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Abstract. Sampling approaches for uncertainty quantification for real-world engineering problems are
associated with large computational time and cost. This cost comes from the expensive deterministic
simulation. Usage of surrogate models is a common way to overcome this issue in engineering applica-
tions. A conventional Neural Network (NN) can be used for building such surrogates. However, these
neural networks are built based on input-output pairs. It is not possible to verify that the predicted output
satisfies underlying physics.
In this contribution, a physics-informed neural network based on a hybrid model of machine learning
and classical Finite Element Method (FEM) is presented for forward propagation of uncertainty. The
method uses FEM during both training and prediction stages. A surrogate model based on neural net-
work for high dimensional problem is constructed by constraining the predictions of the neural network
with the discretized partial differential equation of the system. During the training stage, the predicted
solution from the FEM informed Neural Network(FEM-NN) is used to compute the residual using stiff-
ness matrices and force vectors. This residual is used as a custom loss function from NN. This makes
the whole training unsupervised as it does not require any output values. Hence, the need for expensive
FEM solves is circumvented. The FEM-NN hybrid also gives an estimate of the accuracy of prediction
by means of the calculated residual along with the prediction. The framework does not require manda-
tory expensive linear solves of the discretized equation instead substitutes the prediction from the neural
network for computing the residual. This reduces the expensive training phase of the problem and can be
applicable to real-world FEM simulations. The trained neural network is then sampled in a Monte Carlo
(MC) manner to evaluate the statistics of the Quantities of Interest (QoI). The resulting FEM-NN hybrid
is physics confirming and data-efficient. The efficacy of the framework is presented by a series of test
case examples. The results are compared with classical MC results. The suitability of the method for the
uncertainty quantification is studied and presented.
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1 INTRODUCTION

There is an increasing demand for accurate predictions in computational mechanics while considering
the uncertainties associated with the input parameters. A deterministic model alone is not sufficient for
this purpose. A computational model with quantified uncertainties gives a clear insight into the behaviour
of the structural system. The uncertainties of the inputs are propagated through the computational model
to identify the uncertainties of the quantities of interest(QoI) [13]. Methods of uncertainty quantification
can be classified into sampling-based approaches and non sampling-based approaches.
Sampling methods are widely used and are easy to implement. They do not require access to system
matrices and hence are called non-intrusive methods. Classical Monte Carlo (MC) method is the com-
monly used sampling method [10]. MC method is based on random sampling from the input distribution
and evaluating the computational model at each of these sampling points. The Quantities of interest are
then collected to evaluate the probability measures of the quantities of interest. The convergence of the
method depends on the number of model evaluations and can be very expensive, especially if the sin-
gle model evaluation is computationally expensive. Hence, the applicability of MC based methods for
real wold problems are challenging. The convergence of the MC estimate can be improved by various
methods like the Latin hypercube sampling [8] and quasi Monte Carlo sampling [3] methods. Variance
reduction techniques such as Multi level Monte Carlo (MLMC) [6] methods have also gained popularity
in recent times.
Non sampling approach includes perturbation method, where a truncated multi-dimensional Taylor ex-
pansion for the output quantities of interest is used [2]. A class of methods called spectral method
uses the uncertain parameter to be represented as an expansion called spectral expansion [5]. The input
and output uncertain parameters are thus represented as series expansion called generalized Polynomial
Chaos (gPC) and is used in various applications [14] [12] [7]. The advantages of a surrogate model is that
it is easy to evaluate compared to the original computational model. Other surrogate methods include
krigings and neural networks.
Neural networks can be used as a surrogate model and are created by considering the mapping between
input-output pairs. The data generation for creating input-output pair is achieved by running multi-
ple deterministic simulations and can be expensive like the sampling approaches. Also, the traditional
NN based on input-output pair does not consider the underlying physics behind the problem. Recently
Physics Informed Neural Network (PINN) [11] has been used to combine prior knowledge of the partial
differential equation and the NN. A hybrid methodology which is data-efficient and physics conforming
is introduced for numerical simulation by the authors [9]. Here, in this contribution we extend it to uncer-
tainty quantification. The method is based on training the NN with a custom loss function from the FEM
formulation of the underlying partial differential equation. The expensive linear solves are not required
in this method as the training uses the custom FEM loss function. The method is physics conforming and
data-efficient. The trained NN surrogate is used for UQ, by sampling from the surrogate in a Monte Carlo
fashion. The details and applicability of the methodology for UQ is elaborated and critically evaluated
here in this contribution. Section 2 explains the modelling details of the FEM informed NN surrogate for
uncertainty quantification. section 3 includes the basics and implementation details of FEM-NN and the
approach adopted for uncertainty quantification is also detailed in this section. The proposed method is
applied to problems from structural engineering in Section 4. The results are presented and discussed in
detail. The conclusions and outlook with advantages and challenges of FEM-NN for UQ is presented in
Section 5.
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2 MATHEMATICAL MODELLING

