body 

𝐕b(𝒙𝑃) Linear velocity at a point P of the moving body 

𝐮 Water current velocity 

𝒗𝜑 Fluid velocity 

𝜑 Velocity potential 

ξ Free surface elevation 

𝒗𝜓 Incident wave induced velocity 

𝜓 Incident velocity potential 

ζ Incident wave elevation 

𝒗𝜙 Diffraction-radiation wave induced velocity 

𝜙 Diffraction-radiation velocity potential 

η Diffraction-radiation wave elevation 

𝑃𝑓𝑠 Free surface pressure 

𝑃𝑝 First-order pressure at point P induced by DIF-RAD wave 

𝒏𝑝 Initial body surface normal vector at point P 

𝒗𝑝 First-order body velocity over body surface at point P 

Ω Fluid domain 

S𝐵 Initial body boundary 

𝐴 Wave amplitude 

𝜔 Wave angular frequency 

𝐾 Wave number 

𝛿𝒊 Wave phase delay 

𝐻 Water depth 

 

3.1.2 Introduction 

In this section the problem discussed is that of a body moving across the fluid domain in the 

presence of waves and water currents. Both, body velocity and water current will be assumed to be 

much larger than velocities induced by waves. 
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3.1.3 Problem statement 

We consider the first-order diffraction-radiation problem of a body moving on the horizontal plane. 

As in Chapter 2, incompressible and irrotational flow are assumed, being 𝜑 the velocity potential. The 

following assumptions on the order of magnitude of the velocity components and free surface elevation 

ξ are made: 

|𝐕b~𝑂(1)| |𝐮~𝑂(1)| 𝜑𝑥~𝑂(1) 𝜑𝑦~𝑂(1) 
(3-1) 

𝜑𝑧~𝑂(𝜖) 𝜑𝛼𝛽~𝑂(𝜖) ξ𝑥~𝑂(𝜖) ξ𝑦~𝑂(𝜖) 

Based on the previous assumptions, the governing equations for the first-order diffraction-radiation 

wave problem are: 

Δ𝜑 = 0 𝑖𝑛 Ω 
incompressible and 

irrotational flow, 
(3-2) 

∂𝜑

∂t
+ 𝒖 ⋅ ∇h𝜑 +

1

2
∇h𝜑 ⋅ ∇h𝜑 +

𝑃𝑓𝑠

𝜌
+ 𝑔ξ = 0 𝑜𝑛 𝑧 = 0 

dynamic boundary 

condition, 
(3-3) 

∂ξ

𝜕𝑡
+ (𝒖 + ∇h𝜑) ⋅ ∇hξ −

∂𝜑

∂z
= 0 𝑜𝑛 𝑧 = 0 

kinematic boundary 

condition, 
(3-4) 

𝒗𝑝 ⋅ 𝒏𝑝 + (𝒖 + 𝒗𝜑) ⋅ 𝒏𝑝 = 0 𝑜𝑛 S𝐵
0  body boundary condition, (3-5) 

∂𝜑

∂z
= 0 𝑜𝑛 𝑧 = −𝐻 wall boundary condition, (3-6) 

and the pressure at an arbitrary point P of the fluid domain is: 

𝑃𝑝 = −𝜌 (
𝜕𝜑

𝜕𝑡
+ 𝒖 ⋅ ∇h𝜑 +

1

2
∇𝜑 ⋅ ∇𝜑 + 𝑔𝑧𝑝).  (3-7) 

3.1.4 Velocity potential decomposition 

In order to solve the governing equations (Eqs.(3-2)-(3-6)), a velocity potential decomposition is 

introduced. The total velocity potential can be decomposed as: 

𝜑 = 𝜓 + 𝜙, (3-8) 

ξ = ζ + 𝜂, (3-9) 

where ψ and ζ  are the incident wave potential and free surface elevation respectively, and ϕ and η  

are the diffraction-radiation velocity potential and free surface elevation respectively. Then, we can 

split the governing equations into the following sets of equations: 
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3.1.4.1 Set 1: incident waves 

The first set of equations describes the incident waves: 

Δ𝜓 = 0 𝑖𝑛 Ω, (3-10) 

∂𝜓

∂t
+ 𝒖 ⋅ ∇h𝜓 + 𝑔ζ = 0 𝑜𝑛 𝑧 = 0, (3-11) 

∂ξ

𝜕𝑡
+ 𝒖 ⋅ ∇hζ −

∂𝜑

∂z
= 0 𝑜𝑛 𝑧 = 0, (3-12) 

∂𝜓

∂z
= 0 𝑜𝑛 𝑧 = −𝐻. (3-13) 

This set of equations has the following analytical solution (Airy waves): 

𝜓 = ∑
𝐴𝑖𝑔

𝜔𝑖

cosh(|𝒌𝑖|(𝐻 + 𝑧))

cosh(|𝒌𝑖|𝐻)
sin(𝒌𝑖(𝒙 − 𝒖𝑡) − 𝜔𝑖𝑡 + 𝛿𝑖) ,

𝑖

 (3-14) 

ζ = ∑𝐴𝑖 cos(𝒌𝑖(𝒙 − 𝒖𝑡) − 𝜔𝑖𝑡 + 𝛿𝑖)

𝑖

. (3-15) 

3.1.4.2 Set 2: governing equations of wave diffraction-radiation problem 

The second set of equations describes the diffraction-radiation wave problem: 

Δ𝜙 = 0 𝑖𝑛 Ω, (3-16) 

∂𝜙

∂t
+ 𝒖 ⋅ ∇h𝜙 +

1

2
∇h𝜙 ⋅ ∇h𝜙 + ∇h𝜓 ⋅ ∇h𝜙 +

1

2
∇h𝜓 ⋅ ∇h𝜓 +

𝑃𝑓𝑠

𝜌
+ 𝑔𝜂 = 0 𝑜𝑛 𝑧 = 0, (3-17) 

∂𝜂

𝜕𝑡
+ (𝒖 + ∇h𝜙 + ∇h𝜓) ⋅ ∇h𝜂 + (∇h𝜙 + ∇h𝜓) ⋅ ∇hζ −

∂𝜙

∂z
= 0 𝑜𝑛 𝑧 = 0, (3-18) 

𝒗𝑝 ⋅ 𝒏𝑝 + (𝒖 + 𝒗𝜓 + 𝒗𝜙) ⋅ 𝒏𝑝 = 0 𝑜𝑛 S𝐵
0 , (3-19) 

∂𝜙

∂z
= 0 𝑖𝑛 𝑧 = −𝐻. (3-20) 

From first-order wave theory, we know that 𝜓𝛼~𝑂(𝜖) and ζ𝛼~𝑂(𝜖). Then, the terms 
1

2
∇h𝜓 ⋅

∇h𝜓~𝑂(𝜖2), ∇h𝜓 ⋅ ∇hζ~𝑂(𝜖2), and ∇h𝜓 ⋅ ∇hη~𝑂(𝜖2). Neglecting these terms in the second set of 

equations (Eqs. (3-16)-(3-20)), the governing equations for the first-order diffraction-radiation wave 

problem become: 

Δ𝜙 = 0 𝑖𝑛 Ω, (3-21) 

∂𝜙

∂t
+ 𝒖 ⋅ ∇h𝜙 +

1

2
∇h𝜙 ⋅ ∇h𝜙 + ∇h𝜓 ⋅ ∇h𝜙 +

𝑃𝑓𝑠

𝜌
+ 𝑔𝜂 = 0 𝑜𝑛 𝑧 = 0, (3-22) 

∂𝜂

𝜕𝑡
+ (𝒖 + ∇h𝜙) ⋅ ∇h𝜂 + ∇h𝜙 ⋅ ∇hζ −

∂𝜙

∂z
= 0 𝑜𝑛 𝑧 = 0, (3-23) 

∇h𝜙 ⋅ 𝒏𝑝 = −(𝒗𝑝 + 𝒖 + 𝒗𝜓) ⋅ 𝒏𝑝 𝑜𝑛 S𝐵
0 , (3-24) 

∂𝜙

∂z
= 0 𝑜𝑛 𝑧 = −𝐻, (3-25) 
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and the pressure induced at point P by diffracted and radiated waves is: 

𝑃𝑝 = −𝜌 (
𝜕𝜙

𝜕𝑡
+ (𝒖 + ∇h𝜙 + ∇h𝜓) ⋅ ∇h𝜙 −

1

2
∇𝜙 ⋅ ∇𝜙). (3-26) 

Notice that the terms ∇h𝜓 ⋅ ∇h𝜙  and ∇h𝜙 ⋅ ∇hζ  account for the deviation of the incident waves 

due to the fact that they are transported by a non-uniform flow field. Also, the terms ∇h𝜙 ⋅ ∇h𝜙 and 

∇h𝜙 ⋅ ∇h𝜂  are not subject to any kind of linearization so far, which enables to simulate non-steady 

base flows. 

3.1.5 Governing equations in a moving frame of reference 

It is convenient to solve Eqs. (3-21)-(3-25) in a frame of reference fixed to the moving body rather 

than on the global frame of reference. Therefore, the aforementioned equations will be solved in a local 

frame of reference. Let be the two dimensional movement of the body: 𝐕b(𝐱) = 𝐓b + 𝐖b × (𝐱 − 𝐱G) 

, where 𝐓b and 𝐖b are the linear and angular velocity of the moving body. Figure 2 shows the global 

and local frame of reference. This frame of reference is assumed to match the global frame at time 

zero. For an observer sitting in the ship, he will observe the flow field around the ship given by the 

relative motion 𝑼𝑏(𝒙) = 𝒖 − 𝑽𝑏(𝒙) .  Therefore, the governing equations in the local frame of 

reference become: 

Δ𝜙 = 0 𝑖𝑛 Ω, (3-27) 

∂𝜙

∂t
+ 𝑼𝑏 ⋅ ∇h𝜙 +

1

2
∇h𝜙 ⋅ ∇h𝜙 + ∇h𝜓 ⋅ ∇h𝜙 +

𝑃𝑓𝑠

𝜌
+ 𝑔𝜂 = 0 𝑜𝑛 𝑧 = 0, (3-28) 

∂𝜂

𝜕𝑡
+ (𝑼𝑏 + ∇h𝜙) ⋅ ∇h𝜂 + ∇h𝜙 ⋅ ∇hζ −

∂𝜙

∂z
= 0 𝑜𝑛 𝑧 = 0, (3-29) 

∇𝜙 ⋅ 𝒏𝑝 = −(𝒗𝑝 + 𝒖 + 𝒗𝜓) ⋅ 𝒏𝑝 𝑜𝑛 S𝐵
0 , (3-30) 

∂𝜙

∂z
= 0 𝑜𝑛 𝑧 = −𝐻, (3-31) 

and the pressure induced by diffracted and radiated waves is: 

𝑃𝑝 = −𝜌 (
𝜕𝜙

𝜕𝑡
+ (𝑼𝑏 + ∇h𝜙 + ∇h𝜓) ⋅ ∇h𝜙 −

1

2
∇h𝜙 ⋅ ∇h𝜙)          𝑖𝑛 Ω, (3-32) 

where the incident wave potential and incident wave elevation must be transformed to the local frame 

of reference. 
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Figure 2: Global and local frame of reference. 

3.1.6 Flow linearization 

The previous governing equations have been obtained under the assumption that 𝒗𝜙~𝑂(1). Then, 

the free surface boundary conditions can be written as follows: 

 
∂𝜙

∂t
+ (𝑼𝑏 + ∇h𝜙) ⋅ ∇h𝜙 −

1

2
∇h𝜙 ⋅ ∇h𝜙 + ∇h𝜓 ⋅ ∇h𝜙 +

𝑃𝑓𝑠

𝜌
+ 𝑔𝜂 = 0 𝑜𝑛 𝑧 = 0, (3-33) 

∂𝜂

𝜕𝑡
+ (𝑼𝑏 + ∇h𝜙) ⋅ ∇h𝜂 + ∇h𝜙 ⋅ ∇hζ −

∂𝜙

∂z
= 0 𝑜𝑛 𝑧 = 0, (3-34) 

 

where 𝑼𝑏 + 𝛻ℎ𝜙 represents the convective velocity. Since it depends on 𝛻ℎ𝜙, it must be updated every 

time step to account for its variations. While retaining this assumption allows for simulating transient 

flows, linearization of the convective velocity is a reasonable practice in many cases. Two commonly 

used linearizations are described next (see Figure 3). 

3.1.6.1 Neumann-Kelvin linearization 

The Neumann-Kelvin linearization assumes that 𝛻ℎ𝜙~𝑂(𝜖). This assumption is usually made for 

slender bodies whose perturbation of the flow field is small compared to the apparent velocity between 

the moving body and the water. Then the convective velocity becomes the apparent velocity 𝑼𝑏(𝒙) =

𝒖 − 𝑽𝑏(𝒙). Hence the first-order free surface boundary conditions become: 

∂𝜙

∂t
+ 𝑼𝑏 ⋅ ∇h𝜙 +

𝑃𝑓𝑠

𝜌
+ 𝑔𝜂 = 0 𝑜𝑛 𝑧 = 0, (3-35) 

∂𝜂

𝜕𝑡
+ 𝑼𝑏 ⋅ ∇h𝜂 −

∂𝜙

∂z
= 0 𝑜𝑛 𝑧 = 0, (3-36) 
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and the pressure induced by diffracted and radiated waves at point P is: 

𝑃𝑝 = −𝜌 (
∂𝜙

∂t
+ 𝑼𝑏 ⋅ ∇h𝜙 ). (3-37) 

3.1.6.2 Double body linearization 

Double body linearization assumes that ∇h𝜙~𝑂(1), but it can be split into two terms:  ∇h𝜙 =

∇h𝜙
𝐷𝐵 + ∇h𝜙

∗, where  ∇h𝜙
𝐷𝐵 represents the flow field when the free surface is substituted by a wall 

(equivalent to a symmetric case using a double body). Then ∇h𝜙 is approximated as ∇h𝜙
𝐷𝐵 perturbed 

by ∇h𝜙
∗, which means ∇h𝜙

𝐷𝐵~𝑂(1) and  ∇h𝜙
∗~𝑂(𝜖). Then the first-order free surface boundary 

conditions become: 

∂𝜙

∂t
+ (𝑼𝑏+∇h𝜙

𝐷𝐵) ⋅ ∇h𝜙 −
1

2
∇h𝜙

𝐷𝐵∇h𝜙
𝐷𝐵 

                             +∇h𝜙
𝐷𝐵 ⋅ ∇h𝜓 +

𝑃𝑓𝑠

𝜌
+ 𝑔𝜂 = 0 

𝑜𝑛 𝑧 = 0, (3-38) 

∂𝜂

𝜕𝑡
+ (𝑼𝑏+∇h𝜙

𝐷𝐵) ⋅ ∇h𝜂+∇h𝜙
𝐷𝐵 ⋅ ∇hζ −

∂𝜙

∂z
= 0 𝑜𝑛 𝑧 = 0, (3-39) 

and the pressure induced by diffracted and radiated waves at point P is: 

𝑃𝑝 = −𝜌 (
𝜕𝜙

𝜕𝑡
+ (𝑼𝑏+∇h𝜙

𝐷𝐵) ⋅ ∇h𝜙 −
1

2
∇h𝜙

𝐷𝐵∇h𝜙
𝐷𝐵 + ∇h𝜙

𝐷𝐵 ⋅ ∇h𝜓).                     (3-40) 

 

 
Figure 3: Free surface base flow based for Neumann-Kelvin (up) and double-body (down) linearization concepts. 

3.1.7 Second-order pressure correction over body 

A second-order correction on the pressure calculation is proposed in order to better estimate 

hydrodynamic loads. The main idea is to retain second-order terms depending on the first-order 
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solution. Although this will not provide a full second-order solution, it will retain the terms 

contributing to mean drift loads (when 𝑼𝑏 = 0), and added resistance in waves (when 𝑼𝑏 ≠ 0). 

The pressure at any point within the fluid is given by: 

𝑃𝑝 = −𝜌 (
𝜕𝜑

𝜕𝑡
+ 𝑼𝑏 ⋅ ∇h𝜑 +

1

2
∇𝜑 ⋅ ∇𝜑 + 𝑔𝑧𝑝). (3-41) 

Introducing the velocity potential decomposition we obtain: 

𝑃𝑝 = 𝑃𝑝
𝐼 + 𝑃𝑝

𝐷𝑅 + 𝑃𝑝
𝑐(2)

− 𝜌𝑔𝑧𝑝, (3-42) 

𝑃𝑝
𝐼 = −𝜌 (

𝜕𝜓

𝜕𝑡
+ 𝑼𝑏 ⋅ ∇h𝜓), (3-43) 

𝑃𝑝
𝐷𝑅 = −𝜌 (

𝜕𝜙

𝜕𝑡
+ (𝑼𝑏 + ∇h𝜙 + ∇h𝜓) ⋅ ∇h𝜙 −

1

2
∇h𝜙 ⋅ ∇h𝜙), (3-44) 

𝑃𝑝
𝑐(2)

 = −𝜌𝒓𝑝
1 ⋅ ∇(𝑃𝑝

𝐼 + 𝑃𝑝
𝐷𝑅) − 𝜌 (

1

2
𝜙𝑧

2 + 𝜙𝑧𝜓𝑧 +
1

2
∇𝜓 ⋅ ∇𝜓), (3-45) 

where 𝒓𝑝
1  is the first-order displacement of a point P over the body surface, 𝑃𝑝

𝐼 is the first-order incident 

wave pressure, 𝑃𝑝
𝐷𝑅 is the first-order wave diffraction-radiation pressure, and 𝑃𝑝

𝑐(2)
 is the pressure 

correction term containing all the second-order terms depending on the first-order solution. 

3.1.7.1 Neumann-Kelvin 

When using the Newman-Kelvin linearization, ∇h𝜙~𝑂(𝜖) is assumed. Hence, the pressure due to 

diffraction-radiation and the second-order pressure correction are: 

𝑃𝑝
𝐷𝑅 = −𝜌 (

𝜕𝜙

𝜕𝑡
+ 𝑼𝑏 ⋅ ∇h𝜙 ), (3-46) 

𝑃𝑝
𝑐(2)

 = −𝜌𝒓𝑝
1 ⋅ ∇(𝑃𝑝

𝐼 + 𝑃𝑝
𝐷𝑅) − 𝜌

1

2
(∇𝜙 + ∇𝜓)2. (3-47) 

3.1.7.2 Double-body 

When using the Double-body linearization, it is assumed that ∇h𝜙 = ∇h𝜙
𝐷𝐵+∇h𝜙

∗, where  

∇h𝜙
𝐷𝐵~𝑂(1) and ∇h𝜙

∗~𝑂(𝜖). Hence, the pressure due to diffraction-radiation and the second-order 

pressure correction are: 

𝑃𝑝
𝐷𝑅 = −𝜌 (

𝜕𝜙

𝜕𝑡
+ (𝑼𝑏+∇h𝜙

𝐷𝐵) ⋅ ∇h𝜙 −
1

2
∇h𝜙

𝐷𝐵∇h𝜙
𝐷𝐵 + ∇h𝜙

𝐷𝐵 ⋅ ∇h𝜓), (3-48) 

𝑃𝑝
𝑐(2)

 = −𝜌𝒓𝑝
1 ⋅ ∇(𝑃𝑝

𝐼 + 𝑃𝑝
𝐷𝑅) − 𝜌 (

1

2
(∇h𝜙

∗ + ∇h𝜓)2 +
1

2
(ϕz + 𝜓𝑧)

2). (3-49) 

3.1.8 Second-order pressure correction on waterline 

When obtaining hydrodynamic forces and moments acting on a floating body, the first-order 

approximation integrates the pressure over the body surface below the mean waterline (z=0). However, 
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the movements of the body and the free surface elevation around the body modify the wetted surface 

corresponding to the body in state of equilibrium and with unperturbed free surface. In order to take 

into account the contribution of the actual wetted body surface, a second-order correction is mandatory. 

In order to obtain such a correction, a linear pressure variation will be considered from the waterline 

of the body to the free surface. This pressure distribution will equal the pressure at the free surface and 

the pressure at the waterline.  Figure 4 shows the concept of the pressure correction at the waterline 

area. 

𝑃𝑝
𝑤𝑙 = 𝑃𝑝

𝐼 + 𝑃𝑝
𝐷𝑅 − 𝜌𝑔rpz,  (3-50) 

𝑃𝑝
𝑤𝑙(2)

 (𝑧) = 𝑃𝑝
𝑤𝑙 − (𝑃𝑝

𝑤𝑙 − 𝑃𝑝
𝑓𝑠

)
𝑧

ξ − rpz
,  

(3-51) 

where 𝑃𝑝
𝑤𝑙 is the first-order pressure at z=0, and 𝑃𝑝

𝑤𝑙(2)
 is the vertical pressure distribution in the water 

line area for second order correction. 

 
Figure 4: Pressure estimation at the waterline area. 

3.2 Numerical models for wave resistance problems 

3.2.1 Glossary 

Ω Fluid domain 

Ωe Fluid domain within element e 

𝜙 Diffraction-radiation velocity potential 

η Diffraction-radiation wave elevation 

𝑃𝑓𝑠 Free surface pressure 

𝑼 Free surface convective velocity 

𝑰̿ Identity matrix 

𝐖̿ Streamline convective matrix 

𝐋̿∗ Modified Laplacian FEM matrix 

𝐛𝒁𝟎  FEM  Dirichlet free surface boundary condition 

𝐛𝐵 FEM  Neumann body boundary condition  
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𝐛𝑍𝐻 FEM Neumann bottom boundary condition 

Δ𝑡 Time step 

𝜕𝐿 Differential operator for first derivative along streamline 

𝜃 Value between 0 and 1. 

3.2.2 Introduction 

Section 3.2 presents the numerical schemes to cope with the governing equations presented in the 

previous section. Especially important are the numerical schemes used to solve the free surface 

boundary conditions, key point of the wave problem. Two different schemes are used: the first one is 

based on streamline integration; the second one is a stabilized Finite Element based on the streamline-

upwind Petrov–Galerkin method. Both schemes are capable of coping with unstructured meshes. 

3.2.3 Stream line integration 

The first-order free surface boundary conditions can be written in a general form as follows: 

∂𝜙

∂t
+ 𝑼 ⋅ ∇h𝜙 +

𝑃𝑓𝑠

𝜌
+ 𝑔𝜂 + 𝑅 = 0 𝑜𝑛 𝑧 = 0, (3-52) 

∂𝜂

𝜕𝑡
+ 𝑼 ⋅ ∇h𝜂 −

∂𝜙

∂z
+ S = 0 𝑜𝑛 𝑧 = 0, (3-53) 

where 𝑅 and 𝑆 represent remaining terms depending on the linearization used. The numerical schemes 

adopted for solving the kinematic-dynamic free surface boundary conditions are based on Adams-

Bashforth-Moulton schemes, using an explicit scheme for the kinematic condition, and an implicit one 

for the dynamic condition. Then 𝜙𝑛+1 is imposed as a Dirichlet boundary condition. The schemes read 

as follows: 

𝜙𝑛+1 + Δt(𝑼 ⋅ ∇h𝜙)𝑛+1 = 𝜙𝑛 − Δt (
1

𝜌
𝑃𝑓𝑠

𝑛+1 − 𝑔𝜂𝑛+1 − 𝑅𝑛+1)  𝑜𝑛 𝑧 = 0, (3-54) 

𝜂𝑛+1 = 𝜂𝑛 − Δt(𝑼 ⋅ ∇h𝜂)𝑛 + Δt(𝜙𝑧
𝑛 − Sn) 𝑜𝑛 𝑧 = 0, (3-55) 

where 𝑼 is the convective velocity. The convective term is obtained by differentiating along 

streamlines: 

(𝑼 ⋅ ∇h𝜙)𝑛+1 = |𝑼|𝑛+1𝜕𝐿𝜙
𝑛+1 , 

(3-56) 
(𝑼 ⋅ ∇h𝜂)𝑛 = |𝑼|𝑛𝜕𝐿𝜂

𝑛 , 

where 𝜕𝐿 denotes the derivative along the streamline. This streamline derivative is estimated using a 

two points upstream and one point downstream differential operator. Figure 5 shows the tracing of the 

streamline at node C. The left (-1) and forward left (-2) points are upstream points, while the right (1) 

point corresponds to the downstream point. The values of the scattered velocity potential 𝜙 and 
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scattered free surface elevation 𝜂 at points -1, -2, and 1 are obtained by linear interpolation between 

the nodes of the edges where they lie on. Then the streamline differential operator reads as: 

𝜕𝐿𝜙0 = 𝑤1𝜙1 + 𝑤0𝜙0 + 𝑤−1𝜙−1 + 𝑤−2𝜙−2, 
(3-57) 

𝜕𝐿𝜂0 = 𝑤1𝜂1 + 𝑤0𝜂0 + 𝑤−1𝜂−1 + 𝑤−2𝜂−2, 

where 𝜙1, 𝜙−1, 𝜙−2 are interpolated between (𝜙1𝑎, 𝜙1𝑏),  (𝜙−1𝑎, 𝜙−1𝑏), and (𝜙−2𝑎, 𝜙−2𝑏) 

respectively. In matrix form: 

(𝑰 + Δt𝐖̿𝒏+𝟏)𝝓𝑛+1 = 𝑰(𝝓𝑛 − Δt (
1

𝜌
𝑷𝑓𝑠

𝑛+1 − 𝑔𝜼𝑛+1 − 𝑹𝑛+1))  𝑜𝑛 𝑧 = 0, (3-58) 

𝑰 𝜼𝑛+1 = (𝑰 − Δt𝐖̿𝒏) 𝜼𝑛 + Δt(𝝓𝑧
𝑛 − 𝐒n) 𝑜𝑛 𝑧 = 0, (3-59) 

where 𝐖̿ is the streamline convective matrix, and 𝑰 is the identity matrix. The stencils are obtained 

using Taylor series expansion to tailor a second-order finite difference scheme along the streamline. 

The corresponding system of equations is: 

𝑤1 + 𝑤0 + 𝑤−1 + 𝑤−2 = 0, 

𝑤1Δ𝑥1 − 𝑤−1Δ𝑥−1 − 𝑤−2Δ𝑥−2 = 1, 

𝑤1

Δ𝑥1
2

2
+ 𝑤−1

Δ𝑥−1
2

2
+ 𝑤−2

Δ𝑥−2
2

2
= 0, 

𝑤1

Δ𝑥1
3

6
− 𝑤−1

Δ𝑥−1
3

6
− 𝑤−2

Δ𝑥−2
3

6
= 0. 

(3-60) 

 
Figure 5: Streamline discretization 
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The associated matrix form to the finite element formulation for the governing equations is: 

𝐋∗̿𝛟 = 𝐛𝑍0 + 𝐛𝐵 + 𝐛𝑅 , (3-61) 

where 𝐋∗̿ is the standard Laplacian matrix modified to account for the left hand side of Eq.(3-58), 𝐛𝑍0 

is a vector accounting for the right hand side of Eq. (3-58), and 𝐛𝐵  and 𝐛𝑅  are the vectors resulting 

of integrating the corresponding boundary condition terms. 