Any partial differential equation (PDE) for continuous solution field u with corresponding boundary
condition on a given domain Ω is described by Eq. 1 . Numerical approximation of the same, in Galerkin-
based finite element method, results in a system of linear equations as Eq. 2.

L(u) = 0 on Ω (1)

K(uh)×uh = F (2)

where, K(uh) is the non-linear stiffness matrix, uh is the discrete solution field, and F is the right hand
side force vector. The system can be written in residual form as

r(uh) = K(uh)uh−F (3)

To obtain the solution uh, a Newton-Raphson Method may be used. In case of a linear operator, it takes
one iteration to converge. For a complex problem, with large number of elements the linear solve stage
is the most computationally expensive step in the solution process.

2.1 Neural network surrogate construction and back propagation

A neural network is created as a mapping between input variables x = [x1,x2, ...xm] from domain X
to output variables y = [y1,y2, ...yn] of domain Y . The input layer and output layer are connected by
L number of hidden layers. Each layer is characterized by the trainable parameters - weights wl and
biases bl . NN training is a minimization problem to find the trainable parameters that minimizes the
discrepancy(called loss function) between the true value and the predicted value of the output. The loss
δ minimization by updating the trainable parameters is called back propagation. In back propagation, the
gradient of δ with respect to trainable parameters is calculated, and the trainable parameters are updated
as,

wl = wl−η
∂δ

∂wl
(4)

where,η is the learning rate. The derivatives in Eq. 4 are calculated using the chain rules.

∂δ

∂wl
=

∂δ

∂y
∂y

∂wl
(5)

The first part of the Eq. 5 depends on the choice of the loss function. A common loss functions is the

mean square error (MSE) δMSE =
1
m

∑
m
i=i(yi− yt

i)
2 where, yt are the true values.

2.2 Finite element method informed neural network

In the FEM-NN hybrid algorithm proposed by [9] uses a custom loss function for the NN training. The
euclidean norm of the residual vector r is used as the custom loss function. The residual r is computed
using the prediction u from the neural network and system matrices from FEM. Custom loss

δFEM = ||r||2 (6)

3



Anoop Kodakkal, Rishith Ellath Meethal, Birgit Obst and Roland Wüchner

where r is given by Eq. 2. The custom loss is computed as,

δFEM = ||r||2 =
√

∑
n
j=1∑

n
i=1(K j,iui−Fj)2 (7)

In the back propagation the gradient of this custom loss function with respect to output is required to
calculate the gradient of the loss function with respect to trainable parameters as in Eq. 5. The gradient
of the custom loss function is obtained as

∂δFEM

∂y
=

rT K
δ

(8)

where, r is the residual vector and K is the stiffness matrix. With this gradient of the custom loss func-
tion implemented, chain rule can be employed to compute the gradients required for back propagation.
Second part of the Eq. 5 is readily available in all the neural network frameworks.
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Figure 1: Details of the FEM-NN hybrid algorithm for training

2.3 Details of truss equation

For a linear elastic prismatic bar under axial force(T ), the equilibrium of forces is given by,

AE
du(x)

dx
= T (9)

Where, A,E are the cross sectional area and modulus of elasticity of the material. Taking the derivative
of Eq.9 with respect to local coordinate x
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d
dx

[
AE

du(x)
dx

]
= 0 (10)

2.4 Details of Euler Bernoulli beam

The Euler–Bernoulli equation describes a beam’s deflection u under the applied load Fd :

∂2

∂z2

[
EI

∂2u(z)
∂z2

]
= Fd(z) (11)

where, u(z) describes the deflection of the beam at position z under load Fd(z).

3 FEM informed Neural Network methodology

Figure 1 depicts the adopted workflow for the training of FEM-NN hybrid. The created NN with user
defined structure is initialized with initial wights and biases. In the training phase each of the new inputs
are fed into both the FEM module and the Neural Network. The method needs access to the system
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Figure 2: FEM-NN hybrid algorithm for uncertainty quantification with various stages

matrices and is hence intrusive. The custom loss function is calculated from Eq. 7 using the system
matrices from the FEM module and the prediction from the NN. The loss function is compared with the
convergence criteria and the training is done until the convergence is met. In case the convergence is
not met the loss is back propagated with the calculated gradient as in Eq. 5. The weights and biases are
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updated as in Eq. 4. It can be seen that during training the solution from FEM module is not required.
The expensive linear solves are not required in the hybrid FEM-NN methodology. The NN training also
incorporates the FEM module and hence the physics during training.

3.1 FEM - NN Hybrid methodology for uncertainty quantification

The trained model from the previous step can be used for uncertainty quantification as shown in Figure
2. During the UQ phase the trained NN is used as surrogate and sampling is done from the input distri-
butions. The QoI are evaluated for the inputs from the trained NN. Sampling from the NN is fast and
is inexpensive. During the prediction phase, an estimate of accuracy in the prediction is also obtained
in terms of the residual. The ensemble of QoI are then analysed to obtain the statistical quantities and
probability measures of the QoI.

4 NUMERICAL STUDY

Two numerical examples are elaborated in this section to show the effectiveness of the proposed algo-
rithm for uncertainty quantification.

A2, E2 A2, E2

A1, E1

4m

2m

P

Figure 3: Numerical examples considered a)three bar truss b)building structure under wind

4.1 Three bar truss with uncertain loads and material parameters

A three bar linear truss with uncertain loads and material properties is considered as shown in Figure
3 a. The node location is considered deterministic. The problem is modelled in open source FEM
solver called Kratos [4]. The uncertain input parameters are tabulated in Table 1. The input uncertain
parameters include both the system parameters and the loading parameters.

The UQ problem is solved using the proposed FEM-NN hybrid method. The QoI is the vertical dis-
placement at the application of the load. The probability density function (PDF) and cumulative Density
function (CDF) of the QoI are shown in Figure 4. The PDF follows a Gaussian distribution. The results
are compared with that of MC with 10,000 samples. The number of samples from the FEM-NN hybrid
surrogate is also kept as 10,000 to have similar sampling error. The reference solution is obtained by
doing a MC with 100,000 samples. It can be observed from the figure that the reference and FEM-NN
hybrid are in close agreement showing the applicability of the method.