3.2.4 Streamline-Upwind Petrov-Galerkin (SUPG) formulation 

Alternatively, a SUPG stabilization scheme is also developed for the integration of the free surface 

boundary conditions. Both, the dynamic and kinematic boundary conditions can be seen as a 

convective-transport equation: 

∂𝜒

∂t
+ 𝑼 ⋅ ∇h𝜒 + 𝑄 = 0. (3-62) 

The standard Galerkin finite element formulation leads to the following system of equations: 

∀𝑖 ∫ 𝑁𝑖  (𝑁𝑗 ∂𝜒𝑗

∂t
+ 𝑼 ⋅ ∇h𝑁

𝑗𝜒𝑗 + 𝑁𝑗𝑄𝑗)𝑑𝜎
Ω

= 0,  (3-63) 

where 𝑁𝑖   are the standard piecewise linear function. The above equations can be discretized in time 

as follows: 

∀𝑖 ∫ 𝑁𝑖𝑁𝑗

Ω

𝜒𝑗
𝑛+1 − 𝜒𝑗

𝑛

Δ𝑡
𝑑𝜎 + ∫ 𝑁𝑖(𝐔𝑛+𝜃 · ∇h𝑁

𝑗)

𝛺

𝜒𝑗
𝑛+𝜃𝑑𝜎 + ∫ 𝑁𝑖𝑁𝑗𝑄𝑗

𝑛+𝜃

Ω

𝑑𝜎

= 0, 

(3-64) 

where 𝐴𝑛+𝜃 = (1 − 𝜃)𝐴𝑛 + 𝜃𝐴𝑛+1. It is well known that the numerical solution of the previous 

equation may show spurious oscillations [38,39]. The SUPG formulation [40] is used to introduced 

the necessary stabilization. Then, the resulting scheme is: 

∀𝑖 [∫ 𝑁𝑖𝑁𝑗

Ω

𝑑𝜎]
𝜒𝑗

𝑛+1 − 𝜒𝑗
𝑛

𝛥𝑡
+ [∫ 𝑁𝑖((𝑼𝒆)𝑛+𝜃 · 𝛻ℎ𝑁𝑗)𝑑𝜎

Ω

] 𝜒𝑗
𝑛+𝜃 

+[∫ 𝑁𝑖𝑁𝑗𝑑𝜎

Ω

]𝑄𝑗
𝑛+𝜃 + [∑

ℎ𝑒

2 |(𝑼𝑒̂)
𝑛+𝜃

|
∫((𝑼𝑒)𝑛+𝜃 · 𝛻ℎ𝑁𝑖)𝑁𝑗𝑑𝜎

𝛺𝑒 
𝑒

]
𝜒𝑗

𝑛+1 − 𝜒𝑗
𝑛

𝛥𝑡
 

+[∑
ℎ𝑒

2|(𝑼𝑒̂)𝑛+𝜃|
∫((𝑼𝑒)𝑛+𝜃 · 𝛻ℎ𝑁𝑖)((𝑼𝑒)𝑛+𝜃 · 𝛻ℎ𝑁𝑗)𝑑𝜎

𝛺𝑒
𝑒

] 𝜒𝑗
𝑛+𝜃 

+[∑
ℎ𝑒

2|(𝑼𝑒̂)𝑛+𝜃|
∫((𝑼𝑒)𝑛+𝜃 · 𝛻ℎ𝑁𝑖)𝑁𝑗𝑑𝜎

𝛺𝑒
𝑒

]𝑄𝑗
𝑛+𝜃 = 0, 

(3-65) 
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where the convective velocity within the element is approximated by  (Ue)n+θ = ∑ NkeUke

n+θ
ke

. 

Reordering terms: 

∀𝑖  [∫ 𝑁𝑖𝑁𝑗

Ω

𝑑𝜎 + ∑
ℎ𝑒

2 |(𝑼𝑒̂)
𝑛+𝜃

|
∫((𝑼𝑒)𝑛+𝜃 · 𝛻ℎ𝑁𝑖)𝑁𝑗𝑑𝜎

𝛺𝑒 
𝑒

] (𝜒𝑗
𝑛+1 − 𝜒𝑗

𝑛) 

+Δ𝑡 [∫ 𝑁𝑖((𝑼𝒆)𝑛+𝜃 · 𝛻ℎ𝑁𝑗)𝑑𝜎

Ω

] 𝜒𝑗
𝑛+𝜃 

+Δ𝑡 [∑
ℎ𝑒

2|(𝑼𝑒̂)𝑛+𝜃|
∫((𝑼𝑒)𝑛+𝜃 · 𝛻ℎ𝑁𝑖)((𝑼𝑒)𝑛+𝜃 · 𝛻ℎ𝑁𝑗)𝑑𝜎

𝛺𝑒
𝑒

] 𝜒𝑗
𝑛+𝜃 

+𝛥𝑡 [∫ 𝑁𝑖𝑁𝑗

Ω

𝑑𝜎 + ∑
ℎ𝑒

2|(𝑼𝑒̂)𝑛+𝜃|
∫((𝑼𝑒)𝑛+𝜃 · 𝛻ℎ𝑁𝑖)𝑁𝑗𝑑𝜎

𝛺𝑒 
𝑒

]𝑄𝑗
𝑛+𝜃 = 0. 

(3-66) 

In matrix form: 

(𝑴̿ + 𝑴̿𝑠𝑢𝑝𝑔
𝑛+𝜃 )𝝌n+1 + 𝚫t(𝑪̿𝑛+𝜃 + 𝑪̿𝑠𝑢𝑝𝑔

𝑛+𝜃 )𝜃𝝌n+1 = 

(𝑴̿ + 𝑴̿𝑠𝑢𝑝𝑔
𝑛+𝜃 )𝝌n − 𝚫t(𝑪̿𝑛+𝜃 + 𝑪̿𝑠𝑢𝑝𝑔

𝑛+𝜃 )(1 − 𝜃)𝝌n − (𝑴̿ + 𝑴̿𝑠𝑢𝑝𝑔
𝑛+𝜃 )𝑸𝑛+𝜃,  

(3-67) 

where: 

𝑴̿ = ∫ 𝑁𝑖𝑁𝑗

Ω

𝑑𝜎, 

𝑴̿𝑠𝑢𝑝𝑔
n+𝜃 = ∑[

ℎ𝑒

2 |(𝑼𝑒̂)
𝑛+𝜃

|
∫((𝑼𝑒)𝑛+𝜃 · 𝛻ℎ𝑁𝑖)𝑁𝑗

Ωe

𝑑𝜎]

𝑒

, 

𝑪̿n+𝜃 = ∑ ∫ 𝑁𝑖(𝑼𝑒
𝑛+𝜃 · 𝛻ℎ𝑁𝑗)

𝛺𝑒𝑒

, 

𝑪̿𝑠𝑢𝑝𝑔
n+𝜃 = ∑[

ℎ𝑒

2 |(𝑼𝑒̂)
𝑛+𝜃

|
∫((𝑼𝑒)𝑛+𝜃 · 𝛻ℎ𝑁𝑖)(𝑼𝑒

𝑛+𝜃 · 𝛻ℎ𝑁𝑗)

𝛺𝑒

𝑑𝜎]

𝑒

. 

(3-68) 

Likewise, the dynamic boundary condition becomes: 

(𝑴̿ + 𝑴̿𝑠𝑢𝑝𝑔
𝑛+𝜃 )𝝓n+1 + 𝚫t(𝑪̿𝑛+𝜃 + 𝑪̿𝑠𝑢𝑝𝑔

𝑛+𝜃 )𝜃𝝓n+1 = 

                           (𝑴̿ + 𝑴̿𝑠𝑢𝑝𝑔
𝑛+𝜃 )𝝓n − 𝚫t(𝑪̿𝑛+𝜃 + 𝑪̿𝑠𝑢𝑝𝑔

𝑛+𝜃 )(1 − 𝜃)𝝓n  

                       −(𝑴̿ + 𝑴̿𝑠𝑢𝑝𝑔
𝑛+𝜃 ) (

1

𝜌
𝑷𝑛+𝜃 + 𝑔𝜼𝑛+𝜃 + 𝑹𝑛+𝜃).  

(3-69) 

 

 

 



43 

 

And the kinematic boundary condition becomes: 

(𝑴̿ + 𝑴̿𝑠𝑢𝑝𝑔
𝑛+𝜃 )𝛈n+1 + 𝚫t(𝑪̿𝑛+𝜃 + 𝑪̿𝑠𝑢𝑝𝑔

𝑛+𝜃 )𝜃𝛈n+1 = 

                                        (𝑴̿ + 𝑴̿𝑠𝑢𝑝𝑔
𝑛+𝜃 )𝛈n − 𝚫t(𝑪̿𝑛+𝜃 + 𝑪̿𝑠𝑢𝑝𝑔

𝑛+𝜃 )(1 − 𝜃)𝛈n 

                                     +(𝑴̿ + 𝑴̿𝑠𝑢𝑝𝑔
𝑛+𝜃 ) (

1

𝜌
𝝓𝑧

𝑛+𝜃 − 𝑺𝑛+𝜃). 

(3-70) 

In this thesis, an explicit scheme (𝜃 = 0) is used for the kinematic condition, while an implicit 

scheme (𝜃 = 1) is used for the dynamic. The associated matrix form to the finite element formulation 

for the governing equations is: 

𝐋∗̿𝛟 = 𝐛𝑍0 + 𝐛𝐵 + 𝐛𝑅, (3-71) 

where 𝐋∗̿ is the standard Laplacian matrix modified to account for the left hand side of Eq. (3-69), 𝐛𝑍0 

is a vector accounting for the right hand side of Eq. (3-69), and 𝐛𝐵  and 𝐛𝑅  are the vectors resulting 

of integrating the corresponding boundary condition terms. 

3.3 Hydrodynamic loads on bodies for wave resistance problems 

3.3.1 Glossary 

𝜑 Velocity potential 

ξ Free surface elevation 

𝜙 Difraction-radiation velocity potential 

𝜙𝐷𝐵 Double body diffraction-radiation velocity potential 

𝜹1 First-order body displacements 

𝜽1 First-order body rotations 

𝑭1 First-order hydrodynamic forces 

𝑲̿𝐻 Hydrostatic restoring matrix 

𝑴1 First-order hydrodynamic moments 

𝒏𝑝
0  Initial body surface normal vector at point P 

𝑃𝑝
1 First-order pressure at point P 

𝒓𝑝
1  First-order body surface displacement at point P 

S𝐵
0  Initial body boundary 

S𝑇𝑆
0  Initial transom stern boundary 

𝑼 Convective velocity 

𝑼𝒃 Body translational velocity 

𝒙𝐺  Coordinates of body center of gravity 

𝑃𝑝
𝑐(2)

 Second-order pressure correction at point P. 

𝑃𝑝
𝑤𝑙(2)

 Second-order pressure correction at the waterline area and point P. 
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3.3.2 Introduction 

The aim of section 3.3 is to obtain the hydrodynamic forces and moments on a floating body from 

direct pressure integration. These loads are split in hydrostatic and dynamic, obtained by integrating 

the hydrostatic and dynamic pressure respectively.  

3.3.3 First-order loads 

Hydrodynamic forces and moments are obtained from direct pressure integration over the body 

surface. The body gravity center will be used as a reference for body movements and moments acting 

on it. The resulting forces and moments are: 

𝑭1 = ∫ 𝑃𝑝
1𝒏𝑝

0

S𝐵
0

𝑑𝑠 − ∫ 𝑃𝑝
1𝒏𝑝

0

S𝑇𝑆
0

𝑑𝑠 = 𝑭𝐻
0 + 𝑭𝐻

1 + 𝑭𝐷
1 , (3-72) 

𝑴1 = ∫ 𝑃𝑝
1(𝒙𝐺−𝒙𝑝) × 𝒏𝑝

0

S𝐵
0

𝑑𝑠 − ∫ 𝑃𝑝
1(𝒙𝐺−𝒙𝑝) × 𝒏𝑝

0

S𝑇𝑆
0

𝑑𝑠 = 𝑴𝐻
0 + 𝑴𝐻

1 + 𝑴𝐷
1 , (3-73) 

where sub-index H stands for hydrostatic loads, and D stands for dynamic loads. 

3.3.4 Hydrostatic loads 

The hydrostatic loads are split as follows: 

𝑭𝐻
0 = −∫ 𝜌𝑔𝑧𝒏𝑝

0

S𝐵
0

𝑑𝑠 = 𝜌𝑔∀, 
(3-74) 

𝑴𝐻
0 = −∫ 𝜌𝑔𝑧𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝

0

S𝐵
0

𝑑𝑠, 
(3-75) 

𝑭𝐻
1 = −∫ 𝜌𝑔𝑟𝑝𝑧

1 𝒏𝑝
0

S𝐵
0

𝑑𝑠, 
(3-76) 

𝑴𝐻
1 = −∫ 𝜌𝑔𝑟𝑝𝑧

1 𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝
0

S𝐵
0

𝑑𝑠, 
(3-77) 

where ∀ is the body displacement. Hydrostatic forces and moments are obtained via the hydrostatic 

restoring matrix 𝐊̿𝐻 (defined in section 2.3.3): 

[
𝑭𝐻

1

𝑴𝐻
1 ] = 𝑲̿𝐻 [𝜹

1

𝜽1]. 
(3-78) 
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3.3.5 Dynamic loads 

The dynamic loads are computed as: 

𝑭𝐷
1 = −∫ 𝜌 (

𝜕𝜑 

𝜕𝑡
+ 𝑼 ⋅ ∇h𝜑 + 𝑄)𝒏𝑝

0

S𝐵
0

𝑑𝑠, 
(3-79) 

𝑴𝐷
1 = −∫ 𝜌 (

𝜕𝜑 

𝜕𝑡
+ 𝑼 ⋅ ∇h𝜑 + 𝑄)𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝

0

S𝐵
0

𝑑𝑠, 
(3-80) 

where 𝑼 and Q depend on the flow approximation used (see Table 2).  

Table 2: values of 𝑼 and Q (see section 3.1.6) 

Flow type 𝑼 𝑸 

Kelvin 𝑼𝒃 0 

Double body 𝑼𝒃 + ∇h𝜙
𝐷𝐵 −

1

2
∇h𝜙

𝐷𝐵∇h𝜙
𝐷𝐵 

Non-linear 𝑼𝒃 + ∇h𝜙 −
1

2
∇h𝜙 ⋅ ∇h𝜙 

3.3.6 Second-order correction 

Second-order pressure correction leads to second-order correction loads. The latter contain the 

second-order effects depending on the first-order solution. Integrating the corresponding pressure: 

𝑭𝑐(2) = ∫ 𝑃𝑝
𝑐(2)

𝒏𝑝
0

𝑆𝐵

𝑑𝑠 + ∫ 𝑃𝑝
𝑤𝑙(2)

Γ𝑤𝑙

𝒏𝑝
0/√1 − 𝑛𝑝𝑧

0 2
𝑑𝑙, (3-81) 

𝑴𝑐(2) = ∫ 𝑃𝑝
𝑐(2)

𝑮𝑷⃗⃗⃗⃗⃗⃗ × 𝒏𝑝
0

𝑆𝐵

𝑑𝑠 + ∫ 𝑃𝑝
𝑤𝑙(2)

𝑮𝑷⃗⃗⃗⃗⃗⃗ × 𝒏𝑝
0/√1 − 𝑛𝑝𝑧

0 2

Γ𝑤𝑙

𝑑𝑙. (3-82) 

A special meaning has the mean value of the correction loads. In the specific case where 𝑼 = 0 

and in the presence of waves, it represents the mean drift forces due to waves. And when 𝑼 ≠ 0, they 

become the added resistance in waves. 

3.3.7 Other second-order loads 

Following the procedure carried out in section 2.3.4, the following second order correction terms 

depending on first order solution can be derived as well: 

𝑭𝐻
2 = 𝜽1 × 𝑭𝐻

1 − ∫ 𝜌𝑔 (𝑯̿𝑹0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑧
𝒏𝑝

0

S𝐵
0

𝑑𝑠, (3-83) 

𝑴𝐻
2 = 𝜽1 × 𝑴𝐻

1 − ∫ 𝜌𝑔 (𝑯̿𝑹0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
𝑧
𝑮0𝑷0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝒏𝑝

0

S𝐵
0

𝑑𝑠. (3-84) 

𝑭𝐷
2 = 𝜽1 × 𝑭𝐷

1 , (3-85) 

𝑴𝐷
2 = 𝜽1 × 𝑴𝐷

1 , (3-86) 
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Chapter 4. BODY DYNAMICS SOLVER 
 

4.1 Glossary 

M Body mass 

𝐈̿ Body instantaneous inertia matrix respect to local frame 

𝑴̿ Multibody mass matrix 

𝑲̿ Hydrostatic restoring matrix of the multi-body system 

𝐗 Vector containing the six degrees movements of the multi-body system 

𝑿̇ Vector containing the six degrees velocities of the multi-body system 

𝑿̈  Vector containing the six degrees accelerations of the multi-body system 

𝐱 Body displacement vector 

𝐫 Body rotation vector 

𝐟 Vector containing external loads on the multi-body system 

𝐦 Vector containing external loads on the multi-body system 

𝛼 Alpha modified Bossak-Newmark scheme coefficient 

𝛽 Bossak-Newmark beta coefficient 

𝛾 Bossak-Newmark gamma coefficient 

𝐀̿ Jacobian matrix of body links 

4.2 Introduction 

This chapter presents a method to solve the rigid body dynamics equations of a multibody system 

whose bodies’ motions may depend on each other. First, the body dynamic equations are presented, as 

well as the integration scheme used to solve them. Then, how to bring body links into the body 

dynamics (represented by kinematic constraints among degrees of freedom) by means of Lagrange 

multipliers is explained. Finally, the numerical schemes used for incorporating body links are 

described. 

4.3 Dynamic equations (small rotations) 

On one hand, by integrating the pressure over the bodies’ surface, the external forces and moments 

are obtained. On the other hand, the body dynamics is given by the equation of motion: 

𝑴̿ 𝑿̈ + 𝑲̿𝑿 = 𝑭. (4-1) 

An implicit alpha modified Bossak-Newmark´s algorithm [41] is used for integrating the body 

dynamics equations: 
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(1 − 𝛼)𝐗𝑡𝑡
𝑛+1 + 𝛼𝐗𝑡𝑡

𝑛 = 𝑴̿−1(𝐅𝑛+1 − 𝐾̿𝐗𝑛+1), (4-2) 

𝐗𝑡
𝑛+1 = 𝐗𝑡

𝑛 + ∆𝑡[(1 − 𝛾)𝐗𝑡𝑡
𝑛+1 + 𝛾𝐗𝑡𝑡

𝑛 ], (4-3) 

𝐗𝑛+1 = 𝐗𝑛 + ∆𝑡𝐗𝑡
𝑛 +

∆𝑡2

2
[(1 − 2𝛽)𝐗𝑡𝑡

𝑛+1 + 2𝛽𝐗𝑡𝑡
𝑛 ]. (4-4) 

In this integration algorithm, α is the parameter controlling a numerical damping added in the 

integration. This damping creates a desirable stabilizing effect in the body dynamics integration. α is 

usually set between 0 (no damping) and -0.1. The parameters γ and β are calculated as γ= 0.5- α and 

β=0.5γ +0.025α. When α is set to zero, no dissipation is introduced and the scheme becomes the 

Bossak-Newmark with γ= 0.5 and β=0.25, which is a well-known energy conserving scheme. 

4.4 Dynamic equations (large rotations) 

When large rotations are expected, the Euler equations are used to integrate the body dynamics. 

The accelerations of each body are solved in a local frame of reference attached to the body with origin 

in its gravity center, and whose axis are parallel to the global frame of reference (see Figure 6). 

 

 
Figure 6: Global and local frame of reference used. 

 

The dynamic equations for each body are the Newton and Euler equations in an inertial frame of 

reference: 

𝑑(𝑀𝑖𝒙𝑖̇ )

𝑑𝑡
= 𝑀𝑖𝒙̈𝑖 = 𝒇𝑖, (4-5) 

𝑑(𝑰𝑖𝒓𝑖̇)

𝑑𝑡
= 𝑰𝒊𝒓̈𝑖 + (

𝑑𝑰𝑖

𝑑𝑡
) 𝒓̇𝑖 = 𝒎𝑖, (4-6) 
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where 𝑰𝑖 the instantaneous inertia tensor of body “i” with respect to the local reference. Using the 

following equality: (𝑑𝑰𝑖/𝑑𝑡)𝒓̇𝑖 = 𝒓̇𝑖 ∧ (𝑰𝑖 · 𝒓̇𝑖), the Euler equation becomes: 

𝑰𝒊𝒓̈𝑖 = 𝒎𝑖 − 𝒓̇𝑖 ∧ (𝑰𝑖 · 𝒓̇𝑖). (4-7) 

It is important to remark that 𝒇𝑖 and 𝒎𝑖 must be evaluated in the local reference frame. 

4.5 Body-links 

4.5.1 Lagrange multipliers 

Let a multibody system be defined by the dynamics equations: 

𝐌̿𝐗̈𝑡 = 𝐅𝑡 (4-8) 

Let the body-links be defined by nonlinear equations of the following type: 

𝑓i(𝐗
𝑡) = 𝑓i(𝑋1

𝑡, 𝑋2
𝑡 , … , 𝑋n

𝑡) = 𝑏i, (4-9) 

where 𝐗𝑡 is the vector representing the position of every body of the system, and 𝑏i is a constant value. 

The body-links will be included into the system dynamics via Lagrange multipliers. In order to include 

the constraint equations (body-links) within the iterative body dynamics solver, the following 

numerical linearization is used: 

𝑓i(𝑋1
𝑡,𝑘+1, 𝑋2

𝑡,𝑘+1, … , 𝑋n
𝑡,𝑘+1) = 𝑓i(𝑋1

𝑡,𝑘, 𝑋2
𝑡,𝑘, … , 𝑋n

𝑡,𝑘) + ∑ (
∂𝑓i
∂𝑥j

)

𝑡,𝑘

j
(𝑋j

𝑡,𝑘+1 − 𝑋j
𝑡,𝑘)

= 𝑏i, 

(4-10) 

in vector form: 

(∇𝑓i)
𝑡,𝑘 · 𝐗𝑡,𝑘+1 = 𝑏i − 𝑓i(𝐗

𝑡,𝑘) + (∇𝑓i)
𝑡,𝑘 · 𝐗𝑡,𝑘, (4-11) 

where 𝑘 is the k-th iteration of the iterative scheme used to solve the dynamic system. The previous 

linearization ensures that as ‖𝐗𝑡,𝑘 − 𝐗𝑡,𝑘+1‖ → 0 ⇒ 𝑓i(𝐗
𝑡,𝑘+1) → 𝑏i and the body-link is fulfilled. 

We use an alpha Bossak-Newmark scheme as a temporal integrator scheme for the dynamic 

equations. In such scheme, displacements 𝑥j
𝑡+∆𝑡,𝑘+1

depend on accelerations 𝑥̈j
𝑡+∆𝑡,𝑘+1

as follows: 

𝐗𝑡,𝑘+1 = 𝐗𝑡−∆𝑡 + ∆t𝐗̇𝑡−∆𝑡 +
∆t2

2
((1 − 2β)𝐗̈𝑡−∆𝑡 + 2β𝐗̈𝑡,𝑘+1). (4-12) 

Introducing the Newmark scheme into the linearized body-link: 

(∇𝑓𝑖)
𝑡,𝑘 ⋅ (𝐗𝑡−∆𝑡 + ∆𝑡𝐗̇𝑡−∆𝑡 + ∆𝑡2 ((0.5 − 𝛽)𝐗̈𝑡,𝑘+1 + 𝛽𝐗̈𝑡−∆𝑡))

= 𝑏𝑖 − 𝑓𝑖(𝐗
𝑡,𝑘) + (∇𝑓𝑖)

𝑡,𝑘 ⋅ 𝐗𝑡,𝑘. 

(4-13) 
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The previous equation can be written as: 

(∇𝑓𝑖)
𝑡,𝑘 ⋅ 𝐗̈𝑡,𝑘+1 =

1

∆𝑡2𝛽
(𝑏𝑖 − 𝑓𝑖(𝐗

𝑡,𝑘) + (∇𝑓𝑖)
𝑡,𝑘 ⋅ 𝐗𝑡,𝑘) − 

−(∇𝑓𝑖)
𝑡,𝑘 ⋅ (

𝐗𝑡−∆𝑡

∆𝑡2𝛽
+

𝐗̇𝑡−∆𝑡

∆𝑡𝛽
+

(0.5 − 𝛽)

𝛽
𝐗̈𝑡−∆𝑡). 

(4-14) 

After reordering terms: 

(∇𝑓𝑖)
𝑡,𝑘 ⋅ 𝐗̈𝑡,𝑘+1 =

1

∆𝑡2𝛽
(𝑏𝑖 − 𝑓𝑖(𝐗

𝑡,𝑘))+(∇𝑓𝑖)
𝑡,𝑘 ⋅ 𝐗̈𝑡,𝑘. (4-15) 

The set of linearized body-links can be written as: 

∑ a𝑖𝑗
𝑡,𝑘𝑋̈𝑗

𝑡,𝑘+1

𝑗
= 𝑐𝑖

𝑡,𝑘, (4-16) 

where 𝐀̿𝑡,𝑘 = [a𝑖𝑗
𝑡,𝑘] is the Jacobian matrix a𝑖𝑗

𝑡,𝑘 = (
𝜕𝑓𝑖

𝜕𝑥𝑗
)
𝑡,𝑘

and 𝑪𝑡,𝑘 = [𝑐𝑖
𝑡,𝑘]: 

𝑐𝑖
𝑡,𝑘 =

1

∆𝑡2𝛽
[𝑏𝑖 − 𝑓𝑖(𝐗

𝑡,𝑘) + ∑ a𝑖𝑗
𝑡,𝑘𝑋𝑗

𝑡,𝑘

𝑗
]

− ∑ a𝑖𝑗
𝑡,𝑘 (

𝑋𝑗
𝑡−∆𝑡

∆𝑡2𝛽
+

𝑋̇𝑗
𝑡−∆𝑡

∆𝑡𝛽
+

(0.5 − 𝛽)

𝛽
𝑋̈𝑗

𝑡−∆𝑡)
𝑗

, 

(4-17) 

or 

𝑐𝑖
𝑡,𝑘 =

1

∆𝑡2𝛽
[𝑏𝑖 − 𝑓𝑖(𝐗

𝑡,𝑘)] + ∑ a𝑖𝑗
𝑡,𝑘𝑋̈𝑗

𝑡,𝑘

𝑗
. (4-18) 

Then, the imposition of nonlinear body-links via Lagrange multipliers is carried out as follows: 

[ 𝐌̿ (𝐀̿ 𝑇)
𝑡,𝑘

𝐀̿𝑡,𝑘 0

 
 ] [𝐗̈

𝑡,𝑘+1

𝝀𝑡,𝑘+1
] = [𝐅

𝑡,𝑘

𝑪𝑡,𝑘]. (4-19) 

Finally, reaction forces are obtained from: 

𝐑𝑡,𝑘 = −(𝑨̿𝑇)
𝑡,𝑘

𝝀𝑡,𝑘. (4-20) 

4.5.2 Body-links with Alpha Bossak-Newmark integration 

The alpha Bossak-Newmark scheme solves the following equation to obtain the body acceleration 

at time t: 

 (1 − α)𝐌̿𝐗̈𝑡 + α𝐌̿𝐗̈𝑡−Δ𝑡 = 𝐅𝑡 + 𝐑𝑡, (4-21) 

where 𝐑𝑡 = −𝐀̿𝑇𝝀𝑡 are the reaction forces due to body-links. Then: 

𝐌̿(1 − α)𝐗̈𝑡 + 𝐀̿𝑇𝝀𝑡 = 𝐅𝑡 − α𝐌𝐗̈𝑡−Δ𝑡. (4-22) 

Introducing the body-link constraints into the multibody dynamics: 

[𝐌̿ 𝐀̿𝑻

𝐀̿ 𝟎
] [

(1 − α)𝐗̈𝑡

𝝀𝑡
] = [𝐅

𝒕 − α𝐌̿𝐗̈𝑡−Δ𝑡

(1 − α)𝑪𝒕 ]. (4-23) 
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4.6 Body dynamics iterative solver 

The dynamic solver is implemented based on three nested loops. A relaxation algorithm based on 

the Aitken´s method [42] is used to speed up convergence within each loop. Figure 7 shows the 

algorithm of the numerical scheme for the dynamics solver. A description of each lop is given next. 

4.6.1 Time marching loop 

The time marching loop is the outer loop, and each iteration corresponds to a time step. Information 

from the previous time step is used as initial guests for the current step. The Aitken´s method is used 

to relax body velocities with the aim of speeding up convergence. 

4.6.2 Solver loop 

The solver loop is where the wave diffraction-radiation problem and hydrodynamic loads are 

solved. In each iteration, the linear system corresponding to the wave diffraction-radiation problem 

must be solved. Iterations are carried out until convergence of hydrodynamic loads along with body 

kinematics is reached.  The Aitken´s method is used to relax body accelerations with the aim of 

speeding up convergence. 

4.6.3 Body dynamics loop 

The body dynamics loop is the inner loop. Within this loop, wave diffraction and radiation loads 

remain unchanged, hydrostatic forces are updated based on body position, and the rest of external loads 

will be updated in each iteration. The Aitken´s method [42] is used to relax body displacements with 

the aim of speeding up convergence. 
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Figure 7: Body dynamics solver algorithm integrated with the wave diffraction-radiation solver and a mooring solver. 
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Chapter 5. SEAKEEPING: VERIFICATION AND 

VALIDATION 
 

5.1 Introduction 

This chapter aims at the verification of the numerical schemes and the validation of the 

mathematical models introduced in the previous chapters for seakeeping problems. By verification we 

mean the appropriateness and accuracy of the numerical schemes to solve the corresponding 

mathematical model. By validation we mean the appropriateness of the mathematical-numerical 

models to reproduce the underlying physics. Hence, verification will be carry out by comparing 

numerical solution against analytical solution, while validation will be carried out comparing against 

experimental results. Moreover, inter-code comparisons against other numerical schemes will be 

carried out for cases where neither analytical solutions nor experimental data are available. 

5.2 Verification case: Waves refracted by a vertical circular cylinder 

In order to verify some of the proposed numerical schemes, the problem of a monochromatic wave 

interacting with a fix bottom mounted circular cylinder will be treated. This case study has been chosen 

for having an analytical solution, and it was found by McCamy and Fuchs in 1954 [43]. The velocity 

potential for a monochromatic wave travelling along the OX axis in cylindrical coordinates is given 

by: 

𝜙𝐼 = 𝑅𝑒 {
𝑖𝐴𝑔

𝜔

cosh(𝑘(𝐻 + 𝑧))

cosh(𝑘𝐻)
[∑ 𝜖𝑚𝐽𝑚(𝑘𝑟) cos(𝑚𝜃)

𝑚≥0

] exp(𝑖𝜔𝑡)}, (5-1) 

where (𝑟, 𝜃, 𝑧) are the cylindrical coordinates; 𝐴 is the wave amplitude; 𝜔 is the wave frequency; 𝐻 is 

the water depth; 𝐽𝑚 are the Bessel functions of the first kind; and 𝜖0 = 1, and 𝜖𝑚 = 2(−𝑖)𝑚 if 𝑚 > 0. 

The velocity potential of the wave diffracted by the cylinder is given by: 

𝜙𝑆 = 𝑅𝑒 {
𝑖𝐴𝑔

𝜔

cosh(𝑘(𝐻 + 𝑧))

cosh(𝑘𝐻)
[∑ −𝜖𝑚

𝐽𝑚
′ (𝑘𝑅)

𝐻𝑚
(2)′(𝑘𝑅)

𝐻𝑚
(2)(𝑘𝑟) cos(𝑚𝜃)

𝑚≥0

] exp(𝑖𝜔𝑡)}, (5-2) 

where (′) denotes derivatives respect to the argument (𝑘𝑅); 𝑅 is the radius of the cylinder; and 𝐻𝑚
(2)

 

are the Hankel function of the second kind. Summing up Eqs. (5-1)-(5-2), we obtain the analytical 

solution for the waves diffracted by vertical circular cylinder problem. 



56 

 

ϕ = 𝑅𝑒 {
𝑖𝐴𝑔

𝜔

cosh(𝑘(𝐻 + 𝑧))

cosh(𝑘𝐻)
[∑ 𝜖𝑚 (𝐽𝑚(𝑘𝑟)

𝑚≥0

−
𝐽𝑚
′ (𝑘𝑅)

𝐻𝑚
(2)′(𝑘𝑅)

𝐻𝑚
(2)(𝑘𝑟)) cos(𝑚𝜃)] exp(𝑖𝜔𝑡)}. 

(5-3) 

The dynamic pressure𝑃𝜙 = −𝜌𝜕𝑡𝜙, is given by: 

𝑃𝜙 = 𝑅𝑒 {𝐴𝜌𝑔
cosh(𝑘(𝐻 + 𝑧))

cosh(𝑘𝐻)
[∑ 𝜖𝑚 (𝐽𝑚(𝑘𝑟)

𝑚≥0

−
𝐽𝑚
′ (𝑘𝑅)

𝐻𝑚
(2)′(𝑘𝑅)

𝐻𝑚
(2)(𝑘𝑟)) cos(𝑚𝜃)] exp(𝑖𝜔𝑡)}. 

(5-4) 

The horizontal force induced over the cylinder is obtained by integration of 𝑃𝜙 over the cylinder 

surface. This exact solution is given by the following expression: 

𝐹𝑥 = 𝑅𝑒 {2𝑖𝐴𝑅𝜌𝑔𝜋
tanh(𝑘𝐻)

𝑘
(𝐽1(𝑘𝑅) −

𝐽1
′(𝑘𝑅)

𝐻1
(2)′(𝑘𝑅)

𝐻𝑚
(2)(𝑘𝑅))exp(𝑖𝜔𝑡)}, (5-5) 

And will be compared next against numerical results obtained by the analytical solution against 

numerical results based on the schemes proposed in this thesis, for the specific case of 𝑅 = 1 𝑚, 𝐻 =

1 𝑚, 𝐴 = 0.1 𝑚, 𝐿 = 2 𝑚. Using 𝜌 = 1025𝑘𝑔/𝑚3, g= 9.81𝑚/𝑠2 . Using the dispersion relation for 

first-order waves, the corresponding wave frequency and period are  𝜔 = 5.5411𝑟𝑎𝑑/𝑠, and 𝑇 =

1.1319𝑠. 

The simulation is carried out using a circular domain with a radius of 6 meters. The mesh size is 

set to 0.1 meters in an inner volume within a radius of 2 meters. In the outer volume, the mesh size 

grows smoothly up to 0.5 meters. The mesh created consists of 35914 nodes and 188715 tetrahedral 

elements. 

Figure 8 compares the contour lines of the free surface elevation, Figure 9 compares the dynamic 

pressure distribution, and Figure 10  compares the horizontal force induced over the cylinder at times 

t = nT. Notice that the FEM solution is able to reproduce the analytical one with high accuracy. 
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Figure 8:  Waves refracted by a vertical circular cylinder: comparison of free surface elevation obtained by the 

analytical solution [43] and the FEM solution. 

 

 

 
Figure 9:  Waves refracted by a vertical circular cylinder: comparison of pressure distribution over the cylinder 

obtained by the analytical solution [43] and the FEM solution. Both pressure distributions are shown using 

the same color scale, with a maximum value of 950Pa and a minimum of -1700Pa. 

 

 

Figure 10: Waves refracted by a vertical circular cylinder: comparison of force induced over the cylinder obtained by 

the analytical solution [43] and FEM. 
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5.3 Verification case: Standing wave dissipation by pressure 

5.3.1 First-order analytical solution for pressure based wave dissipation 

The first-order wave equations with a free surface pressure such that 𝑃 = 𝜏 𝜕𝑧𝜑 are: 

∇2𝜑 = 0 𝑖𝑛 𝛺, 

(5-6) 

𝜕𝑡𝑡𝜑 +
𝜏

𝜌
𝜕𝑧𝑡𝜑 + 𝑔𝜕𝑧𝜑 = 0 𝑜𝑛 𝑧 = 0, 

𝜕𝑧𝜑 = 0 𝑜𝑛 𝑧 = −𝐻, 

𝜁 = −
1

𝑔
𝜕𝑡𝜑 −

𝜏

𝜌𝑔
𝜕𝑧𝜑 𝑜𝑛 𝑧 = 0, 

where 𝜑 is the velocity potential, 𝜁 is the free surface elevation. 

When 𝜏2 ≤
4𝑔𝜌2

|𝒌𝑖| tanh(|𝒌𝑖|𝐻)
  there exists an analytical solution to the above stated problem, which is: 

𝜑 = ∑exp (−
1

2
𝐵𝑖𝑡)𝐴𝑖

𝑔

𝜔𝑖

cosh(|𝒌𝑖|(𝐻 + 𝑧))

cosh(|𝒌𝑖|𝐻)
cos(|𝒌𝑖|(𝑥𝑐𝑜𝑠𝛽𝑖 + 𝑦𝑠𝑖𝑛𝛽𝑖 − 𝜔𝑖𝑡 + 𝛼𝑖)

𝑖

, (5-7) 

where 𝐵𝑖 =
𝜏

𝜌
|𝒌𝑖| tanh(|𝒌𝑖|𝐻) and 𝜔𝑖

2 = 𝑔|𝒌𝑖| tanh(|𝒌𝑖|𝐻) −
𝐵𝑖

2

4
> 0. The dispersion relation can be 

re-written as:  

𝜔𝑖
2 = 𝑔|𝒌𝑖| tanh(|𝒌𝑖|𝐻) − [

𝜏

𝜌
|𝒌𝑖| tanh(|𝒌𝑖|𝐻)]

2

/4, (5-8) 

and the analytical solution for the free surface elevation is:  

𝜁 = ∑−exp (−
1

2
𝐵𝑖𝑡)𝐴𝑖 sin(|𝒌𝑖|(𝑥𝑐𝑜𝑠𝛽𝑖 + 𝑦𝑠𝑖𝑛𝛽𝑖) − 𝜔𝑖𝑡 + 𝛼𝑖)

𝑖

 

        +∑
1

2
𝐵𝑖exp (−

1

2
𝐵𝑖𝑡)𝐴𝑖

1

𝜔𝑖
cos(|𝒌𝑖|(𝑥𝑐𝑜𝑠𝛽𝑖 + 𝑦𝑠𝑖𝑛𝛽𝑖) − 𝜔𝑖𝑡 + 𝛼𝑖)

𝑖

 

        −∑
𝜏

𝜌
exp (−

1

2
𝐵𝑖𝑡)𝐴𝑖

|𝒌𝑖|

𝜔𝑖
tanh(|𝒌𝑖|𝐻) cos(|𝒌𝑖|(𝑥𝑐𝑜𝑠𝛽𝑖 + 𝑦𝑠𝑖𝑛𝛽𝑖) − 𝜔𝑖𝑡 + 𝛼𝑖)

𝑖

 

(5-9) 

5.3.2 Standing wave dissipation 

Let’s consider a finite domain with ten meters in length, two meters in depth, and half a meter in 

width. We will consider the problem of dissipating a standing wave along the longitudinal direction 

by applying a pressure on the free surface proportional to the vertical wave velocity. From Eq. (5-7), 

the analytical solution for the velocity potential of this problem is:  

𝜑 = exp(−𝐵∗𝜏𝑡)
𝑔

𝜔

cosh(k(H + 𝑧))

cosh(kH)
(cos(k𝑥 − 𝜔𝑡) + cos(k𝑥 + 𝜔𝑡)), (5-10) 
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where 𝐵∗
=

1

2
k tanh(kH)/𝜌, 𝜌 = 1025𝑘𝑔/𝑚3, and 𝜏 is the damping coefficient such that 𝑃(𝒙, 𝑡) =

𝜏 𝜕𝑧𝜑(𝒙, 𝑡). The wave frequency 𝜔 is obtained from Eq. (5-8). The free surface elevation can be 

obtained from Eq.(5-9): 

𝜁 = −𝑒𝑥𝑝(−𝐵∗𝜏𝑡) (𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) − 𝑠𝑖𝑛(𝑘𝑥 + 𝜔𝑡))

+ 𝜏 (
𝐵∗

𝑔
−

𝑘

𝜌𝜔
𝑡𝑎𝑛ℎ(𝑘𝐻))𝑒𝑥𝑝(−𝐵∗𝜏𝑡)(𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)

+ 𝑐𝑜𝑠(𝑘𝑥 + 𝜔𝑡)). 

(5-11) 

It is defined the critical value 𝜏𝑐 as the one that yields to 𝜔 = 0: 

𝜏𝑐 =
2𝜌𝑔

√gk tanh(k𝐻)
, (5-12) 

where the analytical solution exist for 𝜏 < 𝜏𝑐. Table 3 provides the wave properties used for this 

verification. The wave length was chosen to be the length of the tank, while three different values of 

𝜏/𝜏𝑐 were considered.  

Figure 11 shows the evolution of the free surface for the 𝜏/𝜏𝑐 = 0.9 case, where the wave 

amplitude is mostly damped out in less than one second. Figure 12 shows the time evolution of the 

free surface elevation of the central point for the three cases under analysis. As expected, as  𝜏/𝜏𝑐 gets 

closer to unity, the faster the wave dissipation occurs. A very good fitting between the numerical and 

analytical solution is observed. 

Table 3: Standing wave particulars. 

 𝝉/𝝉𝒄 = 𝟎. 𝟏 𝝉/𝝉𝒄 = 𝟎. 𝟓 𝝉/𝝉𝒄 = 𝟎. 𝟗 

𝝎 (rad/s) 2.2773 1.982 0.9976 

𝑻 = 𝟐𝝅/𝝎 (s) 2.7591 3.17 6.298 

𝑩∗ 0.000261 0.000261 0.000261 

𝝉(𝐍𝐬/𝐦𝟑)  878.4 4392 7905 

5.4 Validation case: Seakeeping of a GVA 4000 Semisubmersible platform 

A comparison between experimental data [44] and the numerical models introduced in section 2.2 

of this thesis is carried out by studying the seakeeping behavior of the GVA 4000 semisubmersible 

platform. The results to be compared are the heave and pitch RAOs in heading seas, for a range of 

wave periods between 6 and 32 seconds. 

The platform displacement is 25940 tons. The center of gravity is located 21.35 m above the keel, 

and the horizontal position corresponds to the geometric center of the platform. The radii of inertia are 

rxx=30.40 m, ryy=31.06 m, and rzz=37.54 m. The geometry of the GVA 4000 can be found in [44]. 
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Figure 11: Standing wave dissipation: snapshots of free surface evolution from time=0s to time=0.8s in intervals of 

0.1 seconds. Analytical solution (solid line) versus numerical solution (dots). 

 

 
Figure 12: Standing wave dissipation: time evolution of central point of the free surface for τ/τc = 0.1, τ/τc = 0.5, 

and τ/τc = 0.9. Analytical solution (solid line) versus numerical solution (dots). 

 

Based on [44], the model tests were carried out with the surge movement constraint by the action 

of a pre-stressed spring whose mission is to keep in place the structure during testing. This spring 

creates also a pitching moment, and therefore, the pitch movement will be affected. 

Since no data regarding the pre-stressed spring used by the model basin was available, it could not 

be included in the simulation. Instead, simulations have been carried out in two cases: no surge and 

free surge. Figure 13 compares the experimental and numerical results from this thesis. It is observed 
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that experimental results lay within the range of the two cases contemplated in the numerical 

simulations. 

 
Figure 13: GVA 4000 RAOs comparison between experiments and present work. 

5.5 Inter-code comparison: Freely floating tension leg platform  

In this section we analyze the seakeeping behavior of a freely floating tension leg platform (TLP). 

The platform used is the ISSC TLP [45]. The platform mass is obtained by matching the displacement 

of the platform. The gravity center position and radii of inertia are provided in Table 4. Figure 14 

shows the mesh used for the present case study. 

The gravity value used is 𝑔 = 9.80665 𝑚/𝑠2, density  𝜌 = 1025 𝑘𝑔/𝑚3, and water depth is 

assumed to be infinite. Simulations were carried out for periods ranging between eight and fifteen 

seconds for three different wave headings. Figure 15 compares the RAOs obtained by the present FEM 

model and RAOs obtained by the well-known program WAMIT [46], which is based on the BEM and 

solves in the frequency domain. Results from WAMIT were obtained for the example case described 

in [46]. Results show good agreement between both numerical approaches. 

 

Table 4: ISSC TLP particulars 

XG (m) 0 

YG (m) 0 

ZG (m) 3 

Ixx/Mass (m2) 38.876 

Iyy/Mass (m2) 38.876 

Izz/Mass (m2) 42.420 
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Figure 14: FEM mesh for ISSC TLP platform and free surface. 

 

5.6 Mean drift forces on hemisphere 

This is the case of estimating the mean drift forces of a hemisphere. The analytical solution for the 

fix hemisphere was obtained Fernandes and Levy [47], and for the freely floating hemisphere was 

obtained by Kudou [48] and reported by Pinkster [49]. In this section, we compared against analytical 

results for a hemisphere with particulars given in Table 5. Figure 16 (left) shows the mesh used for the 

calculations. It can be observed that mesh refinement is required in the area of the waterline in order 

to obtain accurate results of mean drift forces. Figure 16 (right) shows a snapshot of the wave elevation 

around the hemisphere.  Figure 17 compares the analytical results against the numerical results. A good 

agreement is observed for the whole range of waves analyzed. 

 

Table 5: hemisphere particulars 

Depth Infinite 

Mass Displacement 

Radius 1m 

CG (0,0,0) 

Number of tetrahedrons 274283 

Number of triangles 22082 
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Figure 15: Response amplitude operator for freely floating TLP. Circles: WAMIT; triangles: FEM. 
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Figure 15: Response amplitude operator for freely floating TLP. Circles: WAMIT; triangles: FEM. 
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Figure 16: Hemisphere: mesh (left) and wave contours (right) 

 

 
Figure 17: Mean drift forces on Hemisphere 

5.7 Diffraction of second-order waves by semi-submerged horizontal rectangular 
cylinder 

5.7.1 Problem description 

This test case deals with the solution to the diffraction problem for second-order surface waves by 

a semi-submerged horizontal cylinder of rectangular cross section. The boundary-value problem is 

solved and the results are compared against the analytical solution obtained by the method of matched 

Eigen function expansions presented in [50]. Horizontal and vertical forces and the moment about the 

heel of the prismatic cylinder are analyzed for different monochromatic waves. A sketch of the problem 

under analysis is shown in Figure 18. Relevant geometry parameters are: h = 1 m, b = 1 m, and d = 0.2 

m. 

The situation considered for analysis is the diffraction of waves by a fixed horizontal cylinder of 

rectangular cross section. The analysis is undertaken with the following assumptions: the fluid is 

inviscid and incompressible, the sea bottom and the cylinder are impervious, and the excitation is 

provided by normally incident plane waves of small amplitude and frequency. Several cases are run 
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for different wave periods (T = 0.897, 1.003, 1.07, 1.16, 1.445, 2.299, 4.17, 6.37 seconds), and the 

simulation time is about 15 seconds, with an initialization time of 5 seconds. All degrees of freedom 

are restrained so that the body is completely fixed. Hence, only wave diffraction occurs but not 

radiation. 

 
Figure 18: Problem layout 

5.7.2 Mesh generation 

Mesh properties for the present analysis are summarized in Table 6. Figure 19 shows an 

isometric view of the mesh used for the present analysis at the region close to the surface of the 

semisubmerged body. 

Table 6: Mesh particulars 

Minimum element size 0.01 

Maximum element size 0.1 

Number of elements 121687 

Number of nodes 22940 

5.7.3 Verification of results 

Figure 20 shows the amplitude of the second-order horizontal and vertical forces, and the moment 

about y axis, for both the analytical results reported in [50] and the results obtained in this work. The 

second-order components of the forces (and moments) are normalized respect to the density of the 

fluid, the gravity, the square of the wave amplitude, and the water depth. Results are plotted against 

the dimensionless wave number (kh). As it can be observed, a good agreement is obtained for the entire 

range of wave numbers. 
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Figure 19: Generated mesh: Top view (up) and front view (down) 

 

 
Figure 20: Analytical versus numerical 
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Chapter 6. WAVE RESISTANCE: 
VERIFICATION AND VALIDATION 

 

6.1 Introduction 

This chapter aims at the verification of the numerical schemes and the validation of the 

mathematical models introduced in section 3.2 for wave resistance problems. Firstly, the wave making 

resistance problem is coped and numerical results are compared against analytical solution for a 

moving pressure distribution, and against experimental results for the Wigley and Series 60 hulls. 

Secondly, predictions of added resistance in waves for four modified Wigley hulls are validated against 

experimental data available. 

6.2 Wave making resistance of an elliptic pressure distribution 

6.2.1 Problem description 

In 1962, Newman and Poole in [51] derived expressions for the wave resistance of a pressure 

distribution which is moving with constant forward speed along the free surface of a canal with 

constant width and depth, and based on a first-order approximation with uniform flow. In particular, 

an analytical expression for the elliptic pressure distribution was obtained. This expression might be 

one of the few available for wave making resistance problems, and hence its high value to verify 

numerical models. 

The main particulars of the elliptic pressure distribution used to validate the present model are 

given in Table 7: 

Table 7: Particulars for elliptic pressure distribution 

Length (L) 1m 

Beam (B) 0.5m 

Water depth (H) 5 m 

Channel width (W) 10 m 

Free surface pressure (𝑷𝒇𝒔) 1 Pa 

 

The wave resistance is obtained integrating the pressure distribution over the free surface as 

follows: 

𝐹𝑊 = −∫ 𝑃𝑓𝑠𝑛𝑥
𝑆𝐹𝑆

𝑑𝑠. 
(6-1) 
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It is assumed that the pressure distribution moves in the x direction. Then, in order to obtain the 

wave resistance, it is mandatory to be able to estimate the free surface deformation within the pressure 

patch. 

6.2.2 Convergence analysis 

Unstructured meshes have been used for the numerical calculations. It has been found that 

refinement at the edge of the pressure distribution were needed due to the discontinuity in the pressure 

and its large influence in the free surface deformation, especially at low Froude numbers where the 

generated waves have smaller wave lengths. Table 8 provides the particulars for each mesh, and Figure 

21 shows the finest one.  

Table 8: Characteristic mesh sizes 

 
Pressure edge 

(m) 

Free surface 

inside pressure 

(m) 

Free surface 

outside (m) 

Volume 

underneath (m) 

Mesh 1 0.002 0.02 0.02 0.05 

Mesh 2 0.003 0.03 0.03 0.075 

Mesh 3 0.004 0.04 0.04 0.1 

Mesh 4 0.006 0.06 0.06 0.15 

Mesh 5 0.008 0.08 0.08 0.20 

 

Wave resistance was calculated for all meshes at Froude number Fr=0.2, and for the streamline 

and FEM-SUPG schemes presented in sections 3.2.3 and 3.2.4 respectively. Table 9 provides the 

values of the relative errors. Figure 22 shows the free surface elevation computed for Fr=0.2 with the 

FEM-SUPG and Mesh1. 

Table 9: Wave resistance 𝑅𝑊
∗ = 𝜌𝑔𝐹𝑊/(𝑃𝑓𝑠

2 𝐵)  at Fr=0.2 

Analytical 𝑹𝑾
∗ =0.1840 Mesh 5 Mesh 4 Mesh 3 Mesh 2 Mesh 1 

Streamline 
𝑅𝑊

∗  1.550 1.640 1.730 1.780 1.820 

Error 15.77 % 10.88 % 5.99 % 3.27 % 1.10 % 

FEM-SUPG 
𝑅𝑊

∗  1.643 1.710 1.775 1.795 1.820 

Error 10.74 % 7.08 % 3.54 % 2.46 % 1.10 % 

6.2.3 Verification 

The wave making resistance has been calculated for several Froude numbers for the finest mesh 

using the streamline and FEM-SUPG algorithm. Table 10 provides the numeric results obtained, as 

well as the analytical ones. It can be observed that the numerical results are able to reproduce the 

analytical ones with small errors. 
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Figure 21:Finest Mesh for elliptic pressure patch 

 

 
Figure 22: Free surface elevation for elliptic pressure distribution at Fr=0.2 

 

Table 10: Wave resistance for elliptic pressure distribution 

Fr Streamline FEM-SUPG Analytical 

0.2 1.820 1.82 1.84 

0.3 2.177 2.16 2.18 

0.4 1.67 1.65 1.64 

0.5 2.73 2.66 2.66 

6.3 Wave making resistance of a Wigley hull 

6.3.1 Case study 

The wave making resistance of a Wigley hull is analyzed. Simulations have been performed 

considering the non-linear free surface condition, the Neumann-Kelvin, and the double-body 
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linearization (see 3.1.5 and 3.1.6). The streamline and FEM-SUPG schemes have been used for 

integrating the free surface boundary conditions. Wave resistance coefficients with and without 

second-order correction have been obtained. 

A standard Wigley hull of length L=1 m and breadth B=0.1 m was used. An unstructured mesh 

was generated with an element size around the ship of 0.01 m. The mesh generated consists of 84351 

nodes and 476083 tetrahedral elements (see Figure 23). 

 

 
Figure 23: Mesh generated for Wigley hull 

 

6.3.2 Second-order correction and flow linearizations 

Figure 24 compares the first-order and second-order wave resistance coefficients (Cw =

Rw/(0.5ρSU2) ), in the case of a fixed model, obtained for the non-linear and linearized formulations. 

It can be easily observed that the increase of resistance due to the second-order correction term is 

noticeable.  

On the one hand, the Neumann-Kelvin linearization leads to smaller values of wave resistance 

when compared to the non-linear and double-body approaches. On the other hand, the double-body 

and non-linear approaches predict similar results up to Fr=0.3. For larger values of Froude number, 

when using the streamline scheme, the double-body is not as close to the non-linear as when using the 

SUPG scheme. 

 



73 

 

 
Figure 24: Wave resistance for Wigley hull: Non-linear (NL), Double-body (DB), and Kelvin (K). First-order (Cw1), 

and Second-order (Cw). 

6.3.3 Validation 

Figure 25 compares the numerical results obtained in this thesis with several experimental results: 

IITC 84 (collection of experimental data) [26], Shearer and Cross [52], University of Iowa, University 

of Tokyo (UT), and the Ship Research Institute of Japan (SRI). The results from Iowa, UT and SRI 

can be found in [53]. Experimental data shows large dispersion and this might be mainly due to two 

main reasons: the uncertainty when carrying out model testing, and due to the consideration of a 

constant form factor with speed when separating wave making resistance from frictional resistance.  

Taking into account the large dispersion of the experimental data, a fair agreement between the 

numerical and the experimental results. This agreement is better for the higher Froude number, as 

expected, since lower Froude numbers require a much finer discretization in order to reproduce the 

shorter waves generated. Figure 26 compares the wave profiles at the water line obtained numerically 

against experimental results, and a good agreement is also found. 
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6.4 Wave making resistance of a Series 60 hull 

6.4.1 Case study 

The wave making resistance of a Series 60 hull is analyzed. Simulations have been performed 

considering the non-linear free surface condition, the Neumann-Kelvin, and the double-body 

linearization (see 3.1.5 and 3.1.6). The streamline and FEM-SUPG schemes have been used for 

integrating the free surface boundary conditions. Wave resistance coefficients with and without 

second-order correction have been obtained. 

A standard Series 60 hull of length L=1 m and breadth B=0.130 m with block coefficient Cb = 0.6 

was used. An unstructured mesh, with an element size around the ship of 0.01m, was generated such 

the mesh consists of 130050 nodes and 739099 tetrahedral elements (see Figure 27). 

 

 
Figure 25: Streamline and SUPG versus experimental results. 

 

 

 
Figure 26: Wave profile over Wigley hull. 
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Figure 27: Series 60 hull mesh. 

 

6.4.2 Second-order correction and flow linearization 

Figure 28 compares the first-order and second-order wave resistance coefficients, in the case of a 

fixed model, obtained for the different free surface formulations. It can be easily observed that the 

increase of resistance due to the second-order term is noticeable. 

Regarding the use of the Neumann-Kelvin or the double-body linearization, none of them are close 

to the non-linear approach solution. Hence, no linearization is recommended for hulls not as slender 

as the Wigley hull. In particular, when using the Neumann-Kelvin linearization, the deviation from the 

non-linear results is very important, probably due to the fact that in the area close to the ship the 

approximation of streamlines by straight lines is not appropriated. 

6.4.3 Validation 

Figure 29 compares the numerical results obtained in this work with several experimental results: 

IITC 84 (collection of experimental data) [26], University of Tokyo (UT), and the Ishikawajima-

Harima Heavy Industries Co., Ltd. (IHHI) in Japan.  As for the Wigley hull, experimental results show 

large dispersion across different facilities. Overall, the numerical results are within the range of 

dispersion of the experimental ones. 

Figure 30 compares the experimental and numerical wave profiles over the hull for Fr=0.316 and 

a good agreement is found among them. 
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Figure 28: Wave resistance for Series 60 hull: Non-linear (NL), Double-body (DB), and Neumann-Kelvin (NK). First-

order (Cw1), and second-order (Cw). 

 

 

 
Figure 29: Comparison with experimental results. 
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Figure 30: Wave profile over Series 60 hull 

6.5 Added resistance in waves of four modified Wigley hulls 

6.5.1 Case study 

In [30], Journée carried out an extensive model test comparing with four modified Wigley hulls 

and measured the added resistance in waves. In this section, computed added resistance is compared 

to that obtained in [30] for the four modified Wigley hull models. The main particulars of these models 

are given in Table 11. 

Table 11: Modified Wigley hulls particulars. 

 Wigley I Wigley II Wigley III Wigley IV 

Amidships section 

coefficient, Cm 
0.9090 0.9090 0.6667 0.6667 

Length to breadth ratio, L/B 10 5 10 5 

Length, L (m) 1 1 1 1 

Breadth, B (m) 0.1 0.2 0.1 0.2 

Draught, d (m) 0.0625 0.0625 0.0625 0.0625 

Displacement (m3) 0.003504 0.007008 0.002889 0.005778 

KG 0.05667 0.0625 0.05667 0.0625 

Radius of inertia for pitch, 

kyy (m) 
0.25 0.25 0.25 0.25 

Pitch damping (N/(m/s)) 0.02√4𝐼𝑦𝑦𝐾55 0.10√4𝐼𝑦𝑦𝐾55 0.02√4𝐼𝑦𝑦𝐾55 0.02√4𝐼𝑦𝑦𝐾55 

6.5.2 Validation 

In order to estimate the added resistance 𝑅𝑎𝑤 , the resistance in still water is subtracted from to the 

average resistance value in waves, obtained via the mathematical model described in 3.3.6 . The 

dimensionless wave resistance is then obtained as: 
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𝑅𝑎𝑤
∗ =

𝑅𝑎𝑤

𝜌𝑔𝐴2𝐵2/𝐿
, (6-2) 

where A is the wave amplitude.  

Simulations were carried out with the streamlines and FEM-SUPG schemes, and both of them with 

the non-linear approximations. Pitch damping was introduced in order to calibrate pitch movements 

around resonance, otherwise excessive pitch movement around resonance would modify the added 

resistance estimation.  

Figure 31 shows a snapshot of the wave pattern generated by the Wigley III hull at Fr=0.3 

advancing against a monochromatic wave with wave length the length of the hull. Figure 32 shows the 

hull geometries and mesh sizes used on the hull and the near free surface. 

 Figure 33-Figure 36 show the heave and pitch RAOs, as well as Raw
∗ , versus the dimensionless 

wavelength for the four modified Wigley hull models. Heave movements were measured at 0.075 m 

from the gravity center towards the stern.  

Overall, results obtained with the streamline and the SUPG are quite similar to each other. Only in 

a few figures some slight deviation is observed from each other. 

Regarding the experimental results, trends are well defined in general, although in some cases some 

scattering of results is observed. Numerical results for RAOS and Raw
∗  follow reasonably well the 

experimental data, although the goodness of the fitting depends on each case. Resonance frequencies 

are recovered well, although peak values of added resistance are often underestimated. 

In [30] it was reported that in some case studies (for instance Wigley II at Fr=0.3 and Fr=0.4) it 

was not possible to stabilized the experiments, and therefore no results were obtained in those cases, 

which gives an idea on how complex it is to carry out this sort of studies. Moreover, added resistance 

in waves is a second-order force and quite small when compared to first-order forces, which makes 

very complicated measuring and separating those quantities. In fact, quite large models are needed to 

be able to measure second order forces, which is not the case in [30] where the model length was 3 m. 

Since experimental data have significant uncertainties, implying that such results must be taken as 

qualitative rather than quantitative values. 
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Figure 31: Wave pattern for Wigley III. Fr=0.3. λw/L=1. 

 



80 

 

 

 

 
Figure 32: Mesh details and modified Wigley hulls view.
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Figure 33: RAOs and 𝑅𝑎𝑤

∗  Wigley I.
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Figure 34: RAOs and 𝑅𝑎𝑤

∗  for Wigley II.
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Figure 35: RAOs and 𝑅𝑎𝑤

∗  for Wigley III.



84 

 

 

 

 

 
Figure 36: RAOs and 𝑅𝑎𝑤

∗  for Wigley IV. 
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Chapter 7. BODY DYNAMICS: VERIFICATION 
 

7.1 Introduction 

The aim of this chapter is to show the details of how body links are introduced within the body 

dynamics solver for a simple case study. Numerical results obtained are discussed. 

7.2 Case study: 2D Rotating-ring pendulum 

In this section, a ring performing an oscillating motion is analyzed to verify the accuracy of the 

body dynamics solver along with body links. The gravity center of the ring is located at its geometrical 

center and one meter below the center of rotation (located at the origin of coordinates). The ring is one 

meter in radius, has a mass of 1kg, and all its mass is assumed to be concentrated around its perimeter. 

It is given an initial rotation of 90º around the Y axis, which translates the gravity center from point 

(0,0,-1) to point (-1,0,0). Then the ring is left free to oscillate under the action of gravity. Figure 37 

shows the rotating ring and its initial position. 

 

 
Figure 37: Rotating-ring layout. 
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7.3 Definition of body links 

The body links (kinematic constraints) are given by the following equations: 

f1(x, z, θy) = x + sin (θy) = 0, (7-1) 

f2(x, z, θy) = z + cos (θy) = 0,  

being x, y, z the coordinates of the gravity center. The initial conditions are x0 = −1, z0 = 0, and θy
0 =

90º. In a specific time step t and iteration k+1, the constraint  fi(x
t,k+1, yt,k+1, θ𝑦

t,k+1) = 0 is estimated 

via Eq. (4-10): 

fi(x
t,k, yt,k, zt,k) + (

∂𝑓𝑖
∂𝑥

)
𝑡,𝑘

(xt,k+1 − xt,k) + (
∂𝑓𝑖
∂𝑧

)
𝑡,𝑘

(zt,k+1 − zt,k)

+ (
∂𝑓𝑖
∂θy

)

𝑡,𝑘

(θ𝑦
t,k+1 − θ𝑦

t,k) = 0, 

(7-2) 

where  

(
∂𝑓1
∂𝑥

)
𝑡,𝑘

= 1 ;    (
∂𝑓1
∂𝑧

)
𝑡,𝑘

= 0;   (
∂𝑓1
∂θy

)

𝑡,𝑘

= cos(θ𝑦
t,k), (7-3) 

(
∂𝑓2
∂𝑥

)
𝑡,𝑘

= 0 ;    (
∂𝑓2
∂𝑧

)
𝑡,𝑘

= 1;   (
∂𝑓2
∂θy

)

𝑡,𝑘

= −sin(θ𝑦
t,k). (7-4) 

Then, Eq. (7-2) can be written as: 

xt,k+1 + cos(θ𝑦
t,k) θ𝑦

t,k+1 = −sin(θy
k) + cos(θ𝑦

t,k) θ𝑦
t,k, (7-5) 

zt,k+1 − sin(θ𝑦
t,k) θ𝑦

t,k+1 = − cos(θy
k) − sin(θ𝑦

t,k) θ𝑦
t,k. (7-6) 

Let us remind the reader that fi(x
t,k, zt,k, θ𝑦

t,k) = 0 is not fulfilled in general during the iterative 

process, but it is fulfilled when the iterative process reaches convergence |𝐱t,k+1 − 𝐱t,k| < 𝜖. 

By means of the Newmark’s integration scheme used in the body dynamics solver, the acceleration 

and displacements are related (see Eq. (4-12)): 

𝐱𝑡,𝑘+1 = 𝐱𝑡−∆𝑡 + ∆t𝐱̇𝑡−∆𝑡 +
∆t2

2
((1 − 2β)𝐱̈𝑡−∆𝑡 + 2β𝐱̈𝑡,𝑘+1), (7-7) 

where β is a parameter of the integration scheme. Inserting Eq. (7-7) into Eqs. (7-5)-(7-6): 

ẍ𝑡,𝑘+1 + cos(θ𝑦
t,k) θ̈y

𝑡,𝑘+1 = c1
t,k, (7-8) 

z̈𝑡,𝑘+1 − sin(θ𝑦
t,k) θ̈y

𝑡,𝑘+1 = c2
t,k, (7-9) 

where c𝑖
t,k

 are terms that must be updated after each iteration, and: 
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𝑐1
𝑡,𝑘  =

1

∆t2β
(− sin(θy

k) + cos(θ𝑦
t,k) θ𝑦

t,k)

−
1

∆t2β
(x𝑡−∆𝑡 + ∆tẋ𝑡−∆𝑡 + (1 − 2β)

∆t2

2
ẍ𝑡−∆𝑡)

−
cos(θ𝑦

t,k)

∆t2β
(𝜃y

𝑡−∆𝑡 + ∆t𝜃̇y
𝑡−∆𝑡 + (1 − 2β)

∆t2

2
𝜃̈𝑦

𝑡−∆𝑡), 

(7-10) 

𝑐2
𝑡,𝑘  =

1

∆t2β
(− cos(θy

k) − sin(θ𝑦
t,k) θ𝑦

t,k)

−
1

∆t2β
(z𝑡−∆𝑡 + ∆tż𝑡−∆𝑡 + (1 − 2β)

∆t2

2
z̈𝑡−∆𝑡)

+
sin(θ𝑦

t,k)

∆t2β
(𝜃y

𝑡−∆𝑡 + ∆t𝜃̇y
𝑡−∆𝑡 + (1 − 2β)

∆t2

2
𝜃̈𝑦

𝑡−∆𝑡), 

(7-11) 

or: 

c1
𝑡,𝑘  = −

1

∆t2β
(x𝑡,𝑘 + sin(θy

k)) + ẍ𝑡,𝑘 +cos(θ𝑦
t,k)𝜃̈𝑦

𝑡,𝑘, (7-12) 

c2
𝑡,𝑘  = −

1

∆t2β
(z𝑡,𝑘 + cos(θy

k)) + z̈𝑡,𝑘 − sin(θ𝑦
t,k)𝜃̈𝑦

𝑡,𝑘. (7-13) 

Lagrange multipliers are now introduced to include the constraints equations into the body 

dynamics (see Eq.(4-23)): 

[
 
 
 
 
 
𝑀               0                    0                       1                            1          

0              𝑀                     0                  cos(θ𝑦
t,k)           − sin(θ𝑦

t,k)

0               0                      𝐼                        0                            0          

1         cos(θ𝑦
t,k)            0                        0                            0          

1     − sin(θ𝑦
t,k)             0                        0                            0          ]

 
 
 
 
 

[
 
 
 
 
 
(1 − α)ẍ𝑡,𝑘+1

(1 − α)z̈𝑡,𝑘+1

(1 − α)θ̈𝑦
𝑡,𝑘+1

𝜆𝑡,𝑘+1

𝜇𝑡,𝑘+1 ]
 
 
 
 
 

=

[
 
 
 
 
 
 F𝑥

𝑡,𝑘

F𝑧
𝑡,𝑘

M𝑦
𝑡,𝑘

c1
𝑡,𝑘

c2
𝑡,𝑘

]
 
 
 
 
 
 

− α

[
 
 
 
 
 
𝑀ẍ𝑡−Δ𝑡

𝑀z̈𝑡−Δ𝑡

𝐼θ̈𝑦
𝑡−Δ𝑡

c1
𝑡,𝑘

c2
𝑡,𝑘

]
 
 
 
 
 

, 

(7-14) 

where 𝑀 is the ring mass, 𝐼 is the ring inertia, 𝜆 and 𝜇 are the Lagrange multipliers, Fx, Fy and My are 

the external forces and moment acting on the ring, and α is the alpha parameter of the alpha Bossak-

Newmark scheme (see section 4.5.2). 

7.4 Analysis of results 

A simulation has been carried out for 1000 seconds with a time step of 0.01s. An alpha parameter 

α = 0 provided unstable solution due to the introduction of energy into the system by the reaction 
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forces. Hence, the alpha parameter had to be modified to α = −0.002 to introduce some energy 

dissipation. 

Figure 38 shows the surge, heave, and pitch movements of the ring for the time window between 

990s and 1000s. The expected oscillating motion is observed, with almost no dissipation on the motion 

amplitudes. 

Figure 39 shows the residuals of the body links equations. Errors for both constraints are in the 

order of 10−6, while the terms of the constraint equation are in the order of 1. Therefore, it can be 

stated that convergence was reached in order to fulfill the body links conditions, and the tolerance was 

small enough. Moreover, no sign of a steady increase with time is observed.  

Figure 40 shows the evolution of the energy of the system over time. The initial energy is the 

potential energy at the initial position with zero velocity (𝐸0 = 𝑀𝑔Δ𝑧 = 9.80665 J). After 1000 

second of simulation, less than 1% of the initial energy has been lost due to numerical dissipation. 

7.5 Summary 

The body dynamics of a ring rotating harmonically around a spherical joint under the action of 

gravity has been simulated using the numerical techniques presented in Chapter 4. Details on the 

derivation of the equations to be implemented have been provided. Results show that the dynamics has 

been solved properly, including the constraints imposed by the spherical joint. Also, low numerical 

dissipation has been introduced by the alpha Bossak-Newmark time integrator scheme. 

 

 

Figure 38: Rotating-ring movements. 
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Figure 39: Body links residuals. 

 

 
Figure 40: Energy dissipation along time. 
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Chapter 8. SOLVER ACCELERATION 
 

8.1 Introduction 

Most of the computational effort of the proposed numerical algorithms is spent in solving the linear 

system resulting from the wave diffraction-radiation problem. Therefore, the main focus, in order to 

reduce the computational time, is speeding up this linear solver. Two techniques, that can be used 

combined, have been analyzed: the use of a deflated solver, and the use of parallel computing in graphic 

processing units. 

8.2 Solver deflation 

8.2.1 Solver deflation: introduction 

Deflation works by considering piecewise constant approximations on coarse sub-domains of the 

computational domain. These piecewise constant approximations are associated to the low frequencies 

eigenmodes of the solution, which are also the slow convergence modes [54,55]. Then, these slow 

modes can be quickly approximated by solving a smaller linear system of equations that can be 

incorporated to the traditional preconditioned iterative solvers in order to accelerate the convergence 

of the solution. Hence, the use of preconditioning techniques is compatible with the use of deflation. 

Details on how deflation is implemented within the iterative solver can be found in [54]. 

The first step is to divide the domain into a set of coarse sub-domains capable of capturing the slow 

modes. Several techniques have been developed for this purpose [54,55]. Some authors have proposed 

a technique based on using seed-points to start building the sub-domains, and sub-domains are created 

by associating nodes to their closer seeds [54]. This technique has the disadvantage of requiring 

prescribing the seeds. 

The algorithm developed in this work is based on level structure criteria, where nodes are 

associated to a central node based on the level structure rooted at this central node (concept from graph 

theory). A maximum level structure “L” is prescribed, where L refers to the neighboring level with 

respect to the central node. Figure 41 shows a domain decomposition obtained using this level structure 

technique with level L=2. Ordered pair (sub-domain, level) is used to identify nodes and the sub-

domains they belong to, and their corresponding structure level. Notice that a node will accept to 

belong to a new sub-domain, if and only if, its structure level in that sub-domain is lower than its level 
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in its current sub-domain. The algorithm used to obtain such decomposition is presented step by step 

next: 

 

Step 0: Assigned level L+1 to all nodes  

Step 1: Start building sub-domain 0: offer level 0 to the first node of the mesh (root node for 

sub-domain 0). It will become node (sub-domain, level)=(0,0) 

Step 2: Identify neighbors of the root node (node (0,0)) and offer them level 1: nodes (0,1) 

Step 3: Identify neighbors of nodes (0,1), and offer them level 2: nodes (0,2) 

Step 4: The procedure is repeated until the prescribed level “L” is reached 

Step 5: The first node still with level L+1 (based on the numbering of the nodes) is used as root 

node for sub-domain 1, and it is given level 0, becoming the root node (1,0) 

Step 6: Identify neighbors of the root node (1,0) and offer them level 1: nodes (1,1) (Notice that 

some (0,L) nodes might  become (1,1)) 

Step 7: Identify neighbors of nodes (1,1), and offer them level 2: nodes (1,2). (Notice that some 

(0,L) or (0,L-1) nodes might  become (1,2) if L>2 or L-1>2 respectively) 

Step 8: The procedure is repeated until the nodes (1,L) are identified 

Step 9: Repeat Steps 5-8 until there is no node with level L+1 

 

This algorithm guarantees that any node cannot have a lower structure level than any other root 

node. It also guarantees the higher the prescribed level, the lower the number of sub-domains created.  

Although the previous algorithm provides good results, it can be improved by using it twice. In a 

first round, rather than using the prescribed level L, a structure level 2L is used instead. Then a first 

decomposition is found with a lower number of sub-domains and twice the maximum structure level. 

In a second round, the procedure is repeated with a maximum structure level L and using as root those 

nodes with higher levels. Figure 41 and Figure 42 show the sub-domain decomposition obtained using 

the one two rounds technique respectively. The first one shows the decomposition after the first round 

at level 2L, and the second shows the decomposition after the second round at level L starting from 

the first decomposition at level 2L. Notice that the level at the sub-domains boundaries is lower or 

equal than the prescribed level L, and always minimum with respect to any central node (node of level 

zero). 

The recommended number of sub-domains might depend on the specific case under study. Usually 

in the order of hundred is a recommended value. If the matrix of the linear system to be solved remains 

the same during the calculation, the sub-domain decompositions will have to be carried out just once 

at the beginning. 
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The deflated system has to be solved every iteration of the solver. In case the equations to be solved 

remain the same along the simulation, so does the deflated matrix. The inverse of the deflated matrix 

can be calculated just in the first time step, and then be stored. Hence, the resolution of the deflated 

system within each iteration can be substituted by a matrix vector multiplication. 

 

 
Figure 41: Sub-domain decomposition using the neighboring level algorithm. 

 

 

 
Figure 42: Sub-domain decomposition using the two-rounds neighboring level algorithm. (a) Decomposition after first 

round. (b) Decomposition after second round. 

 

8.2.2 Solver deflation: demonstration 

In order to check the performance of deflated preconditioned conjugate gradient in our problems, 

simulations using the ISSC TLP platform (analyzed in section 5.5) have been carried out using five 

different meshes. For each case, different levels of deflation have been used, and they have been 

compared to a non-deflated case. Table 12 provides the particulars of each case. 
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Table 12: Case studies particulars 

 Case 1 Case 2 Case 3 Case 4 Case 5 

Number of Nodes 17804 51333 153758 459538 913149 

Number of Elements 101572 292705 792372 2335374 4640638 

h (m) 4 2 0.5 0.35 0.25 

Δt (s) 0.75 0.5 0.1 0.075 0.05 

 

Solver deflation is compatible with the use of preconditioners. Therefore, comparisons are made 

using the deflated conjugate gradient along with an ILU preconditioner. In the case of the deflated 

solver, different structure levels have been used, resulting in different number of sub-domains. In all 

cases, the same computer and CPU have been used.  

Figure 43 shows the reduction in iterations for each case as the number of sub-domains changes. 

Table 13-Table 17 show the average number of iterations and speed up respect to the non-deflated 

case. The speed up has been obtained as the ratio of CPU times taken by the linear solver in the non-

deflated and deflated cases. It can be observed that the number of iterations decreases as the dimension 

of the deflated subspace increases. This reduction in the number of iteration when using an ILU 

preconditioner indicates that the proposed technique for building sub-domains is performing well.  

However, when using deflated solvers, a few operations are added in every solver iteration. Hence 

reducing iterations is not synonym of reducing CPU time. Based on the results obtained, it can be said 

that the larger the system, the larger the speed up that can be obtained, and the number of sub-domains 

must be larger as well. However, care must be taken because a wrong dimension of the deflated 

subspace might end up in increasing the CPU time. Moreover, for smaller cases, deflation might even 

not be capable of speeding up at all. 

Deflation has been proved to be quite effective in reducing the number of iterations, which means 

that the sub-domain decomposition is working well. However, in our case study, deflation is not so 

effective in reducing CPU time. Moreover, depending on the level structure used, CPU time can be 

even degraded respect to the non-deflated solver. Therefore, choosing the right level structure is 

mandatory to optimize the performance of the deflation algorithm. 

8.3 GPU-CUDA acceleration 

8.3.1 GPU-CUDA acceleration: introduction 

The fast development of the videogame industry is leading to higher computational capabilities of 

graphic processing units (GPUs). Hence, their use for heavy computations in computational fluid 

dynamics is becoming more common (see [56,57]). 
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Figure 43: Deflated solver: number of iterations. 

 
Table 13: Comparative among deflated solvers and non-deflated 

Case 1: Number of nodes = 17804 

Structure level Number of Sub-domains Average Number Iterations Speed up 

2 836 15.89 x0.556 

3 316 18.18 x0.963 

4 174 19.36 x0.989 

5 100 21.34 x0.894 

6 66 22.39 x0.871 

7 49 23.74 x0.829 

Non-deflated 28.75 x1 

 

 

Table 14: Comparative among deflated solvers and non-deflated 

Case 2: Number of nodes = 51333 

Structure level Number of Sub-domains Average Number Iterations Speed up 

2 2419 17.34 x0.310 

3 963 20.23 x0.908 

4 506 22.00 x1.081 

5 299 24.15 x1.055 

6 201 25.20 x1.023 

7 146 26.17 x0.943 

8 107 27.77 x0.907 

9 73 29.04 x0.889 

10 59 28.84 x0.912 

11 42 30.36 x0.863 

12 30 32.27 x0.789 

Non-deflated 38.68 x1 
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Table 15: Comparative among deflated solvers and non-deflated 

Case 3: Number of nodes = 153758 

Structure level Number of Sub-domains Average Number Iterations Speed up 

4 2101 20.82 x0.77 

5 1153 22.82 x1.20 

6 675 24.71 x1.30 

7 405 28.59 x1.17 

8 243 33.8 x1.00 

9 154 37.5 x0.91 

10 96 42.06 x0.82 

11 60 49.03 x0.71 

12 45 46.83 x0.72 

Non-deflated 49.53 x1 

 
Table 16: Comparative among deflated solvers and non-deflated 

Case 4: Number of nodes = 459538 

Structure level Number of Sub-domains Average Number Iterations Speed up 

6 1936 25.46 x1.01 

7 1128 25.58 x1.39 

8 641 32.66 x1.22 

9 374 39.38 x1.03 

10 232 42.86 x0.94 

11 137 48.90 x0.84 

12 82 52.76 x0.76 

Non-deflated 60.86 x1 

 
Table 17: Comparative among deflated solvers and non-deflated 

Case 5: Number of nodes = 913149 

Structure level Number of Sub-domains Average Number Iterations Speed up 

6 3837 26.70 x0.54 

7 2229 29.95 x1.10 

8 1271 31.60 x1.40 

9 717 39.55 x1.20 

10 413 44.55 x1.07 

11 246 48.50 x0.99 

12 147 56.55 x0.83 

Non-deflated 71.85 x1 

 

The implementation in this work is based on the well-known CUDA, a parallel computing platform 

and programming model invented by NVIDIA. It is focused in speeding up the iterative solver using 

the functions provided by the CUBLAS and CUSPARSE libraries. 

Deflated and non-deflated preconditioned conjugate gradient (CG) algorithm has been 

implemented in CUDA, along with a sparse approximate inverse (SPAI) preconditioner [58] and 

incomplete LU decomposition (ILU) preconditioner. However, using the sparse lower and upper 

triangular solvers provided in the CUSPARSE library for ILU preconditioning resulted in poor 
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performance. This poor performance can be expected since solving triangular system is not suitable 

for massive parallelization across tens of thousands threads [58], as required by GPUs in order to hide 

memory latency. Therefore we will omit the use of the ILU preconditioner when reporting GPU results. 

Since the system matrix remains the same along the computation, preconditioners are calculated 

just once, in the first time step. Then, computational time invested in calculating preconditioners is 

negligible when compared to the total time spent in the linear solver during the whole simulation. 

8.3.2 GPU-CUDA acceleration: demonstration 

In this section an array of sixteen freely floating bodies in the presence of a regular wave is 

simulated. The case study consists of simulating the dynamics of an array of sixteen freely floating 

cylinders in the presence of a regular wave. Each cylinder is one meter in radius, and half meter in 

draft. Each one is freely floating without restriction. Then, since they are freely floating, the mass of 

each cylinder must equal the mass of the displaced water. The radii of gyration with respect to their 

own center of gravity are equal to one. The incident wave has a wave period of two seconds, amplitude 

of ten centimeters, and an incident direction of 22.5º. The cylinders are placed on a regular pattern 

(4x4) and the distance between the centers of adjacent cylinders is three meters. A fifty second 

simulations is carried out, and the time step used in each case has been calculated such as the 

dimensionless grid number 𝑔Δ𝑡2/ℎ = 0.5, where ℎ represents the characteristic element size. 

The case study is simulated with three levels of grid refinement (see Figure 44). Computational 

time spent to solve the linear system of equations in every time step during the simulations were 

measured and are reported next. The solver used is a non-deflated preconditioned conjugate gradient. 

Table 18 provides the particulars of the meshes and numerical parameters used. Figure 45 shows the 

free surface elevation at the end of the simulation. 

Figure 46 compares the movements of the cylinder located in the upper right corner for the three 

meshes used. While some difference is found for the coarser mesh, results are very close for cases 2 

and 3 as expected. 

Table 18: Mesh properties and case study numerical parameters 

 Number of nodes Number of elements Characteristic element size (m) Time step (s) 

Case 1 137556 799665 0.2 0.1010 

Case 2 369410 2152774 0.1 0.0714 

Case 3 1181302 6878083 0.05 0.0505 

 

Speed-up analyses are carried out when using different types of GPU/CPU architecture, as well as 

different types of preconditioners. When computing in parallel in the GPU, the sparse approximate 

inverse (SPAI) preconditioner will be used. When carrying out serial computation in the CPU, the 

SPAI and ILU preconditioners will be used. In this case study, the matrix system does not change 
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along the simulation. Therefore, the preconditioner is only requested to be computed once. Also, let’s 

remind that the use of the ILU preconditioner in GPU architectures is not recommended due to its poor 

parallelization across thousands of threads, as required by GPUs to hide memory latency. 

In order to compare computational performance, we carried out simulations in four different 

platforms: two GPU platforms, and two CPU platforms. Table 19 provides the particulars of each 

platform used. 

Table 19: Computing Plattforms used. 

Platform Description 

GPU1 NVIDIA GTX 280 

CPU1 Intel(R ) Core(TM )2 CPU Q9400 @ 2.66GHz 2.67GHz 

GPU2 NVIDIA TESLA C2075 

CPU2 Intel(R ) Core(TM ) i7-3930K CPU @ 3.20GHz 3.20GHz 

 

Since hardware evolve quite fast, it is necessary to take into account whether comparisons are made 

across hardware of the same generation. We have named GPU1 and CPU1 to the older platforms, 

belonging more or less to the same generation, and named CPU2 and GPU2 to the newer platforms, 

also belonging to the same generation. Therefore, when comparing computational time, it must be 

taken into account that the newer platforms were bought in 2012, while the older ones were bought in 

2009. 

Table 20 shows the computational time required for simulating fifty seconds with three different 

meshes and under different solver strategies. Notice that more than eighty percent of the computational 

time is spent in the linear solver. Therefore, speeding up this part of the code is the key point for 

acceleration. Table 21 and Table 22 show the speed up obtained as the ratio of time spent in the linear 

solver when using same generation CPU and GPU platforms.  

When comparing GPU1 versus CPU1, the minimum speed up obtained in the linear solver are 

x5.09, x6.73, and x8.83 for cases 1, 2 and 3 respectively. On the other hand, when comparing GPU2 

versus CPU2, the minimum speed up obtained in the linear solver are x3.98, x4.90, and x6.35 for cases 

1, 2 and 3 respectively. As expected, the speed up increases as the size of the case study increases.  

When comparing GPU1 versus GPU2, it can be observed that the speed up obtained using the 

newer generation is in the order of 2. We should also point out that the price of the newer is in the 

order of ten times the older. 

Comparing the performance of GPU1 respect to CPU2, we observe that GPU1 performs better. It 

gets speed-ups of x2, x2.58, and x3.53 in each case study. 

The fifty second simulation can be carried out with enough accuracy in some 20 minutes using 

GPU2. Since the length scale of the model is one meter, those fifty seconds are equivalent to 500 

seconds if the radius of each cylinder were one hundred meters. This leads to a ratio between 

computational time and real time around 2 for some offshore engineering problems. 
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8.4 OpenMP parallelization 

OpenMP [59] has been used for parallelization of CPU solvers as well as for evaluating analytical 

formulas. For instance, when evaluating irregular seas modelled by spectra discretization based on 

Airy waves, a large number of waves might be used, requiring a significant CPU time compared to the 

solver CPU time. Open MP has been used in this work to reduce the CPU time of this type of 

computations. 

8.5 Summary 

Deflation has been proved to be quite effective in reducing the number of iterations required by 

the conjugate gradient. However, in our case study, deflation is not so effective in reducing CPU time 

as it is in reducing solver iterations. Solver deflation can speed up the solution and, the larger the size 

of the problem, the larger the speed up. But, depending on the level structure used, CPU time can be 

even degraded respect to the non-deflated solver. Therefore, choosing the right level structure based 

on the size of the problem is mandatory to optimize the performance of the deflated conjugate gradient. 

GPUs have been used for solver acceleration. For this purpose, deflated and non-deflated 

preconditioned conjugate gradient (CG) algorithm has been implemented in CUDA, along with a 

sparse approximate inverse (SPAI) preconditioner and incomplete LU decomposition (ILU) 

preconditioner. Results indicate that GPUs-based solvers, using SPAI preconditioners, can perform 

faster than CPUs, and the speed-ups obtained in this work are in the range of 4-9, depending on the 

size of the problem, and the generation of GPU/CPU used. 
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Figure 44: Mesh refinement for multibody system. 
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Figure 45: free surface contour field for multibody system and monochromatic incident wave. 
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Figure 46:Multi-body simulation: movements of the body located at the upper right corner. Comparison using different 

level of mesh refinement. 
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Table 20: Computational time spent for a fifty second simulation of an array sixteen floating cylinders. 

 PLATFORM PRECONDITIONER Solver time (s) Total time (s) Solver time(%) 

Case 1 

GPU1 
SPAI 

564 695 81.2 

CPU1 
3256 3325 97.9 

ILU 2868 2938 97.6 

GPU2 
SPAI 

282 314 89.7 

CPU2 
1217 1249 97.5 

ILU 1123 1154 97.3 

Case 2 

GPU1 
SPAI 

2012 2284 88.1 

CPU1 
15051 15312 98.3 

ILU 13549 13812 98.1 

GPU2 
SPAI 

1060 1178 90.0 

CPU2 
6052 6165 98.2 

ILU 5198 5311 97.9 

Case 3 

GPU1 
SPAI 

8519 9854 86.4 

CPU1 
85605 86740 98.7 

ILU 75223 76307 98.6 

GPU2 
SPAI 

4743 5302 89.4 

CPU2 
37479 37941 98.8 

ILU 30110 30588 98.4 

 

 

Table 21: Speed up obtained by using GPU1 respect to serial execution with CPU1. 

 

Reference case 

CPU1+SPAI CPU1+ILU 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

GPU1+SPAI 

(Speed-up) 
x5.77 x7.48 x10.04 x5.09 x6.73 x8.83 

 

 

Table 22: Speed up obtained by using GPU2 respect to serial execution with CPU2. 

 

Reference case 

CPU2+SPAI CPU2+ILU 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

GPU2+SPAI 

(Speed-up) 
x5.32 x5.71 x7.90 x3.98 x4.90 x6.35 
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Chapter 9. ANALYSIS OF A SURFACE EFFECT 

SHIP SEAL DYNAMICS 
 

9.1 Introduction 

A SES is a non-amphibious vehicle supported by an air cushion, with flexible seals at the bow and 

stern, and twin hulls, like a catamaran, at the sides. Due to the lack of air leakage at the craft sides, lift 

power can be reduced significantly compared with other type of Air-Cushion Vehicles (ACV). Also, 

it is possible to install conventional water propellers or waterjet propulsion, with rather smaller 

machinery space requirements compared to that for air propellers or fans used on ACVs. Furthermore, 

the SES can operate in modes of full displacement, partial air-cushion support, and full air-cushion 

support. 

Predicting the overall performance of a SES is of paramount importance to support the design 

phase, as the motion of the ship can be affected by the interaction between the air, the cushion, the ship 

structure, the seals, the sea waves and the sea bottom in the shallow water region. Different approaches 

with different types of complexity and accuracy have been taken to cope with this type of analyses. 

In the last decade, there have been extensive applications of Navier-Stokes models to naval 

hydrodynamics problems. In [60], an application for the calculation of the flow about a SES in still 

water, using a commercial Volume of Fluid model, has been presented. While, in [61], Mousaviraad 

et al. use an URANS solver for evaluating the maneuvering performance of a SES. While the outcome 

of the analyses is outstanding, the CPU-time reported in that thesis, makes this model quite 

unaffordable for being used during design stages. 

Actually, it is a common consensus that solvers based on the Navier-Stokes equations are too 

expensive computationally speaking when it comes to simulate unsteady naval hydrodynamics 

problems. These sorts of problems can be more efficiently calculated using potential flow theory. This 

approach, jointly with the Stokes perturbation approximation, is widely used for analysis of seakeeping 

problems. In [62], Connell et al., use a boundary-element time-domain potential flow solver to 

calculate the multi-body seakeeping behavior of a T-Craft SES and a Large Medium-Speed Roll 

on/Roll off (LMSR) ship in different scenarios. While, in [63], the same computational solver is 

adapted to calculate the maneuvering properties of a SES.  

Despite the complexity of the above referred SES computational models, none of them takes into 

account the seal dynamics, or the effect of free surface-seal interaction. However, the relevance of this 
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interaction in the unsteady dynamics of a SES is well known [64,65]. The complexity of this 

phenomenon makes impossible to develop a theoretical background, and prompts many design 

parameters to be traditionally decided by empirical formulae [64]. Actually, only limited theoretical 

and computational models have been developed to analyze seal dynamics [66,67,68]. 

This chapter focuses on the development of a computational model for the analysis of the complex 

and highly non-linear dynamic behavior of the seals in the interface between the air cushion and the 

water. The fluid solver used for this purpose uses the potential flow approach along with the stream-

line integration of the free surface. While this approximation is much simpler than using RANS 

computations, relevant outcomes can be obtained, allowing to significantly reducing computational 

time by 2 or 3 orders of magnitude even when computing on a regular desktop or laptop. 

The developed fluid-structure interaction solver is based, on one side, on an implicit iteration 

algorithm, using a TCP/IP sockets link, able to communicate pressure forces and displacements of the 

seals at memory level and, on the other side, an innovative wetting and drying scheme able to predict 

the water action on the seals. 

9.2 Structural solver 

For the structural model of the, a computer code based on membrane and shell finite elements has 

been used.  The membrane finite element used is a 3-noded membrane triangle. This element uses a 

total Lagrangian formulation and assumes a linear-elastic behavior of the material [69]. The kinematic 

description is formulated in large displacements and large deformations, making use of the right 

Cauchy-Green deformation tensor. 

The shell finite element used is a corrotational 3-noded triangle shell element [70]. The core 

formulation of the bending part corresponds to a classical Discrete Kirchhoff plate Triangle (DKT). 

The core formulation of the membrane part corresponds to the Assumed Natural Deviatoric Strain 

(ANDES) approach [71]. The ANDES formulation represents a linear strain triangle with 3 corner 

nodes and 3 DOFs per node (two in-plane displacements and a drilling rotation). 

An energy conserving/decaying time-stepping algorithm has been used for the dynamic analysis 

of the problem [72,73,74]. This approach ensures the stability in the non-linear geometric range. 

In general, shell elements are the preferred option to model the seals behavior, because they can 

consider the actual flexural rigidity of the seals, despite being small. However, since the thickness of 

the seals is very small, numerical instabilities might appear since the tangent matrix is poorly 

conditioned by the large ratio between membrane and flexural rigidity of the seals. In these cases, the 

only solution is to neglect the flexural rigidity by using membrane elements. In a dynamic analysis, 
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the membrane elements no longer have these problems since the tangent stiffness matrix is properly 

conditioned by the mass matrix. 

9.3 Coupled fluid-structure solver 

9.3.1 Free surface-seal interaction (FSSI) 

Modelling the behavior of the seals of aircushion vehicles is not a trivial issue, due to the complex 

interaction of the seals with the free surface. In this thesis, a new algorithm for handling the free 

surface-seal interaction problem is formulated. It is based on finding an equivalent pressure field to be 

applied over the free surface such that the elevation of this one is limited by the location of the seal. 

That is to say, the seal acts as an upper limit for the free surface elevation. 

The free surface boundary conditions are applied in different ways depending on whether or not 

the free surface is in contact with the seal. If the free surface is not in contact, the boundary conditions 

are applied as if there is no seal, but if there is contact, the implementation will be different in order to 

ensure that the free surface does not penetrate the seal, and the required free surface pressure to fulfil 

this condition is calculated and applied as a boundary condition. 

The free surface node where the algorithm is to be applied is said to be dry if the seal is not in 

contact with the free surface at that location, and wet if it is. Figure 47 illustrates the wet and dry 

concepts. 

The main challenge for an algorithm like this is to be capable of capturing when a node goes from 

dry to wet and vice versa, as well as estimating the pressure field on the wet nodes. Figure 48 shows 

the wetting and drying iterative algorithm. For a dry node, the implementation of both the kinematic 

and dynamic boundary condition is the same as for any other node not interacting with the seal. 

However, for wet nodes, the free surface boundary condition (3-55) is imposed forcing the free surface 

elevation to match the seal elevation, Hseal, and ensuring that there is no flow across the seal. These 

two conditions are represented by the following equations: 

𝜂𝑤𝑒𝑡
𝑛+1 = 𝐻𝑠𝑒𝑎𝑙

𝑛+1, 

(𝜕𝑧𝜙)𝑛+1 = 2(
𝜂𝑛+1−𝜂𝑛

𝛥𝑡
+ |𝑈𝑛+1/2|(𝛿𝐿𝜂)𝑛+1/2) − (𝜕𝑧𝜙)𝑛, 

(9-1) 

where 𝜂 is the free surface elevation, 𝜙 is the velocity potential, 𝐻𝑠𝑒𝑎𝑙 is the seal height, 𝛥𝑡 is the time 

step, 𝑈 is the flow field, and 𝛿𝐿 represents the numerical derivative along the streamline. (𝜕𝑧𝜙)𝑛+1 is 

to be imposed as a Neumann condition instead of imposing 𝜙𝑛+1 as Dirichlet condition. 
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Figure 47: Wet and dry seal regions for free surface boundary condition implementations. 

 

On the one hand, the switch from being a dry node to becoming a wet node is identified via the 

kinematic BC through the condition  𝜂𝑤𝑒𝑡
𝑛+1 > 𝐻𝑠𝑒𝑎𝑙

𝑛+1  . On the other hand, the switch from being a wet 

node and becoming a dry one is carried out by comparing the dynamic pressure with the reference free 

surface pressure. The dynamic pressure on wet nodes is obtained via the dynamic BC (Eq. (3-54)): 

𝑃𝑤𝑒𝑡
𝑛+1 = −𝜌 [

𝜙𝑛+1−𝜙𝑛

𝛥𝑡
+ |𝑈𝑛+1| · (𝛿𝐿𝜙)𝑛+1 −

1

2
(𝛻ℎ𝜙)𝑛+1 · (𝛻ℎ𝜙)𝑛+1

+
1

2
(𝜕𝑧𝜙)𝑛+1(𝜕𝑧𝜙)𝑛+1 +  𝑔𝜂𝑛+1], 

(9-2) 

where 𝑃𝑤𝑒𝑡 is the free surface pressure, or pressure on the seal, for a wet node. 

It was found that when the seal is interacting with the free surface, the term 𝜙𝑧 might become of 

the same order of magnitude than 𝑈. Hence the term 1
2
𝜙𝑧

2 has been kept when calculating the pressure 

on a free surface node in contact with the seal. 

9.3.2 Free surface-flexible seas coupling algorithm 

The fluid-structure coupling is performed by an implicit interfield iteration algorithm [75], based 

on a Block Gauss-Seidel method [76]. For the i-th iteration of the current time step n, let 𝜙𝑛,𝑖, 𝜂𝑛,𝑖, 

𝑝𝑛,𝑖 be the vectors of the velocity potential, free surface elevation and pressure in the corresponding 

nodes of the fluid, 𝑥𝑛,𝑖 the vector containing the three components of the displacement of the nodes of 

the seals structure, with xk
n,i

 the vector of the k-th component of the displacement field, and 𝐻𝑠𝑒𝑎𝑙
𝑛,𝑖−1

 the 

vector of the elevation field of the seal nodes, then the fluid-structure interaction algorithm, can be 

written as: 
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Figure 48: Wetting and drying algorithm. 
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(𝑝𝑛,𝑖, 𝜙𝑛,𝑖) = 𝐹𝑝(𝜙𝑛,𝑖−1, 𝜂𝑛,𝑖−1, 𝐻𝑠𝑒𝑎𝑙
𝑛,𝑖−1, 𝜂𝑛−1, 𝜙𝑛−1),

𝑥𝑛,𝑖 = 𝑆𝑞(𝑥𝑛,𝑖−1, 𝑝𝑛,𝑖, 𝑥𝑛−1, 𝑥𝑛−2),

𝐻𝑠𝑒𝑎𝑙
𝑛,𝑖−1 = 𝐻𝑠𝑒𝑎𝑙

0 + 𝑥𝑘
𝑛,𝑖,

 (9-3) 

where 𝐹, 𝑆  represent the fluid and solid solver, and p and q are the number of internal iterations done 

within the non-linear loop of each solver. This way, the pressure field computed in the hydrodynamic 

solver is sent to the structural solver to compute the seals deformation. The resulting displacements 

are used to compute the new seal elevation on the fluid interface, and then calculate the pressure field 

for the following iteration. 

Since the hydrodynamics and structural solvers used in this work are independent, the strategy 

developed to communicate both is based on the interchange of information at memory level by means 

of TCP-IP sockets. This way, only minor adaptations of the solvers were required. A pre-existing 

communication library has been used for this purpose. Furthermore, this library is capable of 

interpolating data between the boundary meshes of the fluid and solid interfaces (see Figure 49). The 

algorithm to interpolate data between meshes can be summarized as follows: 

a. Two octree structures are created to store the seal mesh elements and the elements of the fluid 

patch affected by the seal deformation.  

b. For every node of the seal mesh, the corresponding octree is used to identify the set of fluid 

elements where the node is likely to be. For every element of the set, it is checked whether or 

not the seal node rests on it. As a result of this search, the fluid element in contact with the seal 

node is selected. 

c. Step b) is repeated for every node of the elements of the fluid patch affected by the seal 

deformation. 

d. The shape functions of the selected elements are used to interpolate the information from the 

fluid to the structure and vice-versa. This information is stored in two matrixes; 𝐼𝐹𝑆, that allows 

interpolating the pressure field from the fluid to the seal structure, and 𝐼𝑆𝐹, that interpolates the 

seal deformation field to be used as boundary condition for the fluid flow solver. 

Then, the fluid-structure interaction algorithm reads: 

(𝑝𝑛,𝑖, 𝜙𝑛,𝑖) = 𝐹𝑝(𝜙𝑛,𝑖−1, 𝜂𝑛,𝑖−1, 𝐻𝑠𝑒𝑎𝑙
𝑛,𝑖−1, 𝜂𝑛−1,𝑖−1, 𝜙𝑛−1),

𝑝̌𝑛,𝑖 = 𝐼𝐹𝑆(𝑝𝑛,𝑖),

𝑥𝑛,𝑖 = 𝑆𝑞(𝑥𝑛,𝑖−1, 𝑝̌𝑛,𝑖, 𝑥𝑛−1, 𝑥𝑛−2),

𝑥̌𝑛,𝑖 = 𝐼𝑆𝐹(𝑥𝑛,𝑖),

𝐻𝑠𝑒𝑎𝑙
𝑛,𝑖−1 = 𝐻𝑠𝑒𝑎𝑙

0 + 𝑥̌𝑘
𝑛,𝑖.

 (9-4) 

Even though the iterations within each time step lead to the monolithic solution of the coupled 

problem, sometimes relaxation techniques are combined with this method to ensure the convergence 
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of the coupling scheme. In this thesis, a relaxation method based on Aitken’s acceleration has been 

adopted [42]. Let 𝜔𝑖 be the optimal relaxation parameter, obtained via Aitken’s method, the resulting 

algorithm can be written as: 

(𝑝𝑛,𝑖, 𝜙𝑛,𝑖) = 𝐹𝑝(𝜙𝑛,𝑖−1, 𝜂𝑛,𝑖−1, 𝐻𝑠𝑒𝑎𝑙
𝑛,𝑖−1, 𝜂𝑛−1,𝑖−1, 𝜙𝑛−1),

𝑝̂𝑛,𝑖 = (1 − 𝜔𝑖)𝑝̂
𝑛,𝑖−1 + 𝜔𝑖𝑝

𝑛,𝑖,

𝑝̌𝑛,𝑖 = 𝐼𝐹𝑆(𝑝̂𝑛,𝑖),

𝑥𝑛,𝑖 = 𝑆𝑞(𝑥𝑛,𝑖−1, 𝑝̌𝑛,𝑖, 𝑥𝑛−1, 𝑥𝑛−2),

𝑥̌𝑛,𝑖 = 𝐼𝑆𝐹(𝑥𝑛,𝑖),

𝐻𝑠𝑒𝑎𝑙
𝑛,𝑖−1 = 𝐻𝑠𝑒𝑎𝑙

0 + 𝑥̌𝑘
𝑛,𝑖.

 (9-5)  

As stated above, the free surface-seals interaction algorithm is based on finding an equivalent 

pressure field to be applied over the free surface such that the elevation of this one is limited by the 

location of the seal. For this purpose, the elevation of the seal over the reference free surface is required. 

The algorithm (9-5) assumes that the variation of this elevation is only due to the vertical displacements 

of the structure. This is a good enough approximation to predict the forces of the water on the seals 

and the free surface elevation in the seals region. 

9.4 Validation of FSSI algorithm with flexible bow seals 

9.4.1 Validation: experiments at University of Michigan 

Zalek and Doctors [77] carried out an extensive experimental study of free surface and flexible 

seal interaction at the University of Michigan. Some of these data have been already used for validation 

purposes against numerical results based on a Smoothed Particle Hydrodynamics approach [78]. 

Figure 50 sketches the basic arrangements of the experiments, such as seal length, location of stiffeners 

and cables, and undeflected seal angle. Table 23 provides the seal properties used for the experiments 

[78]. 

In this thesis, the experimental cases shown in Table 24 were analyzed with the proposed fluid-

structure interaction model. The test runs were simulated modelling the left half part of the seal and 

tank, using the actual width and depth of the channel of University of Michigan. The seals were 

modelled with shells elements. 

Table 25 provides the main characteristics of the computational mesh used for the simulation, as 

well as the length of the numerical channel used. For test run 45, a larger channel was necessary to 

avoid upstream and downstream interactions with the inlet and outlet boundaries respectively. 
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Figure 49: Fluid-structure interaction algorithm. 

 

In the experiments, three stiffeners (rods) were fixed to the seal to reduce the transversal 

deformation. Since data regarding the properties of such stiffeners were not available, they were 

simulated by introducing very stiff beams at the same locations, but weightless, assuming that the ones 

used in the experiments were light enough to avoid significant perturbation in the seal behavior. 

Furthermore several cables were attached to the stiffeners to avoid the forward displacement of the 

seal due to the internal pressure. Since there is no available information about the length and exact 

disposition of these cables, they were simulated in the computational model by a boundary condition, 

constraining the longitudinal displacement of the points of the seal where the cables were attached.  

Figure 51 shows the quasi-steady deformed front seal for test run number 10. Figure 52 compares 

the average seal deformation obtained numerically and experimentally. Although the computational 

results do not exactly match the experimental ones, they agree well in terms of the main trends under 

different conditions of velocity, seal immersion and internal pressure. In addition, the differences are 

likely within the uncertainty range of the data (not reported), since the unsteady and three-dimensional 

effects are relevant in most of the cases studied. 

Figure 53 provides the top view of the hydrodynamic pressure distribution acting on the seal due 

to the free surface seal interaction. It can be observed that while in some cases the distribution is almost 

uniform in the transverse direction that is not the case in the other ones, resulting in relevant three 

dimensional effects, as mentioned before. 
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Figure 50: Experiments setup at University of Michigan [77]. 

 

Table 23: Seal properties 

Thickness 3.175 mm 

Young Modulus 12.74 MPa 

Poisson coefficient 0.25 

Density 1107 kg/m3 

 

Table 24: Test run particulars 

Test run [77] 
Seal Immersion Velocity Internal Pressure 

(in) (m) (ft/s) (m/s) (in. H2O ) (Pa) 

1 9 0.2286 6 1.8288 1.42 353.3 

10 9 0.2286 8 2.4384 1.01 251.3 

11 9 0.2286 8 2.4384 1.91 475.3 

16 9 0.2286 8 2.4384 4.24 1055 

32 7.5 0.1905 6 1.8288 1.28 318.5 

45 7.5 0.1905 9 2.7432 4.01 997.8 

 

Table 25: Computational domain and numerical particulars 

Test 

run 

Seal Water volume 
Time step 

(s) 

Domain 

length 

(m) 
Number of 

Nodes 

Number of 

Elements 

Number of 

Nodes 

Number of 

Tetrahedron 

1 234 424 58136 297188 0.002 5.3 

10 234 424 58315 297888 0.001 5.3 

11 234 424 58315 297888 0.001 5.3 

16 234 424 58240 297643 0.002 5.3 

32 234 424 56112 287493 0.002 5.3 

45 234 424 80325 419569 0.001 15.3 
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Figure 51: Seal deformation and structural mesh for University of Michigan test run 10 [77]. 

 

 
Figure 52: Seal deformation: University of Michigan experimental results (squares) [77] versus numerical (solid 

line). 
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Figure 53: Top view of pressure distribution over seal for University of Michigan selected test cases. 
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9.4.2 Validation: experiments at the U.S Navy´s Large Cavitation Channel (LCC) 

Wiggins et al. [79] developed a large scale testing platform for finger bow seals at the U.S. Navy´s 

Large Cavitation Channel. The purpose of those tests was to provide experimental results to be used 

for validation purposes of analytical/numerical approaches to the problem. Figure 54 sketches the 

model setup at the LCC facilities. 

The seal material used is the same one that the one used in University of Michigan experiments 

and described in the previous section. In this case, a membrane model was used for the computational 

analysis of the structure, since preliminary tests with a shell model showed an unstable behavior, 

attributed to the poor condition of the tangent matrix. 

With regards to the test condition, a free stream flow of 6 m/s, seal immersion of 15 cm, and internal 

pressure of 1.5 KPa [79] was considered. Other data needed for the setup of the case under study are 

provided in Table 26. 

Table 27 provides the main characteristics of the computational mesh used for the simulation, as 

well as the length of the numerical channel used. Figure 55 shows the computational mesh used for 

solving the fluid problem. 

 Figure 56(a) shows the steady seal deformation obtained in the experiments under the 

abovementioned test conditions. Figure 56(b), (c) and (d) show seal deformation obtained by the 

numerical approach proposed in this work under the same test conditions. Free surface elevation at the 

seal and aircushion areas are shown in Figure 57(a). A top view of the pressure distribution over finger 

seals is shown in Figure 57(b). The bow seals deformation obtained in this analysis agrees well 

qualitative with the experimental information available in reference [79]. 

9.5 Summary 

This chapter has documented the advances in the development of a fluid-structure interaction 

algorithm for evaluation of a SES seal dynamics. The fluid solver developed for this purpose uses a 

potential flow approach along with a stream-line integration of the free surface. The work focuses on 

the free surface-structure interaction algorithm to simulate complex and highly non-linear dynamic 

behavior of the seals in the interface between the air cushion and the water.  

The developed fluid-structure interaction solver is based, on one side on an implicit iteration 

algorithm, communicating variables at memory level, and on the other side on an innovative wetting 

and drying scheme. 
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Special care has to be taken to ensure the convergence of the fluid-structure interaction algorithm 

due to the highly flexible and non-linear nature of the seal. We found that a relaxation method based 

on Aitkens’ methods worked well under all the cases analyzed. 

Finally, different validation and demonstration cases have confirmed the validity of the approach 

to study the dynamic behavior of the seals. 

 

 
Figure 54: LCC model setup sketch [79] 

 

 
Figure 55: Computational mesh for potential flow solver for LCC test case [79]. 

 

Table 26: Tests particulars [79] 

Breadth of cushion (m) 1.52 

Sidewall depth (m) 1.68 

Sidewall draft at zero immersion (m) 0.42 

Channel width (m) 3.05 

Number of Fingers 5 5 

Finger height (m) 1.00 

Finger width (m) 0.31 

Bow seal angle (º) 50.00 
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Table 27: Computational domain and numerical particulars 

Fingers 
Number of Nodes 7023 

Number of Elements 13436 

Water domain 
Number of Nodes 120942 

Number of Tetrahedron 659687 

Time step (s) 0.0005 

Domain length (m) 21 

 

 
Figure 56: Experimental results (a) [79] versus numerical results (b), (c) and (d).  Picture obtained in the experimental 

tests reported in [80] (a); Front view of deformed fingers (b); deformed finger detail (c); top view (d). 
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Figure 57: Numerical results for LCC test case [79]: free surface elevation (a) and top view of pressure distribution on fingers (b). 
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Chapter 10.  ANALYSIS OF COUPLED 

SEAKEEPING - SLOSHING PROBLEMS BY FEM-
SPH COUPLING   

 

10.1 Introduction 

The aim of this chapter is to carry out numerical simulations in the time domain of seakeeping 

problems taking into account internal flows in tanks, including sloshing. To achieve this aim, a Smooth 

Particle hydrodynamics (SPH) solver is coupled in the time domain to the FEM diffraction-radiation 

solver presented in sections 0- 2.3. 

There are a series of marine operations and/or navigation conditions in which the coupling between 

internal flow in tanks and seakeeping dynamics can be crucial in configuring the global dynamic 

response of the vessel. The assessment of such coupling effects may be thus extremely important in 

order to estimate the viability of certain operations as well as the risks associated to specific load 

conditions during navigation. Such navigation conditions and/or operations include: those carried out 

by offshore vessels, equipped with anti-roll tanks, commonly in the oil&gas industry, consisting of 

deploying piping systems, cables, drilling equipment, etc... (see e.g. [81]); those referred to the 

offloading of oil or liquefied natural gas (LNG) from an Floating Production, Storage and Offloading 

(FPSO), bunkering vessel or a floating LNG (FLNG) to a shuttle, regular vessel or LNG carrier, 

respectively, in side-by-side configurations (see e.g. [82]); the transport in partially filled tanks of such 

LNG or its storage in FLNG tanks (see [83] for a review on FLNG vessels hydrodynamics).  

Due to their large economic cost and much larger penalties in case of any unexpected problem, the 

planning of above mentioned operations or the definition of filling level thresholds of tanks require a 

deep understanding of the coupled dynamics between the vessel and the internal flows. In order to 

achieve such understanding it is important to notice that while the external dynamics can be usually 

resolved in relatively large time scales, the internal dynamics may incorporate violent sloshing flows, 

which requires resolving complex free-surface dynamics with much shorter time scales. In addition, 

when wave excitation is present, for low wave amplitudes the motions are usually linear with amplitude 

and frequency, while for moderate or large wave amplitudes the response can be extremely nonlinear. 

For these reasons, in order to simultaneously resolve the seakeeping and internal flow dynamics, 

different types of solvers are typically used for each of them. For instance, Zhao et al. [84] used a 
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frequency domain linear BEM approach to obtain hydrodynamic coefficients and wave forces, which 

is coupled in the time-domain with a nonlinear potential solver for the internal dynamics. Another 

example is the commonly cited reference of Kim et al. [85] who also resort to frequency domain 

calculations and resolve the internal flow modelled with Euler equations, with a finite difference 

scheme. With the same technique for ship motions Li et al. [86] solved the internal flows with the 

open-source volume of fluid based solver OpenFOAM. 

In order to solve the seakeeping dynamics, time domain diffraction-radiation solvers based on FEM 

can be an option [87]. Their capability to naturally incorporate non-linearities is larger than those time-

domain solvers based on frequency domain pre-calculations such as the ones used by [84], [85] or [86]. 

Those solvers have been successfully used, for instance, with coupled mooring models [87] and for 

side-by-side problems [88]. However seakeeping FEM based solvers, to the author’s knowledge, have 

not yet been used to model coupled sloshing and ship motions. Due to the onset of violent sloshing, 

internal dynamics can be extremely complex and therefore computationally expensive to resolve. In 

this context, SPH solvers can be a competitive option since, on the one hand, they are able to cope with 

extremely non-linear and fragmented free-surface flows, and on the other, they are easily parallelized 

with cost competitive graphic card processing units. 

SPH solvers have been successfully used in the past for solving coupled dynamics of single angular 

motion coupled with sloshing problems [89,90,91], and their parallelization with GPUs has recently 

been subject of significant attention (see e.g. [92,93,94,95]). In this work, the internal flow dynamics 

is solved using the pre-existing code AquaGPUSPH [96].  

This chapter is organized as follows: section 10.2 introduces the internal flow and wave diffraction-

radiation solvers; section 10.3 describes the rigid body dynamics solver; section 10.4 focuses on the 

details of the coupling algorithm, as well as in the communication between solvers; section 10.5 

presents a validation study comparing the results obtained in this work against experimental data 

available for three different case scenarios; finally, section 10.6 provides summary of this chapter. 

10.2 Internal flow solver: AQUAgpusph 

AQUAgpusph [96] is a recently released free 3D SPH solver, licensed under GPLv3, and 

accelerated with OpenCL. SPH is a meshless numerical method that was developed in the seventies 

and first applied in the nineties to free-surface flows [97], with consistency of the operators in these 

contexts demonstrated by [98,99,100]. A recent review on the SPH method can be found in [101]. 

AQUAgpusph uses the weakly compressibility assumption [97] in order to model incompressible 

flows. Its source code is available for downloading at [102]. AQUAgpusph validation is thoroughly 
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documented in [96, 103]. In [96] the solver is validated for impact pressure in dam-break flows and 

for the same TLD case studied by [89,90,91]. 

10.3 Inserting SPH loads 

Since the body dynamics solver is implicit and non-linear, it requires iterating in order to achieve 

convergence within each time step (the reader is referred to 0 for the details of the body dynamics 

solver). As shown in Figure 58, there are two iterative loops within each time step, and 𝑀̿ is the body 

mass matrix, 𝑋 is the body position vector, 𝑋̇ is the body velocity vector, 𝑋̈ is the body acceleration 

vector, 𝐹0 are the external forces other than the hydrodynamics and SPH ones, 𝐹𝐻 are the 

hydrodynamics ones, and 𝐹𝑆𝑃𝐻 are the internal tanks vector of forces and moments computed by the 

SPH solver. Superscript “n” represents the current time step, “k” represents the k-th iteration of the 

solver loop, and “l” represents the l-th iteration of the body dynamics loop. 

On the one hand, the outer loop iterates over the hydrodynamics solver obtained from the 

diffraction-radiation problem. On the other hand, the inner loop iterates over the body dynamics solver 

updating any other loads acting on the body dynamics. 

10.4 Coupling scheme 

10.4.1 Communication issues 

The seakeeping and internal flow solvers are independently developed and compiled. Therefore, 

the development and implementation of a communication strategy between them is a key point.   

The general idea of the designed coupling scheme is trivial: body movements calculated by the 

seakeeping solver are sent to the internal flow solver where forces and moments are evaluated and sent 

back to the seakeeping solver. For the exchange of data, the seakeeping solver has a TCL interface, 

allowing to execute TCL scripts that can access different internal data structures of the seakeeping 

solver during the calculation process. The internal flow solver includes a Python-based interface, 

developed to interchange data with external sources.   

In order to implement the communication scheme, a TCL script [104] was built. This script is 

responsible for the communication between the two programs. It is interpreted and executed by the 

seakeeping solver and communicates with different instances of the internal flow solver. Figure 59 

explains the communication scheme. 

The exchange of data is carried out with respect to an instantaneous reference system. Table 28 

and Table 29 show the data sent from the seakeeping solver to the internal flow solver and vice versa. 
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The instantaneous reference system at time t, R(t), is defined such that R(0) coincides with the 

global reference system OXYZ. R(t) describes the trajectory of the point of the rigid body located 

initially at the origin of the global system, and its axes XtYtZt remain parallel to the global axes. To 

further understand the reference systems used, a simple rigid body movement is presented in Figure 

60 showing the displacements and rotations. 

 

 
Figure 58: Body dynamics solver algorithm including loads from the internal flow solver.  

 

 
Figure 59: Communication scheme 
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Table 28: data sent from the seakeeping solver to the internal flow solver 

t Elapsed simulation time at each time-step 

R(t) = (XR(t), YR(t); ZR(t)) 
Coordinates of the body reference point R referred to the global 

system OXYZ  

Θ(t) = (Θx(t), Θy(t); Θz(t)) Rotation Angles referred to the global system OXYZ of the body 

VR(t) = (Vx(t), Vy(t); Vz(t)) 
Linear velocities of the body reference point R referred to the global 

system OXYZ 

ω(t) = (ωx(t), ωy(t); ωz(t)) Angular velocities of the body referred to the global system OXYZ 

 

Table 29: data sent from the internal flow solver to the seakeeping solver 

F(t) = (Fx(t), Fy(t); Fz(t)) Internal flow forces referred to the global system OXYZ 

M(t) = (Mx(t), My(t);Mz(t)) Internal flow moments referred to the global system OXYZ 

10.4.2 Coupling algorithm 

Since both solvers run in the time domain, the coupling is based on the exchange of data given in 

Table 28 and Table 29 at some specific time steps while both solvers are running. The time step 

required by the SPH solver (ΔtSPH) stability criteria is usually in the order of 10 to 1000 times smaller 

than the time step used by the seakeeping solver (ΔtFEM), depending on the case under study, the grid 

resolution and number of particles. Hence an explicit staggered approach was selected to couple both 

solvers. This scheme is summarized next: 

 

 
Figure 60: Rigid body movement and reference systems used. 
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Forces and moments calculated by the internal flow solver at 𝑡𝑖𝑚𝑒 = 𝑛Δ𝑡𝐹𝐸𝑀 are sent to the 

seakeeping solver. 

1. The seakeeping solver extrapolates forces and moments from the internal flow solver at 𝑡𝑖𝑚𝑒 =

(𝑛 + 1)Δ𝑡𝐹𝐸𝑀 using a five points Lagrange polynomial. 

2. The seakeeping solver calculates movements at 𝑡𝑖𝑚𝑒 = (𝑛 + 1)Δ𝑡𝐹𝐸𝑀. 

3. The seakeeping solver sends movements to the internal flow solver at 𝑡𝑖𝑚𝑒 = (𝑛 + 1)Δ𝑡𝐹𝐸𝑀. 

4. The internal flow solver runs from 𝑡𝑖𝑚𝑒 = 𝑛Δ𝑡𝐹𝐸𝑀 to  𝑡𝑖𝑚𝑒 = (𝑛 + 1)Δ𝑡𝐹𝐸𝑀 interpolating the 

body movements sent by the seakeeping solver. 

Figure 61 provides the details of the coupling algorithm implemented between the seakeeping and 

internal flow solvers. 

10.5 Validation 

10.5.1 Barge with water in tanks 

10.5.1.1 Case description 

In order to validate the present coupled internal flow-seakeeping solvers, experimental results 

obtained by [105] have been used to compare with. The experiments consist of the study of the 

seakeeping response of a barge-like ship, where a tank is extending over a relatively large part of the 

model. There are two tanks next to each other at the mid-ship whose transverse dimension is close to 

the model breadth (see Figure 62). 

Figure 63 shows the unstructured mesh used in the seakeeping solver for the present case study. 

The mesh size in the floating line is 2.5 cm, and a total of 236144 tetrahedral elements were used. 

10.5.1.2 Case 1: same water level in tanks 

The first case study to analyze is that where the water level is 19cm in both tanks. To achieve the 

target draft of 10.8cm, additional mass of 40kg was added on the deck of the barge. Table 30 provides 

the particulars of the barge including the additional mass. Only roll values were provided in Molin et 

al. [105]. Numerical simulations were carried out with free sway, heave and roll in order to better 

approximate the experiments. Since both tanks are filled with the same water level, and movements 

are occurring in the OYZ plane, only one tank was simulated and the second was assumed to behave 

equally.  

Figure 64 represents the experimental results for the case study where both tanks are filled with 

the same water level (19 cm). The roll RAO in the experiments was obtained via spectral analysis from 

irregular motion tests. The wave spectrum used was a JONSWAP with particulars provided in Table 

31. 
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SPH solver FEM solver 

Initialization: 

Setup python TCP server. 

Initialization: 

Establish connection with SPH server. 

Calculate: 

Static problem. 
WAIT 

Start time iteration at: TIME=0 

SEND 

F(t=0)  (weight of water in tank); M(t=0) 

RECEIVE 

F(t=0); M(t=0) 

 

WAIT 

EXTRAPOLATE 

Fe (t=∆𝑡𝐹𝐸𝑀)= F (t=0), 

Me (t=∆𝑡𝐹𝐸𝑀)= M (t=0) 

CALCULATE 

FEM runs from t=0 to t=∆𝒕𝐹𝐸𝑀 

R(t=∆𝑡𝐹𝐸𝑀), Θ (t=∆𝑡𝐹𝐸𝑀); VR(t=∆𝑡𝐹𝐸𝑀); W(t=∆𝑡𝐹𝐸𝑀) 

RECEIVE 

time=∆𝑡𝑆𝐹;  R(t=∆𝑡𝐹𝐸𝑀), Θ (t=∆𝑡𝐹𝐸𝑀); 

V(t=∆𝑡𝐹𝐸𝑀); W(t=∆𝑡𝐹𝐸𝑀) 

SEND 

time=∆𝑡𝑆𝐹;  R(t=∆𝑡𝐹𝐸𝑀), Θ (t=∆𝐹𝐸𝑀); 

VR(t=∆𝑡𝐹𝐸𝑀); W(t=∆𝑡𝐹𝐸𝑀) 

TIME=∆𝑡𝐹𝐸𝑀 

… 

TIME=i·∆𝑡𝐹𝐸𝑀 

CALCULATE 

SPH runs from t=(i-1)·∆𝑡𝐹𝐸𝑀 to t=i· ∆𝑡𝐹𝐸𝑀 
WAIT 

SEND 

F(t=i· ∆𝑡𝐹𝐸𝑀), M(t=i· ∆𝑡𝐹𝐸𝑀) 

RECEIVE: 

F(t=i· ∆𝑡𝐹𝐸𝑀), M(t=i· ∆𝑡𝐹𝐸𝑀) 

 

 

WAIT 

EXTRAPOLATE 

Fe (t=(i+1) ∆𝑡𝐹𝐸𝑀), Me (t=(i+1) ∆𝑡𝐹𝐸𝑀)  as: 

Fe ((i+1)· ∆𝑡𝐹𝐸𝑀)=f( F(i· ∆𝑡𝐹𝐸𝑀),  F( (i-1)· ∆𝑡𝐹𝐸𝑀),…) 

Me ((i+1)· ∆𝑡𝐹𝐸𝑀)=f( M(i· ∆𝑡𝐹𝐸𝑀), 

M( (i-1)· ∆𝑡𝐹𝐸𝑀),…) 

CALCULATE 

FEM runs from t=(i· ∆𝑡𝐹𝐸𝑀 ) to t=(i+1)·∆𝑡𝐹𝐸𝑀 

R(t=(i+1)· ∆𝑡𝐹𝐸𝑀), Θ (t=(i+1)· ∆𝑡𝐹𝐸𝑀); 

VR(t=(i+1)· ∆𝑡𝐹𝐸𝑀); W(t=(i+1)·) · ∆𝑡𝐹𝐸𝑀) 

RECEIVE 

time=i· ∆𝑡𝐹𝐸𝑀 

R(t=i· ∆𝑡𝐹𝐸𝑀), Θ (t=i· ∆𝑡𝐹𝐸𝑀); 

V(t=i· ∆𝑡𝐹𝐸𝑀); W(t=i· ∆𝑡𝐹𝐸𝑀) 

SEND 

time=i· ∆𝑡𝐹𝐸𝑀 

R(t=i· ∆𝑡𝐹𝐸𝑀), Θ (t=i· ∆𝑡𝐹𝐸𝑀); 

VR(t=i· ∆𝑡𝐹𝐸𝑀); W(t=i· ∆𝑡𝐹𝐸𝑀) 

Figure 61: Internal flow-seakeeping coupling algorithm 

 



130 

 

 
Figure 62: Barge with tanks. 

 

 
Figure 63: FEM mesh. 

 

Table 30: Barge main particulars including the additional mass of 40kg on deck. 

Length 3 m 

Breath 1 m 

Target draft 0.108 m 

Displacement 275kg 

XG 0 m 

YG 0 m 

ZG 0.14 m 

Radii of gyration respect to G: Rxx 0.3704 m 
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Table 31: Jonswap spectrum used in experiments. 

Peak enhancement factor 𝛄 2 

Significant wave height 𝐇𝐒 6.6 cm 

Peak period 𝐓𝐩 1.6 s 

 

 
Figure 64: Experimental results obtained in Molin et al. [105]. 

 

Monochromatic wave test 

First, a calibration of the roll damping to account for viscous effects is carried out. A 

monochromatic test with wave amplitude of 2 cm and wave frequency ω = 4.026 rad/s, which is 

where the first resonance appears, was used. The test was carried out with 105 particles and it was 

found that a roll damping factor of C = 0.11√4IxxK44 was necessary to reproduce the RAO value of 

the experiments. Ludvigsen et al. [106] reported a value of 8% of the critical damping. 

Second, several tests were carried out to check the effect of increasing the number of particles in 

the SPH solver. It was selected a wave frequency ω = 5.984 rad/s, which corresponds to the second 

resonance frequency in Figure 64. All cases were simulated including a damping factor of C =

0.11√4IxxK44 , where Ixx is the roll inertia of the system barge plus weights, and K44 is the roll 

hydrostatic restoring coefficient. 

Table 32 provides the roll amplitude obtained for each case. The amplification factor converges, 

slowly, to a value about 2.7. 

Table 32: Roll amplitude in rad/m for monochromatic test cases. 

Number of particles RAO Roll [rad/m] 

10,000 2.29 

35,000 2.45 

100,000 2.55 

250,000 2.60 

500,000 2.64 
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Irregular wave test 

Next a RAO analysis test is carried out. The irregular waves used in the numerical simulation 

correspond to a JONSWAP spectrum with similar characteristics of that used in the experiments (see 

Table 31). The discretization of the wave spectrum was done using 51 frequencies from 2.5 to 8 radians 

per second. Also a roll damping C = 0.11√4IxxK44 was used. 

Figure 65 compares the results obtained in the present work using 105 particles against those from 

experiments and calculated by WADAM in Ludvigsen et al. [106] using a potential flow approach to 

account for the fluid dynamics within the tank. It can be observed that while WADAM provides a 

smooth curve of results, experiments and the present work show irregularities. This might be because 

the SPH approach for the fluid flow in the tank is nonlinear, which contributes to energy transfer among 

frequencies. 

For frequencies around ω = 6 rad/s, experiments show larger values than those obtained in the 

computational analyses. On the other hand, results obtained in this work are a bit larger than those 

obtained by WADAM, and they both compare well with the experiment for frequencies away from 

ω = 6 rad/s. 

Computational time 

Table 33 provides some data regarding the computational effort needed for the present approach. 

The computational time corresponds to those cases presented in the monochromatic wave test. It is 

observed that the calculation of the fluid flow within the tank using the SPH with more than 3.5 ∙ 104 

particles is much more expensive than calculating the seakeeping behavior. Furthermore, if the number 

of particles is bumped up to 5 ∙ 105 then this solver takes more than 98% of the calculation time. 

10.5.1.3 Case 2: different water level in tanks 

The second case study is the case where the water level in one tank is 19 cm and in the other 39 

cm. No additional mass is necessary to achieve the target draft like in the previous case study. The 

wave amplitude distribution used to mimic the irregular wave conditions of the experiments is provided 

in the appendix. The discretization of the wave spectrum was done using one 101 frequencies ranging 

from 2.5 to 8 rad/s. Also a roll damping C = 0.11√4IxxK44 was used. The main particulars of the 

barge for this case study are given in Table 34. 

Figure 66 compares the results obtained in the present work against those from experiments and 

calculated by WADAM in Ludvigsen et al. [106]. One hundred thousand particles were used in the 19 

cm filling tank, and 2 ∙ 105 particles in the 39 cm filling tank. In this case study, three resonance peaks 

appear. For the first peak, with frequencies around ω = 4 rad/s, the largest deviation from numerical 

to experimental results is found. The second peak, with frequencies that are around ω = 5.25 rad/s 
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no apparent deviation of the frequency of the peaks is observed and the numerical results around the 

sharp peak achieve a very similar value to the experimental results. Finally, for frequencies around ω =

7 rad/s, no deviation in frequency is observed, but numerical results are below the predicted peak 

value. 

 

 
Figure 65: Results comparison among FEM-SPH coupling (present work), WADAM Ludvigsen et al. [106], and 

experiments Molin et al. [105]. 

 

Table 33: Computational time 

Number 
of particles 

𝚫𝐭𝐒𝐅 (s) 
Simulation 

time (s) 
Computational 

time (s) 
SPH 
(%) 

FEM 
(%) 

10,000 0.01 30 1938 33.5 66.5 

35,000 0.01 30 4109 68.4 31.6 

100,000 0.01 30 13110 88.5 11.5 

250,000 0.01 30 41577 95.5 4.5 

500,000 0.01 30 98616 98.2 1.8 

 

 
Table 34: Barge main particulars with no additional mass on deck. 

Target draft 0.108 m 

Displacement 275kg 

XG 0 m 

YG 0 m 

ZG 0.132 m 

Radii of gyration respect to G: Rxx 0.414 m 
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Figure 66: Results comparison among FEM-SPH coupling (present work), WADAM Ludvigsen et al. [106], and 

experiments Molin et al. [105]. 

10.5.2 Antiroll tank analysis 

Bai and Rhee [107] provided experimental RAOs, obtained in a model basin, for a supply vessel 

equipped with an anti-roll tank (ART).  Later on, Kim et. al [108, 85] carried out numerical simulations 

of a modified S175 hull in order to compare the results with the experimental data provided by Bai and 

Rhee [107]. The modified S175 hull used by Kim et. al was an approximation to the supply vessel used 

by Bai and Rhee and results obtained by Kim et. al numerically showed the same trends than the 

experimental ones. 

In this work, Kim et. al approach, using a modified S175 hull to approximate the supply one used 

by Bai and Rhee, has been followed. The same aspect ratios of beam to length, and draft to length used 

by Kim [85], for the modified S175 hull and the ART, have been considered. However, since no 

information regarding the exact geometry was found, neither for the position of the gravity center nor 

for the inertias. Thus some parameters as well as the hull form have been estimated. 

The S175 hull form provided by the ITTC web site was taken as a first estimate for the hull form. 

Then, it was proceeded to scale the ship to fulfill the aspect ratios provided by Kim et. al in [85]. The 

resulting geometry is provided in [109]. The longitudinal positions of the gravity center and ART were 

estimated as the longitudinal position of the buoyancy center. The transverse positions was set to Y = 

0 m, and the vertical position of the gravity center and roll radii of gyration were estimated to 

approximate roll RAOS results without ART provided by Kim et. al. [85]. Table 35 and Table 36 

provide the main particulars of the hull form and ART used in this work. Figure 67 shows the modified 

S175 hull with the ART in place. 
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Roll RAOs were obtained for a series of tests with monochromatic waves and were normalized 

with respect to the maximum wave slope A ∙ k, where A is the wave amplitude, and k the wave number. 

Also a damping factor of C = 0.04√4IxxK44 was used to calibrate the RAO value near resonance. 

Figure 68 compares the experimental results obtained by Bai and Rhee [107] with the numerical 

results obtained in this work where the results are shown with and without ART. Ten thousand particles 

were used in the SPH solver for the ART SPH simulation. The modified S175 was calibrated to show 

a behaviour similar to the supply vessel of Bai and Rhee without ART, as can be observed by 

comparing the RAOs without ART. When inserting the ART the results tend to be the same to the ones 

obtained by Bai and Rhee with a very similar reduction of roll movements. 

Figure 69 presents some snapshots of the modified S175 hull with the ART at the resonance wave 

frequency.  It can be observed that the roll motion is very small, and the fluid flow inside the ART is 

very nonlinear, exhibiting wave breaking phenomena. 

 

Table 35: Modified S175 main particulars without ART 

Length between perpendiculars (𝑳) 47.6 m 

Breadth 13.7088 m 

Draft 3.9984 m 

Displacement 1498.4 T 

XFP 23.8 m 

XAP -23.8 

XG -0.73 m 

YG 0 

ZG -0.25 m 

Radius of roll gyration Rxx 6.26 m 

 

Table 36: Particulars of the ART 

Length 2. 8 m 

Breadth 13.699 m 

Draft 2.4 m 

Filling 50 % 

XT (mid tank) -0.73 m 

YT (mid tank) 0 m 

ZT (base tank) -1.8564 m 
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Figure 67: Modified S175 hull with ART. 

 

 
Figure 68: Experimental vs present work. Roll RAOs for monochromatic wave tests with A/L = 0.005. Roll RAOs 

are obtained with maximum wave slope AK. 
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Figure 69: Snapshots of modified S175 with SRT for ω√L/g = 1.55 and A/L = 0.005. 

10.5.3 2D vessel including internal flows 

Zhao et al. [110] carried out a series of two-dimensional model tests to study the hydrodynamic 

performance of a FLNG section including internal flow oscillations. The FLNG section was ballasted 

with fresh water and equivalent solid weights respectively, to clarify the coupling effects. RAOs of 

both motion responses and internal sloshing flows were calculated based on measured data. Particulars 

of the vessel section, internal tank, and complete model are provided in Table 37-Table 39, and Figure 

70 shows the 3D FEM mesh model used for the simulation. 

A white noise spectrum, with an energy density approximated to the one used in the experiments, 

was used to carry out the simulations. It consists of 51 frequencies equally spaced between ωmin =

0.3918 rad/s and ωmax = 16.6165 rad/s, with a wave amplitude of A = 0.14 m. First of all, 

uncoupled simulations with the equivalent solid weight were carried out to calibrate damping 

coefficients. Comparing with the solid weight experimental results (see Figure 71 left), damping 

coefficients were estimated as  C33 = 0.2√4MK33 for heave, and C44 = 0.055√4IxxK44 for roll. 

Secondly, coupled simulations were carried out using around 104 particles within the tank. RAOs 

comparisons are provided in Figure 71 (right). 

Overall, the results obtained in this thesis fit well the experimental results provided by Zhao et al. 

[110]. Some differences appear regarding the resonance frequency in roll, which might be due to the 

experimental setup to enforce the 2D condition, which is not fully simulated in the computational 
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model. Besides, the numerical results for the coupled problem show a peak value in frequencies around 

the uncoupled resonance frequency with ω =∼ 0.6 rad/s. Although this effect is not present in the 

experimental results, it was observed in the previous case study with the ART (see Figure 68). 

Considering this, the appearance of this peak is not surprising, and whether it should appear or not is 

questionable. 

10.6 Summary 

In this chapter, a SPH flow solver and the FEM seakeeping solver were coupled to perform coupled 

simulations of seakeeping dynamics and internal flows in tanks simultaneously. Since both solvers run 

independently in the time-domain, a coupling algorithm, including a communication strategy, was 

developed. 

The SPH-FEM coupling showed to be effective for solving coupled seakeeping dynamics with 

internal flows including sloshing. It was validated for several cases against available experimental 

data, providing good agreement. For the specific case study of the modified S175 hull with ART, where 

sloshing effects were observed, good agreement was found, demonstrating the capability of 

incorporating highly non-linear phenomena. As a result, the proposed coupling strategy has the 

capability of performing complex seakeeping analysis coupled with highly non-linear internal flows 

in reasonable computational times. 

 

Table 37: Particulars of the internal tank (test case [110]). 

Tank Full scale model scale 

Length (m) 40 0.8 

Breadth (m) 10 0.2 

Water level (m) 18 0.36 

Mass (kg) 7.2 E+06 57.6 

ZG (m) -4.72 -0.0944 

Inertia respect to tank CG Ixx (kg m2) 1.15 E+09 3.69 

Radius of roll gyration Rxx (m) 12.7 0.25 

 

Table 38: Particulars of the vessel section (test case [110]). 

Section Full scale Model scale 

Length (m) 50 1 

Breadth (m) 17.5 0.35 

Mass (kg) 4.805 E+06 38 

ZG (m) -1.0473 -0.021 

Inertia respect to section CG Ixx (kg m2) 1.027 E+09 3.287 

Radius of roll gyration Rxx (m) 14.621 0.2924 
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Table 39: Particulars of the complete model (test case [110]). 

Complete model Full scale model scale 

Draft (m) 13.72 0.2744 

Mass (kg) 1.20 E+07 96.04 

ZG (m) -3.25 -0.065 

Inertia respect to complete model CG Ixx (kg m2) 2.22 E+09 7.1054 

Radius of roll gyration Rxx (m) 13.6 0.272 

 

 
Figure 70: FEM ·3D mesh for 2D cross section (test case [110]). 
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Figure 71: Experimental [110] versus present work. RAOs comparison. Solid case on the left, and liquid (coupled) 

case on the right. 
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Chapter 11.   ANALYSIS OF FLOATING WIND 

TURBINES RESPONSE 
 

11.1 Introduction 

Research trends in marine renewable energies have as one of its prominent topics the offshore wind 

energy. The technology for marine wind turbines is currently well-developed, but limited for fixed 

installations in shallow-water areas. The next horizon is focused on deep-water technology [111], but 

different challenges for Floating Offshore Wind Turbines (FOWT) are not solved yet [112], such as 

the dynamic stability in the presence of non-linear ambient loads [113]. In fact, an accurate prediction 

of the dynamic response of a FOWT, considering the interaction among the hydrodynamics, mooring, 

and aerodynamics of the turbine, is identified as one of the key challenges for the simulation tools 

required to design the future FOWTs [114,115,116]. 

Standard design procedures and simulation tools for marine structures come from the existing 

technology and from experience of the oil and gas industry offshore. For instance, the classic 

simulation approaches are based on uncoupled formulations, where the hydrodynamic response of the 

floater is linearised and can be decoupled from the mooring [117,118]. Recently, coupled simulations 

have been adopted to solve the seakeeping of FOWT devices, since the dynamic of FOWT offers a 

high complexity due to the variety of loads and non-linear effects. Anyhow, the interaction among 

different components, such as the wind turbine structure, the rotor dynamics, the mooring 

arrangements, and the floating structure must be taken into account in a more accurate way [119]. 

The analysis of FOWTs should be carried out with simulation codes capable to include the physics 

governing the dynamic response of these devices. With regards to marine structures, Low and Langley 

[120] showed that the dynamic response of a floating production system in a random sea can be split 

in two timescales: low frequency and wave frequency responses. Moreover the seakeeping of the 

floating device and the dynamics of the mooring lines are coupled. Then, the analysis should take into 

account the interaction between them, and the time-domain analysis seems to be the choice way to 

simulate this sort of coupled problems. In fact, the American Bureau of Shipping [121] considers that 

the global seakeeping analysis of a FOWT should take into account: the unsteady wind loads, wind 

turbine control systems, wind turbine-platform interaction, wave actions over the platform, currents, 

mooring loads, and any other types of external actions. It will be presented later on that the time-

domain approach allows handling these actions in a natural manner. 
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The frequency-domain approach has difficulties to accurately handle non-linearities such as those 

arising from the mooring lines, and the low frequency components of the wave-body interaction, as 

appointed by Low [122], while the time-domain analysis can straightforwardly include any non-

linearity within each time step in a natural manner. Details on the mooring models used in this chapter 

were developed by Gutiérrez-Romero in [123]. 

11.2 Validation of coupled seakeeping-mooring solver 

A fully coupled analysis of the OC3 spar buoy FOWT, named Hywind [124], is presented next. 

Main particulars of the FOWT are presented in [125,126], and a general view of the buoy concept can 

be observed in Figure 72 .  

 

 
Figure 72: General view of the spar buoy wind turbine concept (OC3-Hywind concept). 

11.2.1 RAO Analysis 

First, a RAO analysis is performed in the absence of wind. The frequency results generated by the 

seakeeping solver are obtained after applying a Fourier transform to the resulting time history of 
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displacements. Figure 73 shows an inter-code comparison, finding a good agreement among different 

solvers. 

11.2.2 Mooring analysis around pitch resonance 

Next the influence of three different mooring models on the OC3 spar buoy FOWT is analyzed. 

These models are: the linear cable model (that behaves as springs and is represented by a linearised 

mooring matrix [126]); the Quasi-Static model, similar to the one presented in [130]; and the dynamic 

model developed by Gutiérrez-Romero [123]. Six first-order monochromatic waves are used in the 

analysis. Key parameters of the mooring layout and cable properties can be found in Table 40. 

Figure 74 compares the pitch motion for each mooring model. It can be observed that there are big 

differences in the results around the pitch resonance (Tw = 30 s), while the results are quite similar for 

the cases with Tw = 10 s and Tw = 55 s. These results suggest that the use of the linear model can lead 

to big errors near resonance, and to magnify safety factors that contribute to an increase of costs. 

11.2.3 Simulation in operational conditions 

Four analyses of the OC3 spar buoy in operational conditions are presented. The different analyses 

are carried out in similar environmental conditions, but using first-order and second-order irregular 

waves. Furthermore, additional studies including Quasi-Static and dynamic mooring models are 

performed. The goal of these analyses is to evaluate the effects of the mooring model and the wave 

order on the dynamics of the system, as well as to estimate tensions in the mooring lines. 

On the one hand, the wind turbine system is assumed to be operating at an average wind speed of 

11.4 m/s, which generates the maximum thrust and torque. FASTLognoter [127,128] has been used to 

linearise with FAST [127], the behavior of the wind turbine around the operating wind speed. Restoring 

and damping matrices resulting from the linearization of the wind turbine system are included into the 

global dynamics. It should be remarked that the rotational and periodicity effects are considered in the 

calculation of the steady state matrix. In addition, the wind loads are estimated considering non-

uniform wind flow, with an average wind speed of 11.4 m/s. The wind flow profile is obtained using 

Turbsim [129], and the wind loads on the wind turbine are obtained from FAST/AeroDyn [127]. A 

JONSWAP spectrum with a mean wave period Tm= 12.0 s, and significant wave height Hs= 6.0 m is 

considered. The key parameters of the different case studies are presented in Table 41. 

Two different types of mooring models are analyzed; one based on the Quasi-Static catenary model 

[130], and the other based on the dynamic cable model solved by a non-linear FEM formulation 

(NFEM) [123]. For the dynamic cable analysis, each mooring line is divided into 200 elements. Figure 

75, Figure 76, and Figure 77 show the computed heave, roll and pitch motions for 300 s. Noticeable 
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differences are found between the first-order and second-order movements, while the quasistatic (QS) 

and NFEM mooring models offer quite similar results. Table 42 shows the mean and RMS values, as 

well as the motion amplitude for the first-order and second-order movements. When comparing the 

QS and the NFEM models, only slight differences are observed. In particular, the second-order pitch 

motion is higher when using the NFEM model, compared to the QS model, while the other values 

remain with similar trends for both models. Figure 78 shows the tension for each mooring line at the 

fairlead point. Table 43 compares the maximum, minimum, average, and RMS tension values at the 

fairlead points, obtaining similar values for both mooring models. It is emphasized that the NFEM 

mooring model allows considering dynamic effects which are not taken into account by QS models. 

However, in deep water, it was reported [120] that dynamic effects are negligible for catenary type 

lines. 

 

 
Figure 73: OC3-Hywind concept. Comparison between the computed results with those from [131] for a rigid wind 

turbine with no wind. 
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Table 40: Key parameters of pitch resonance study [126] 

Item Value Value 

Wave amplitude [m] 1.0 m 

Wave period [s] 10, 20, 25, 35, 40, 55 

Number of mooring lines 3 

Angle between adjacent lines [º] 120 

Anchors depth (below SWL) [m] 320 

Fairleads depth (below SWL) [m] 70 

Fairleads radius from Centerline [m] 853.9 

Mooring line 

Unstretched length [m] 902.2 

Diameter [m] 0.9 

Linear mass density [kg/m] 77.71 

Extensional stiffness [N] 3.84x108 

11.3 Summary 

The Hywind FOWT has been analyzed under realistic operational conditions. Second-order 

coupled simulations have been carried out considering a real wind profile, and with two types of 

mooring models; the QS and the NFEM. Results from both models have been compared, and the 

comparison suggests that using a QS model for the fatigue assessment of mooring lines could 

overestimate their fatigue life. 

 

Table 41: Key parameters of fully coupled simulations for Hywind floating offshore wind turbine 

 Case 1 Case 2 Case 3 Case 4 

Average wind velocity [m/s] 11.4 11.4 11.4 11.4 

Wind direction [º] 0 0 0 0 

Wave spectrum Jonswap 1st Jonswap 1st Jonswap 2nd Jonswap 2nd 

Significant wave height [m] 6.0 6.0 6.0 6.0 

Peak period [s] 12 12 12 12 

Mean wave direction [º] 0 0 0 0 

Mooring model QS Nonlinear-FEM QS Nonlinear-FEM 

Number of mooring lines 3 3 3 3 

Number of elements per line 200 200 200 200 
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Figure 74: Results obtained for mooring analysis around pitch resonance of OC3-Hywind. 
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Figure 75: Comparison between heave motion for first and second-order wave environment for Case 1-4 . 

 

 
Figure 76: Comparison between roll motion for first and second-order wave environment for Case 1-4. 

 

 
Figure 77: Comparison between pitch motion for first and second-order wave environment for Case 1-4. 
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Figure 78: Comparison of fairlead tension of each mooring line for Cases 3 and 4. 

 
Table 42: Comparison between mean, amplitude and RMS values of FOWT motions for first and second-order wave 

environment 

QS 

 Surge [m] Sway [m] Heave [m] Roll [deg] Pitch [deg] Yaw [deg] 

Mean 1st 0.04 0.00 0.00 0.29 0.41 0.21 

Mean 2nd 0.04 0.00 0.00 0.29 0.41 0.21 

Amplitude 1st 14.96 1.34 2.75 1.91 6.12 10.38 

Amplitude 2nd 14.96 1.34 2.75 1.91 6.12 10.38 

RMS 1st 2.76 0.21 0.53 0.52 1.09 1.92 

RMS 2nd 2.73 0.24 0.45 0.48 1.22 1.91 

NFEM 

 Surge [m] Sway [m] Heave [m] Roll [deg] Pitch [deg] Yaw [deg] 

Mean 1st 0.00 0.00 -0.01 0.29 0.40 0.21 

Mean 2nd 0.10 0.00 -0.03 0.30 0.42 0.28 

Amplitude 1st 13.82 1.12 2.61 1.92 6.03 10.31 

Amplitude 2nd 15.19 1.55 2.59 2.02 8.00 10.83 

RMS 1st 2.54 0.18 0.50 0.5 1.09 1.92 

RMS 2nd 2.73 0.24 0.45 0.48 1.22 1.91 

 

Table 43: Comparison between maximum, minimum, max-min, mean, and RMS values of fairlead tension for Quasi-

static and Dynamic mooring models 

Line Case Max [MN] Min [MN] Max-Min[MN] Mean [MN] RMS [MN] 

1 3 1.435 1.073 0.362 1.250 1.252 

2 3 1.446 1.072 0.374 1.240 1.242 

3 3 0.7411 0.5209 0.220 0.5991 0.6003 

1 4 1.457 1.052 0.405 0.1246 1.248 

2 4 1.471 1.040 0.431 1.236 1.238 

3 4 0.7421 0.4510 0.291 0.5923 0.5936 
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Chapter 12.   ANALYSIS OF AN OSCILLATING 

WATER COLUMN DEVICE 
 

12.1 Introduction 

Nowadays, harvesting marine energy is being investigated in order to obtain clean and renewable 

energy. Among all the designs for that purpose, one of the most relevant is the one based on the 

oscillating water column (OWC) principle. This chapter aims at showing how to analyze the energy 

extraction performance of an oscillating water column device with the simulation tools developed in 

this thesis.  

12.2 Oscillating water column device 

The OWC device considered in this thesis consists of an empty circular column, completely opened 

at its base, and with a small opening at the top side that works as an inlet for a turbine. The column is 

placed fixed in the sea under the action of waves, which induce an oscillating movement of the free 

surface trapped inside the column. This oscillating movement induces airflow across the turbine, which 

converts the wave energy into mechanical energy. Moreover the pressure inside the OWC changes and 

this pressure variation is to be taken into account within the dynamic free surface condition. Figure 79 

shows the geometry and main particulars of the device to be analyzed. 

12.3 Environment and computational domain  

A 10 m deep water domain is considered. In order to be able to solve accurately the wave diffraction 

problem, a mesh size of 0.2 m for the OWC device and a mesh size of 0.5 m for the near field volume 

are used. A wave damping zone is created starting at 7 meters away from the OWC centerline in order 

to dissipate the diffracted waves. The resulting mesh consists of 52388 nodes and 301545 elements 

(see Figure 80). 

12.4 Turbine model 

A wells type turbine has been chosen for the analysis of the OWC turbine. The pressure drop across 

the turbine and the power generated are modeled with the following equations: 
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|, (12-2) 

where 𝑄 is the airflow across the turbine in 𝑚3/𝑠, 𝑝 is the pressure inside the OWC chamber in Pa, 

and P is the power generated by the turbine in  Kw. Figure 81 shows the characteristics curves of the 

turbine model. 

 

 
Figure 79: OWC particulars (lengths in meters). 

 

The airflow is instantaneously calculated by derivation respect to time of the free surface volume 

variation within the OWC chamber. Then, the corresponding instantaneous pressure is imposed in the 

wave diffraction problem via the dynamic free surface boundary condition. 

12.5 RAO analysis 

In a first step of the analysis, the OWC column if subject to a white noise wave spectrum in the 

absence of the turbine in order to analyze water level response inside the OWC at different wave 

periods. Figure 82 shows the RAOs obtained for different wave periods. It can be observed that there 
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is a resonance peak at 𝑇 = 3.95 𝑠 approximately, while the RAO goes to zero for short waves and to 

unity for long waves. 

 

 
Figure 80: Left: OWC mesh close up. Right: computational domain mesh. 

 

 
Figure 81: PTO model. 

 

 
Figure 82: RAOs for OWC device. 
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12.6 Analysis in irregular waves 

Table 44 shows the main particular of the environmental conditions under which the OWC is to be 

analyzed. The OWC resonant period has been chosen as the mean wave period. The analysis time has 

been set to 300s. Figure 83 represents a snapshot of the free surface elevation outside and inside the 

WC device. Figure 84 shows the instantaneous flow Q, pressure inside the chamber p, power generated 

P, and the average power  𝑃𝑎𝑣𝑒 produced till the corresponding time. For the given sea state, turbine, 

and OWC geometry, the average power produced is in the order of 1Kw. 

Table 44: Environmental particulars 

Water depth 10 m 

Spectrum type Jonswap 

Mean wave period 3.95 s 

Significant wave height 1 m 

Wave spreading angle 60 deg 

12.7 Summary 

A specific OWC device with a circular cylinder shape has been analyzed. First, a RAO analysis 

was carried out in order to find where resonance effect occurs. Second, an estimation of the power 

production under irregular sea conditions has been performed. Notice that the turbine equations used 

here are non-linear, leading to a non-linear response when solving the wave diffraction problem. For 

this reason, a time domain approximation as the one used here is an appropriate approach to handle 

this sort of non-linearities. 

 
Figure 83: Irregular sea and OWC device. 



153 

 

 
Figure 84: OWC outputs; instantaneous airflow (upper-left); instantaneous pressure (upper-right); instantaneous power 

(lower-left); and average power (lower-right). 
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Chapter 13.   ANALYSIS OF A PELAMIS TYPE 

DEVICE 
 

13.1 Introduction 

Among all the designs conceived for extracting energy from waves, the Pelamis, manufactured by 

Pelamis Wave Power, is a snake shape artefact that converts wave energy through the relative 

movements between bodies of a multibody system (see Figure 85). Nowadays, several full scale 

Pelamis devices have been deployed and are being tested. 

The Pelamis type consists of a set of bodies connected by joints and with a snake shape. This 

system will rearrange its shape due to the action of waves, and therefore energy can be extracted from 

the relative movement across consecutive segments. This chapter aims at showing how to analyze the 

energy extraction performance of Pelamis type device. 

 

 

Figure 85: Pelamis device. 
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13.2 Pelamis type device 

The device considered in this thesis is a very simplify model of the actual Pelamis. It consists of 

two circular cylinders connected by a hinge type connector. Then, an energy extracting system is used 

to extract energy from the relative pitch velocity, acting as well as a pitch damper. Its main particulars 

are shown in Table 45 while Figure 86 shows the geometry of the connector and power take off (PTO) 

system. 

Table 45: Segments particulars 

Length 34 m 

Beam 5.5 m 

Draft 3.404 m 

Distance between segments 1.5 m 

XG (from stern side) 17 m 

YG 0 

ZG -1 

Radii of inertia rxx 2.4 m 

Radii of inertia ryy = rzz 12.3 m 

 

 

 
Figure 86: Connection and PTO. Top: front view; down: top view 

13.3 Connection system 

13.3.1 Spherical joint 

Two elements are said to be linked by a spherical joint when they have one point each (𝑃1 and 𝑃2) 

occupying the same position in space regardless of the body movements. This condition can be written 

in vector form as (see Figure 87): 

𝑂𝑃1
⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  𝑂𝐺1

⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑅̿(1) 𝐺1𝑃⃗⃗⃗⃗ ⃗⃗  ⃗ = 𝑂𝐺2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑅̿(2) 𝐺2𝑃⃗⃗⃗⃗ ⃗⃗  ⃗ = 𝑂𝑃2

⃗⃗ ⃗⃗ ⃗⃗  ⃗, (13-1) 

where 𝑅̿(𝑖) is the rotation matrix of the i element. Eq. (13-1) consists of three equations, one for each 

coordinate. 
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The rotation matrix is defined using the Tait-Bryan angles following the roll-pitch-yaw criterion: 

𝑅̿ = 𝑅̿𝑧𝑅̿𝑦𝑅̿𝑥, (13-2) 

where 𝑅̿𝑥, 𝑅̿𝑦, and 𝑅̿𝑧 are the rotation matrices for pure rotations around the x, y, and z axis.  

Equation (13-1) can be written as a set of three equations, one for each coordinate: 

𝑓𝑖 (𝒙
(1)(𝑡), 𝒙(2)(𝑡)) = 𝑥𝑖

(1)
+ 𝑟𝑖1

(1)
 𝑝𝑥

(1)
+ 𝑟𝑖2

(1)
 𝑝𝑦

(1)
+ 𝑟𝑖3

(1)
 𝑝𝑧

(1)
 

                                    −𝑥𝑖
(2)

− 𝑟𝑖1
(2)

 𝑝𝑥
(2)

− 𝑟𝑖2
(2)

 𝑝𝑦
(2)

− 𝑟𝑖3
(2)

 𝑝𝑧
(2)

= 0, 
(13-3) 

where 𝑥𝑖
(𝑗)

 represent the linear displacements of element j, 𝑟𝑖1
(𝑗)

is the matrix coefficient of the rotation 

matrix for element j, and 𝑝𝑥
(𝑗)

, 𝑝𝑦
(𝑗)

, 𝑝𝑧
(𝑗)

 are the initial coordinate of point P respect to element j. 

Coefficients 𝑟𝑖1
(𝑗)

 depend on the roll, pitch, and yaw rotation angles. 

13.3.2 Revolute joint 

In the specific case of this work, the connecting system works as a revolute joint (or hinge). This 

joint restricts five degrees of freedom, therefore a five constraint equations system must be defined. 

The revolute joint is modeled as two spherical joints located on the rotation axis. However, two 

spherical joints require six equations instead of five, and one must be discarded since otherwise the 

system of equations would not be linearly independent. 

In this specific case, the initial rotation axis is parallel to the y axis. Then, the equations regarding 

the displacement of the joints in the y direction are redundant, and one of them must be eliminated.  

As a result, five constraints equations are left defining the hinge between segments. Once the 

constraints equations of the revolute joint have been obtained, they are introduced within the body 

dynamics of the system via Lagrange multipliers as described in section 4.5. 

13.4 PTO model 

Real PTO models of actual Pelamis devices are quite complex and information regarding how they 

work is not publicly available. Hence in this demonstration case and for the sake of simplicity, a 

simpler PTO model will be used. 

The PTO is assumed to work as a pitch damper, where the reaction of the dampers produce a pitch 

moment in the opposite direction of the relative pitch velocity, and whose magnitude is proportional 

to the relative velocity. The mathematical model describing this system is: 

𝑀𝑦
(1)

= −𝐾𝑃𝑇𝑂(𝜔𝑦
(1)

− 𝜔𝑦
(2)

), (13-4) 

𝑀𝑦
(2)

= −𝐾𝑃𝑇𝑂(𝜔𝑦
(2)

− 𝜔𝑦
(1)

), (13-5) 
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𝑃 = 𝐾𝑃𝑇𝑂(𝜔𝑦
(2)

− 𝜔𝑦
(1)

)
2

, (13-6) 

where 𝑀𝑦
(𝑖)

  and 𝜔𝑦
(𝑖)

 represent the pitch movements and angular velocity for segment (𝑖), 𝐾𝑃𝑇𝑂 is a 

constant value depending on the PTO design, and P is the instantaneous power extracted. 

 

 
Figure 87: Spherical joint. 

 

The PTO system is taken into account within the body dynamics by introducing the corresponding 

pitch moment as an external moment. Hence the PTO pitch moment is updated at every iteration of 

the body dynamics solver. 

13.5 Computational domain  

A 100 m deep fluid domain is considered. A mesh size of 0.5 m for the device and surroundings 

and a mesh size of 5 m for the near field volume have been used. A damping zone is located starting 

at 200 meters away from the device. The resulting mesh consists of 135153 nodes and 784579 elements 

(see Figure 88). 

13.6 Wave environment and mooring system 

13.6.1 Wave environment 

The wave environment is considered an irregular sea modelled with a Jonswap spectrum with a 

mean wave period of 11s, significant wave height of 2.5m, and a wave spreading angle of 30 degrees. 

The mean direction of propagation is along the x axis, which is parallel to the longitudinal direction of 

the device. A total number of 55 monochromatic waves have been used to reproduce the irregular sea. 
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Figure 88: Left: Device mesh close up. Right: computational domain mesh. 

13.6.2 Mooring system 

The device is moored by means of three catenary lines. All of them are connected to the bow of 

the first segment, and then spread towards the sea bottom with a spreading angle of 120º between lines. 

The main particulars of the mooring system are given in Table 46. 

Table 46: Mooring lines particulars 

Length 267.4 m 

Sectional area 7.85398E-003 m2 

Linear density 525.64 kg/m 

Young modulus 210 GPa 

13.7 PTO optimization in irregular waves 

In order to optimize the device performance under the sea conditions defined in the previous 

section, different values of KPTO have been considered. Simulations have been carried out for 1 hour, 

where average power production has converged.  

Table 47 provides the average power production for each value of the PTO, and Figure 89 shows 

it in a graph. For KPTO around 5x107 the average power production reaches the maximum value of 26 

kw. 

Figure 90 shows the instantaneous moment and power, and average power. Figure 91 shows the 

instantaneous surge, heave, and pitch movements of the device for the specific case  𝐾𝑃𝑇𝑂 =

50 𝑀𝑁𝑚/(𝑟𝑎𝑑/𝑠).  In Figure 92, a snapshot of the device, including the mooring lines and free 

surface elevation, can be observed. 
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13.8 Summary 

A Pelamis type device has been analyzed to show the capabilities of the solver to simulate a 

multibody system with body links. The device consists of two segments coupled by means of a revolute 

joint (hinge type), and with a simple PTO system that works as a relative pitch damper between 

segments. Simulations have been carried out to show how to tune PTO parameters for which the 

maximum average power under given environmental conditions is produced. 

 

Table 47: Average power generated versus PTO arrangement 

𝑲𝑷𝑻𝑶 (
𝑴𝑵 ∙ 𝒎

𝒓𝒂𝒅/𝒔
) 𝑷𝒂𝒗𝒆𝒓𝒂𝒈𝒆 (𝑲𝒘) 𝑲𝑷𝑻𝑶 (

𝑴𝑵 ∙ 𝒎

𝒓𝒂𝒅/𝒔
) 𝑷𝒂𝒗𝒆𝒓𝒂𝒈𝒆 (𝑲𝒘) 

5 7.25 100 23.2 

10 12.7 200 15.9 

20 19.7 500 7.37 

50 26.1 1000 3.80 

 

 
Figure 89: Average power production versus log(KPTO). 



161 

 

 
Figure 90: PTO data for KPTO = 5 ∙ 107 Nm/(rad/s). 
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Figure 91: Surge, heave, and pitch movement of the device for KPTO = 5 ∙ 107 Nm/(rad/s).



163 

 

 

 

 

 

 

 

Figure 92: Snapshots of the device for KPTO = 5 ∙ 107 Nm/(rad/s). 
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Chapter 14.   CONCLUSIONS 
 

14.1 Conclusions 

The objective of this thesis has been to develop numerical algorithms and implement them as a 

numerical tool to simulate seakeeping behavior and wave resistance of ships and floating structures. 

The first tool developed is a wave diffraction-radiation solver. It is based on the finite element method 

in order to solve the fluid flow model, governed by the Laplace equation. Two different cases are 

considered depending on whether or not convective terms in the free surface boundary conditions are 

dominant. 

When convective terms are second order, a mathematical model for the seakeeping problems is 

presented in Chapter 2. It has been found that a fourth-order Padé scheme performs well to solve the 

free surface boundary condition with uniform and constant free surface pressure. An extension of the 

latter scheme has been provided to take into account free surface pressure variations. A number of 

verification and validation cases have been carried out in Chapter 5, as well as inter-code comparison 

with other methods. The numerical results obtained in this thesis compare well with the analytical, 

experimental, and numerical results obtained by other methods. 

A mathematical model for the wave making resistance and added resistance in waves when 

convective terms are of first order has been presented in Chapter 3. Two different numerical schemes 

have been proved to perform well to solve the free surface condition with first-order convective terms: 

the FEM-SUPG and the streamline integration scheme. Moreover, special attention is given to the 

second order terms depending on the first-order solution since they are responsible for the added 

resistance in waves. Verification and validation cases have been carried out in Chapter 6. The 

numerical results obtained in this thesis compare well with analytical and experimental ones. In the 

experimental comparisons, due to the large scattering found in the experimental data, it is difficult to 

find a fair fitting, but trends are well captured. 

In 0 the mathematical and numerical models to solve rigid body dynamics of multibody systems 

with body links has been presented. This tool has been integrated along with the wave diffraction-

radiation solver, so that multi-body systems interacting with waves can be solved. The rigid body 

dynamics solver is used in most verification and validation cases across the thesis. In particular, in 

Chapter 7, a verification case for the body links, based on a rotating ring, is analyzed. The results show 

a good performance of the solver with body links. 
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Solver acceleration is another topic considered in this thesis. Most of the CPU time required by the 

developed tools is spent in solving the linear system of equations resulting from the discretization of 

the fluid domain to solve the Laplace equations. Two techniques have been considered to this purpose: 

solver deflation and the use of graphic processing units (GPUs). 

Regarding solver deflation, a method for domain decomposition required by deflated solvers has 

been proposed. Such a method is capable of effectively reducing solver iteration, and the larger the 

system of equations, the larger the reduction that can be achieved. However, a reduction in the number 

of iterations does not always lead to a reduction of CPU time. Therefore care must be taken when using 

a deflated solver. 

It has been proven that the use of GPUs can speed up the wave diffraction-radiation solver, and 

comparisons against CPU have been performed for a number of cases using different preconditioners 

and architectures. In general, it has been found that using the GPU is faster that using a serial execution 

in a CPU for similar software generations. 

In Chapter 9 coupling algorithms with other numerical tools in order to solve multi-physics 

problems have been tailored. In particular the coupling with a MEF structural solver to solve fluid-

structure interaction problems. The dynamics of the interaction between the free surface and the seals 

of a surface effect ship has been analyzed. For this sort of analysis, a fluid-structure coupling algorithm 

has been developed, as well as an algorithm for limiting the free surface elevation by a solid surface. 

Comparison with experimental results shows a good agreement in the analysis of the seal deformation 

of a SES. 

In 0, a coupling strategy with a solver capable of simulating internal flows in tanks has been 

developed. The objective is to solve couple seakeeping-sloshing problems. Several validations cases 

have been simulated. Results show good agreement in general with the experimental results. 

A mooring solver has been coupled with the tools developed in this thesis to carry out numerical 

simulations of a floating offshore wind turbines. A coupling algorithm has been designed and 

explained in detail to include mooring in Chapter 11. It has been used to analyze the Hywind (the OC3 

offshore spar buoy wind turbine). For this case study, second order simulations have been performed. 

Aerodynamic loads have been considered for a fully coupled simulation. As a result, movements of 

the whole system and mooring lines loads have been obtained. 

Finally Chapter 12 and Chapter 13 show two demonstration cases on how to use the developed 

tools to analyze two different wave energy converters. The first one is based on the oscillating water 

column principle. In this case, variations of pressure on the free surface have to be taken into account 

to be able to simulate the interaction between the power take off system and the free surface. As a 

result, the pressure inside the chamber, and the instantaneous and average power take off can be 
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obtained. The second device is a Pelamis type device, where wave energy is extracted by means of the 

relative movements between two floating bodies. These bodies are connected by a mechanical system 

that imposes kinematic links between the two bodies. An optimization of this mechanical system has 

been performed in order to maximize the power extraction in one case scenario. 

14.2 Future work 

The author is currently one of the principal researchers of the X-SHEAKS project, focussing on 

the development of a mixed particle and FEM formulation tailored for seakeeping problems. This new 

method is based on a mixed Lagrangian-Eulerian formulation, where convective terms are solved via 

the Lagrangian formulation using particles, and the non-convective terms are solve via classical FE 

formulation. This new method is expected to be able to handle highly non-linear free surface problems 

such as wave breaking, sloshing, spray formation in high speed crafts, etc.  

X-SHEAKS is a collaborative project between CIMNE and ETSIN supported by the “Ministerio 

de Economía y Competitividad”, project ENE2014-59194-C2-1-R. 
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fluid–structure interaction algorithm for analysis of the seal dynamics of a Surface-Effect Ship.  
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FEM coupling. Submitted to Ocean Engineering. 
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14.4 SeaFEM 

The author of this thesis is the main developer of SeaFEM [132], a seakeeping software developed 

at the International Center for Numerical Methods in Engineering (CIMNE) in collaboration with 

CompassIS. SeaFEM is a suite of tools for seakeeping and wave resistance problems, including a wave-

diffraction radiation solver, a body dynamics solver capable of including kinematic constraints (body 

joints), and a mooring solver, as well as utilities to define mooring systems and Morison elements. The 

first and second order wave diffraction-radiation solver, body dynamics solver (including body links), 

acceleration techniques, coupling strategies, and wave spectra discretization implemented in SeaFEM 

are based on the work presented in this thesis. 
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APPENDIX A.   STATISTICAL DESCRIPTION OF 

WAVES 
 

A.1 Glossary 

𝑆(𝜔, 𝛼) Two dimensional wave energy density distribution 

𝐴 Wave amplitude 

𝑇 Wave period 

𝜔 Wave angular frequency 

𝑘 Wave number 

𝛼 Wave direction 

𝜂 Wave elevation 

𝛿 Wave phase 

𝐻 Water depth 

𝐻𝑆 Significant wave height 

𝑇𝑚 Mean wave period 

𝑇𝑝 is the peak wave period 

𝑚0 Zero order moment of wave energy distribution 

𝑚1 First-order moment of wave energy distribution 

Nw Number of waves involved in the white noise spectrum for RAOs analysis 

Tmin Minimum period for RAOs analysis 

Tmax Maximum period for RAOs analysis 

∆f Frequency increment of the analysis 

A.2 Introduction 

This chapter aims at explaining the wave spectra used in this thesis to represent irregular seas, as 

well as the discretization used for that purpose. Moreover, it is explained how response amplitude 

operators can be obtained by Fourier analysis using irregular waves. 

A.3 Spectrum discretization 

Let 𝑆(𝜔, 𝛼) be an energy density spectrum describing a sea state in terms of the wave frequency 

and direction of propagation. The discretization procedure to obtain a stationary and ergodic realization 

based on monochromatic waves is as follows: 



174 

 

Let 𝜔𝑚𝑖𝑛 be the minimum frequency to be considered, 𝜔𝑚𝑎𝑥 the maximum frequency to be 

considered, 𝛼𝑚𝑖𝑛 the lower direction of propagation to be considered, 𝛼𝑚𝑎𝑥 the larger direction of 

propagation to be considered, 𝑁𝜔the number of wave frequencies, and 𝑁𝛼 the number of wave 

directions to be considered. Then, the frequency and direction discretization sizes are given by: 

∆𝜔 =
(𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛)

𝑁𝑤
, 

Δ𝛼 =
(𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)

(𝑁𝛼 − 1)
, 

(A-1) 

and the wave elevation is given by: 

η =  ∑∑𝐴𝑖𝑗 cos(𝑘𝑖𝑗𝑐𝑜𝑠(𝛼𝑗)𝑥 + 𝑘𝑖𝑗𝑠𝑖𝑛(𝛼𝑗) − Ω𝑖𝑗𝑡 + 𝛿𝑖𝑗)

𝑁𝛼

𝑗=1

𝑁𝑤

𝑖=1

, (A-2) 

where Ω𝑖𝑗  is the wave angular velocity and a random variable with uniform distribution within [𝜔𝑖 −

Δ𝜔

2
, 𝜔𝑖 +

Δ𝜔

2
], 𝜔𝑖 = 𝜔𝑚𝑖𝑛 + (𝑖 − 1/2)Δ𝜔, 𝛼𝑗 = 𝛼𝑚𝑖𝑛 + (𝑗 − 1)Δ𝛼, 𝛿𝑖𝑗 is a random variable with 

uniform distribution in [0,2𝜋], 𝑡 represents time, and x,y are the horizontal Cartesian coordinates. The 

wave number is obtained from the dispersion relationship: 

Ω2
𝑖𝑗 = 𝑔𝑘𝑖𝑗tanh (𝑘𝑖𝑗𝐻) (A-3) 

and the wave amplitude is calculated from the wave energy distribution as: 

A𝑖𝑗 = √2Δ𝜔Δ𝛼 𝑆(𝜔𝑖, 𝛼𝑗)

1
16𝐻𝑆

2

∑ √2Δ𝜔Δ𝛼 𝑆(𝜔𝑙, 𝛼𝑚)𝑙,𝑚  
, (A-4) 

where 𝐻𝑆 = 4√𝑚0 is the significant wave height, and 𝑚0 = ∫ ∫ 𝑆(𝜔, 𝛼)𝑑𝜔𝑑𝛼
𝜋 

−𝜋

∞

0
  is zero order 

moment of the spectrum wave energy. 

A.4 Convergence 

Convergence of the discretized spectrum will happen as  𝜔𝑚𝑖𝑛 → 0, 𝜔𝑚𝑎𝑥 → ∞, Δ𝜔 → 0, 𝛼𝑚𝑖𝑛 →

−𝜋, 𝛼𝑚𝑎𝑥 → 𝜋, and Δ𝛼 → 0. The rate of convergence with Δ𝜔 and Δ𝛼 is that of the rectangle rule of 

numerical integration. 

A.5 Spectral moments 

A.5.1 Zero order moment 

The spectral energy of a wave spectrum is given by: 𝑚0 = ∫ ∫ 𝑆(𝜔, 𝛼)
𝜋

−𝜋

∞

0
𝑑𝜔𝑑𝛼 =

1

16
𝜌𝑔 𝐻𝑆

2 . 

Then, the discrete spectrum is scaled such that the spectral moment 0m  is conserved. Therefore: 
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∑
1

2
𝐴𝑖𝑗

2

𝑖,𝑗

=
1

16
𝐻𝑆

2. (A-5) 

A.5.2 First-order moment 

The first-order moment of the discrete spectrum is: 

𝑚1
∗ = ∑𝑆(𝜔𝑖, 𝛼𝑗)Ω𝑖,𝑗Δ𝜔Δα

𝑖,𝑗

= ∑𝑆(𝜔𝑖, 𝛼𝑗)ω𝑖,𝑗Δ𝜔Δα

𝑖,𝑗

+ ∑𝑆(𝜔𝑖, 𝛼𝑗)ϵ𝑖,𝑗Δ𝜔Δα

𝑖,𝑗

, (A-6) 

where ϵ𝑖,𝑗 is uniform distributed between [−
Δ𝜔

2
,
Δ𝜔

2
], ∑ 𝑆(𝜔𝑖, 𝛼𝑗)Ω𝑖,𝑗Δ𝜔Δα𝑖,𝑗  is a deterministic 

component of the first moment, and ∑ 𝑆(𝜔𝑖, 𝛼𝑗)ϵ𝑖,𝑗Δ𝜔Δα𝑖,𝑗  is a random component. Assuming that 

𝜔𝑚𝑎𝑥 → ∞, 𝜔𝑚𝑖𝑛 = 0, 𝛼𝑚𝑖𝑛 = −𝜋, 𝛼𝑚𝑎𝑥 = 𝜋, the deterministic component converges to: 

lim
Δ𝜔→0
Δ𝛼→0

∑𝑆(𝜔𝑖, 𝛼𝑗)ω𝑖,𝑗Δ𝜔Δα

𝑖,𝑗

= ∫ ∫ 𝜔𝑆(𝜔, 𝛼)
𝜋

−𝜋

∞

0

𝑑𝜔𝑑𝛼. (A-7) 

On the other hand, for large values of 𝑁𝜔, the probabilistic component is a random variable with 

normal distribution. Based on the central limit theorem, the mean μ  and variance σ2 of this distribution 

are: 

𝜇 = ∑𝑆(𝜔𝑖, 𝛼𝑗)Δ𝜔Δα∫ 𝜔
1

Δ𝜔
𝑑𝜔

Δ𝜔/2

−Δ𝜔/2𝑖,𝑗

, (A-8) 

𝜎2 = ∑𝑆(𝜔𝑖, 𝛼𝑗)Δ𝜔Δ𝛼 ∫ 𝜔2

Δ𝜔/2

−Δ𝜔/2

1

Δ𝜔
𝑖,𝑗

𝑑𝜔 = ∑𝑆(𝜔𝑖, 𝛼𝑗)Δ𝜔Δ𝛼

𝑖,𝑗

Δ𝜔2

12
. (A-9) 

The probabilistic component converges to a random variable with zero mean and zero variance.  

A.6 Wave spectrums 

A.6.1 Pearson-Moskowitz 

The Pearson-Moskowitz spectrum was obtained by assuming a fully developed sea state, generated 

by wind blowing steadily for a long time over a large area [133]. The resulting spectrum was [134]: 

𝑆(𝑇) = 𝐻𝑠
2𝑇𝑚 (

0.11

2𝜋
) (

𝑇𝑚

𝑇
)
−5

𝑒−0.44(
𝑇𝑚
𝑇

)
−4

, (A-10) 

where 𝑇𝑚 = 2𝜋𝑚0/𝑚1, with 𝑚0 and 𝑚1 the zero and first moments of the wave spectrum. 
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A.6.2 Jonswap 

The "JOint North Sea WAve Project" (JONSWAP) spectrum was established during a joint 

research project [135] . This is a peak-enhanced Pierson-Moskowitz spectrum with the following 

expression [42]: 

𝑆(𝑇) = (
5

32π
𝐻𝑠

2
T5

Tp
4
) · εγ · e

−1.25(
Tp

T
⁄ )

−4

(1−0.287log (ϵ))
, 

𝛾 = e−[(0.159ωTp
−1)/(σ√2)]

2

, 

(A-11) 

where 𝜔 = 2𝜋/𝑇, 𝜎 = 0.07 for 𝜔 ≤ 6.28/𝑇𝑝, 𝜎 = 0.09 for 𝜔 > 6.28/𝑇𝑝, 𝑇 is the wave period; 𝐻𝑠 is 

the significant wave height, Tp is the peak wave period and 𝜖 is the peakedness parameter. 

An alternative definition of the JONSWAP spectrum is given by [134]: 

𝑆(𝜔) = (
155𝐻𝑠

2

Tm
4 ω5

) · 3.3γ · e−944Tm
−4 ω−4

, 

𝛾 = e−[(0.191ωTm
−1)/(σ√2)]

2

, 

(A-12) 

where 𝜎 = 0.07 for 𝜔 ≤ 5.24/𝑇𝑚, 𝜎 = 0.09 for 𝜔 > 5.24/𝑇𝑚, 𝑇𝑚 = 2𝜋𝑚0/𝑚1. 

A.6.3 White noise 

The white noise spectrum corresponds to an uniform energy distribution within a wave frequency 

interval, having zero energy outside the prescribed interval. This type of spectrum is used in this thesis 

to carry out response amplitude operators (RAOs) analyses. 

A.7 Response amplitude operators (RAOs) 

RAOs are transfer functions of the ratio between the incident wave amplitudes and body 

movements, used to determine the effect that a sea state will have upon the motion of a floating body.

 Calculations of RAOs are carried out by analyzing the time series response of the ship, using a 

discretized white noise spectrum. This spectrum is defined by a number Nw = 2m−1 of waves of equal 

amplitude and periods varying between the maximum and minimum values to be defined. The values 

of these Nw periods are selected to match the discrete Fourier transform of the output signal, given by: 

X = ∑ xn · e−i2π∆f∗n

Nw−1

n=0

. (A-13) 

Given the minimum (Tmin) and maximum (Tmax) periods for the analysis, the wave frequency 

discrete increment to be used is: 
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∆f = (fmax − fmin) (Nw − 1)⁄ = (
1

Tmin
−

1

Tmax
) (Nw − 1)⁄ . (A-14) 

The well-known Fast Fourier Transform algorithms give a procedure to obtain an exact evaluation 

of the transfer functions defined above. This way, the time step and the total computing time can be 

fixed to match the required sampling time and total sampling points. Then, the holding frequency ∆f ∗ 

is evaluated as 

∆f ∗  = min(∆f , fmin), (A-15) 

and the discrete frequencies are: 

fn  = n · ∆f     n = 0, 1, 2, … , Nw − 1. (A-16) 

The required sampling frequency defines the time step as: 

∆t =
1

2∆f ∗  · 2m
, (A-17) 

and the required number of sampling points defines the total calculation time as T = 1/Δf ∗. 
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APPENDIX B.   SECOND ORDER WAVES 
 

B.1 First-order waves 

The first-order wave problem is governed by the following governing equations: 

Δ𝜓1 = 0 𝑖𝑛 Ω, fluid equation, (B-1) 

∂ 𝜓1

∂t
+ 𝑔ζ1 = 0 𝑜𝑛 𝑧 = 0, dynamic free surface boundary condition, (B-2) 

∂ζ1

∂t
−

∂ 𝜓1

∂z
= 0 𝑜𝑛 𝑧 = 0, kinematic free surface boundary condition, (B-3) 

∂𝜓1

∂z
= 0 𝑜𝑛 𝑧 = −𝐻, bottom boundary condition, (B-4) 

where 𝜓1 is the first-order velocity potential, ζ1 is the first-order free surface elevation, and H is the 

water depth. 

The dynamic and kinematic boundary conditions can be combined into one boundary equation, 

decoupling the free surface elevation from solving the velocity potential. 

∂2 𝜓1

∂t2
+ 𝑔

∂𝜓1

∂z
= 0 𝑜𝑛 𝑧 = 0, Free surface boundary condition. (B-5) 

And the solution to the above stated problem is: 

𝜓1 = ∑
𝐴𝑚𝑔

𝜔𝑚

cosh(|𝒌𝑚|(𝐻 + 𝑧))

cosh(|𝒌𝑚|𝐻)
sin(𝜃𝑚)

𝑚

, (B-6) 

ζ1 = ∑𝐴𝑚 cos(𝜃𝑚)

𝑖

, (B-7) 

where 𝐴𝑚 is the wave amplitude, 𝜔𝑚 is the wave frequency,  𝒌𝑚 is the wave number, 𝜃𝑚 = 𝒌𝑚𝒙 −

𝜔𝑚𝑡 + 𝛿𝑚 is the wave phase, and 𝛿𝑚 is the phase delay. 

B.2 Second-order waves 

The second-order wave problem is governed by the following governing equations: 

Δ𝜓2 = 0 𝑖𝑛 Ω, (B-8) 

1

𝑔

∂ 𝜓2

∂t
+ ζ2 = −

1

𝑔
ζ1

𝜕

𝜕𝑧
(
𝜕𝜓1

𝜕𝑡
) −

1

2𝑔
∇𝜓1 ⋅ ∇𝜓1 = 𝐹1 𝑜𝑛 𝑧 = 0, (B-9) 

∂ζ2

∂t
−

∂ 𝜓2

∂z
= ζ1

𝜕2𝜓1

𝜕𝑧2
−

𝜕ζ1

𝜕𝑥

𝜕𝜓1

𝜕𝑥
−

𝜕ζ1

𝜕𝑦

𝜕𝜓1

𝜕𝑦
= 𝐺1 𝑜𝑛 𝑧 = 0, (B-10) 
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∂𝜓2

∂z
= 0 𝑜𝑛 𝑧 = −𝐻, (B-11) 

where 𝜓2 is the second-order velocity potential, ζ2 is the second-order free surface elevation, and 𝐹1 

and 𝐺1 are terms depending on the first-order solution. 

𝐹1 = −
1

𝑔
(ζ1

𝜕2𝜓1

𝜕𝑧𝜕𝑡
) −

1

2𝑔
(∇𝜓1 ⋅ ∇𝜓1), (B-12) 

𝐺1 = ζ1
𝜕2𝜓1

𝜕𝑧2
− ∇ℎζ1 ∙ ∇ℎ𝜓1.  (B-13) 

Combining Eqs.  (B-9) and (B-10): 

1

𝑔

∂2 𝜓2

∂t2
+

∂ 𝜓2

∂z
=

𝜕𝐹1

𝜕𝑡
− 𝐺1 𝑜𝑛 𝑧 = 0. (B-14) 

B.2.1 Inhomogeneous part 

After inserting Eqs. (B-6) and (B-7) into the inhomogenous part of (B-14), the latter can be 

decomposed as follows: 

𝜕𝐹1

𝜕𝑡
− 𝐺1 = ∑∑(

𝜕𝐹𝑚𝑛
1

𝜕𝑡
− 𝐺𝑚𝑛

1 )

𝑛𝑚

, (B-15) 

where 

𝜕𝐹𝑚𝑛
1

𝜕𝑡
= −

1

𝑔

𝜕

𝜕𝑡
(ζ𝑚

1
𝜕2𝜓𝑛

1

𝜕𝑧𝜕𝑡
) −

1

2𝑔

𝜕

𝜕𝑡
(∇𝜓m

1 ⋅ ∇𝜓𝑛
1), (B-16) 

−𝐺𝑚𝑛
1 = −ζ𝑚

1
𝜕2𝜓𝑛

1

𝜕𝑧2
+ ∇ℎζ𝑚

1 ∙ ∇ℎ𝜓𝑛
1.  (B-17) 

B.2.1.1  Inhomogeneous term 1 

−
1

𝑔

𝜕

𝜕𝑡
(ζ𝑚

1
𝜕2𝜓𝑛

1

𝜕𝑧𝜕𝑡
) = 𝐶𝑚𝑛1

+ sin(𝜃𝑚 + 𝜃𝑛) + 𝐶𝑚𝑛1
− sin(𝜃𝑚 − 𝜃𝑛). (B-18) 

Introducing Eq. (B-6) and (B-7) into Eq. (B-18), and after some algebra: 

𝐶𝑚𝑛1
+ =

𝐴𝑚𝐴𝑛

2

𝑔|𝒌𝑛|2 tanh2  (|𝒌𝑛|𝐻)

𝜔𝑛
2

(𝜔𝑚 + 𝜔𝑛), (B-19) 

𝐶𝑚𝑛1
− =

𝐴𝑚𝐴𝑛

2

𝑔|𝑘𝑛|2 𝑡𝑎𝑛ℎ2  (|𝑘𝑛|𝐻)

𝜔𝑛
2

(𝜔𝑚 − 𝜔𝑛). (B-20) 

 

Using the first-order dispersion relation: 

𝐶𝑚𝑛1
+ =

𝐴𝑚𝐴𝑛

2𝑔
𝜔𝑛

2(𝜔𝑚 + 𝜔𝑛), (B-21) 
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𝐶𝑚𝑛1
− =

𝐴𝑚𝐴𝑛

2𝑔
𝜔𝑛

2(𝜔𝑚 − 𝜔𝑛). (B-22) 

B.2.1.2 Inhomogeneous term 2 

 −
1

2𝑔

𝜕

𝜕𝑡
(∇𝜓m

1 ⋅ ∇𝜓𝑛
1) = 𝐶𝑚𝑛2

+ sin(𝜃𝑚 + 𝜃𝑛) + 𝐶𝑚𝑛2
− sin(𝜃𝑚 − 𝜃𝑛). (B-23) 

Introducing Eqs. (B-6) and (B-7) into Eq. (B-23), and after some algebra: 

𝐶𝑚𝑛2
+ =

𝐴𝑚𝐴𝑛

4

𝑔(𝜔𝑚 + 𝜔𝑛)

𝜔𝑚𝜔𝑛

(|𝒌𝑚||𝒌𝑛| tanh  (|𝒌𝑚|𝐻) tanh  (|𝒌𝑛|𝐻) − 𝒌𝑚 ∙ 𝒌𝑛), (B-24) 

𝐶𝑚𝑛2
− =

𝐴𝑚𝐴𝑛

4

𝑔(𝜔𝑚 − 𝜔𝑛)

𝜔𝑚𝜔𝑛

(|𝒌𝑚||𝒌𝑛| 𝑡𝑎𝑛ℎ  (|𝒌𝑚|𝐻) 𝑡𝑎𝑛ℎ  (|𝒌𝑛|𝐻) + 𝒌𝑚 ∙ 𝒌𝑛). (B-25) 

Using the first-order dispersion relation: 

𝐶𝑚𝑛2
+ =

𝐴𝑚𝐴𝑛

4𝑔
(𝜔𝑚𝜔𝑛 − 𝑔2

𝒌𝑚 ∙ 𝒌𝑛

𝜔𝑚𝜔𝑛
) (𝜔𝑚 + 𝜔𝑛), (B-26) 

𝐶𝑚𝑛2
− =

𝐴𝑚𝐴𝑛

4𝑔
(𝜔𝑚𝜔𝑛 + 𝑔2

𝒌𝑚 ∙ 𝒌𝑛

𝜔𝑚𝜔𝑛
) (𝜔𝑚 − 𝜔𝑛). (B-27) 

B.2.1.3 Inhomogeneous term 3 

−ζ𝑚
1

𝜕2𝜓𝑛
1

𝜕𝑧2
+ ∇ℎζ𝑚

1 ∙ ∇ℎ𝜓𝑛
1 = 𝐶𝑚𝑛3

+ sin(𝜃𝑚 + 𝜃𝑛) + 𝐶𝑚𝑛3
− sin(𝜃𝑚 − 𝜃𝑛). (B-28) 

Introducing Eqs. (B-6) and (B-7) into Eq. (B-28), and after some algebra: 

𝐶𝑚𝑛3
+ = −

𝐴𝑚𝐴𝑛𝑔

2

|𝒌𝑛|2 + 𝒌𝑚 ∙ 𝒌𝑛

𝜔𝑛
, (B-29) 

𝐶𝑚𝑛3
+ = +

𝐴𝑚𝐴𝑛𝑔

2

|𝒌𝑛|2 − 𝒌𝑚 ∙ 𝒌𝑛

𝜔𝑛
. (B-30) 

B.2.1.3 Inhomogeneous term 

The inhomogeneous term can be written in terms of the first-order components as: 

 

𝜕𝐹1

𝜕𝑡
− 𝐺1 = ∑∑(∑ 𝐶𝑚𝑛𝑖

+
3

𝑖=1
sin(𝜃𝑚 + 𝜃𝑛) + ∑ 𝐶𝑚𝑛𝑖

−
3

𝑖=1
sin(𝜃𝑚 − 𝜃𝑛))

𝑛𝑚

. (B-31) 

B.2.2 Second-order velocity potential 

A second order solution can be expressed as: 

 𝜓2 = ∑∑ 𝜓𝑚𝑛
2

𝑛𝑚

, (B-32) 
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where each component  𝜓𝑚𝑛
2  fulfills: 

Δ 𝜓𝑚𝑛
2 = 0 𝑖𝑛 Ω, (B-33) 

1

𝑔

∂2 𝜓𝑚𝑛
2

∂t2
+

∂ 𝜓𝑚𝑛
2

∂z
=

𝜕𝐹𝑚𝑛
1

𝜕𝑡
− 𝐺𝑚𝑛

1  𝑜𝑛 𝑧 = 0, (B-34) 

∂ 𝜓𝑚𝑛
2

∂z
= 0 𝑜𝑛 𝑧 = −𝐻. (B-35) 

The following solution for  𝜓𝑚𝑛
2  fulfills the Laplace equation and the bottom boundary condition, 

and can recover the inhomogeneous part of the free surface condition: 

 𝜓𝑚𝑛
2 = 𝐵𝑚𝑛

+ cosh(|𝒌𝑚 + 𝒌𝑛|(𝐻 + 𝑧)) sin(𝜃𝑚 + 𝜃𝑛)

+ 𝐵𝑚𝑛
− cosh(|𝒌𝑚 − 𝒌𝑛|(𝐻 + 𝑧)) sin(𝜃𝑚 − 𝜃𝑛). 

(B-36) 

Introducing Eq. (B-36) into Eq. (B-34) we obtain: 

𝐷𝑚𝑛
+ 𝐵𝑚𝑛

+ sin(𝜃𝑚 + 𝜃𝑛) + 𝐷𝑚𝑛
− 𝐵𝑚𝑛

− sin(𝜃𝑚 − 𝜃𝑛)

= ∑(𝐶𝑚𝑛𝑖
+ sin(𝜃𝑚 + 𝜃𝑛) + 𝐶𝑚𝑛𝑖

− sin(𝜃𝑚 − 𝜃𝑛))

3

𝑖=1

, 
(B-37) 

where 

𝐷𝑚𝑛
+ = −

1

𝑔
(𝜔𝑚 + 𝜔𝑛)2 cosh(|𝒌𝑚 + 𝒌𝑛|𝐻) + |𝒌𝑚 + 𝒌𝑛| sinh(|𝒌𝑚 + 𝒌𝑛|𝐻), (B-38) 

𝐷𝑚𝑛
− = −

1

𝑔
(𝜔𝑚 − 𝜔𝑛)2 cosh(|𝒌𝑚 + 𝒌𝑛|𝐻) + |𝒌𝑚 − 𝒌𝑛| sinh(|𝒌𝑚 + 𝒌𝑛|𝐻), (B-39) 

hence: 

𝐵𝑚𝑛
+ = ∑ 𝐶𝑚𝑛𝑖

+ /𝐷𝑚𝑛
+

3

𝑖=1
, (B-40) 

𝐵𝑚𝑛
− = ∑ 𝐶𝑚𝑛𝑖

− /𝐷𝑚𝑛
−

3

𝑖=1
. (B-41) 
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