The first four moments of the QoI are tabulated in Table 2. The FEM-NN hybrid results are compared
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Table 1: Input uncertain parameters for the 3 bar truss problem

Uncertain inputs distribution mean standard deviation
A1(m2) Gaussian 2.0×10−3 2.0×10−4

A2(m2) Gaussian 1.0×10−3 1.0×10−4

E1(Pa) Gaussian 2.1×1011 2.1×1010

E2(Pa) Gaussian 2.1×1011 2.1×1010

P(N) Gaussian 5.0×105 5.0×104

Figure 4: Comparison of FEM-NN with MC for 3 bar truss problem

with that of the reference and MC simulation results. The error in the mean value is 0.16%. This
indicate the efficacy of the method in predicting the stochastic results. The higher moments are also
captured with accuracy by FEM-NN. It should be noted that the MC 10,000 required 10,000 model
evaluations and linear solves. However, the FEM-NN required 0 linear solves during training because of
the incorporation of the custom loss function.

Table 2: Comparison of results for the 3 bar truss problem

Mean Standard deviation Skewness Kurtosis
Reference 7.92896 1.19067 -0.015154 0.01921

MC 10,000 7.92842 1.18379 -0.007303 0.02333
FEM-NN 7.91661 1.18622 -0.013229 0.02655

4.2 Response of building structure under uncertain wind loads

A building structure under uncertain wind loads is considered in this example. The CAARC [1] building
geometry is used for the study. The uncertainties comes from the wind loading. A weibull distribution
is assumed for the mean wind speed and the uncertainty in the terrain category is captured via uncertain
roughness length. The wind velocity profile along the height is hence uncertain. A static analysis is done
with the loads at each height computed as
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Table 3: Input parameters for the building structure under wind loads

inputs distribution Values
Height (H) - 180m
Width (W) - 45m
Length (D) - 30m

Frequency (f) - 0.2Hz
Density - 160 kg/m3

Damping ratio - 0.05
Mean wind velocity Weibull Mean = 20 m/s, shape parameters = 2
Roughness length Uniform [0.1, 0.7]

Fd(z) =
ρV (z)2ACd

2
(12)

where, ρ is the air density, V (z) is the velocity at height z, A is the reference area and cd is the coefficient
of drag for the cross section. The structure is modelled as an Euler-Bernoulli beam as shown in Figure 3
b. The governing equation is described in Eq. 11. The input parameters are tabulated in Table 3.

Figure 5: Comparison of FEM-NN with MC for the structure under wind loads problem

The UQ analysis is carried out with the proposed FEM-NN hybrid method and MC with 10,000 and ref-
erence solution with 100,000 samples. The QoI is the horizontal displacement at the top of the building.
The probability density function (PDF) and cumulative Density function (CDF) of the QoI are shown in
Figure 5. The results obtained are in good agreement with that of reference solution. To quantify the
results, the first four moments are tabulated in Table 4. The error in the mean is less than 0.01% showing
close agreement with the results. Other higher order moments are captured accurately by the method.
The deviation in the kurtosis from reference value may be attributed to the sampling error as the values
of MC 10000 and FEM-NN are comparable
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Table 4: Results for the building structure under wind loads

Mean Standard deviation Skewness Kurtosis
Reference 0.092774 0.094128 2.08002 6.61567

MC 10,000 0.093232 0.095423 2.20634 8.17860
FEM-NN 0.092765 0.094416 2.22340 8.32967

5 CONCLUSIONS AND OUTLOOK

The proposed FEM-NN hybrid is used for uncertainty quantification. The method serves as an efficient
surrogate for uncertainty quantification. The FEM-NN are in close agreement with MC simulation re-
sults. The main advantage of the method lies in the fact that expensive linear solves are avoided in the
training phase. When compared to traditional Neural network, the FEM-NN hybrid is intrusive and re-
quired no linear solves during training. The FEM-NN hybrid can give a description of the accuracy in
terms of the computed residuals. The conventional NN can be trained for a collection of QoI and hence
the network can be small. However, the FEM-NN hybrid need to be trained for all the nodal quantities.
For real-world problem with high number of elements this is challenging, as this will result in a huge
network to train. The FEM-NN hybrid results in a complete stochastic picture. Hence, if a new QoI is
required or more analysis is desired, it is possible to do so in FEM-NN hybrid without additional train-
ing. Even though the method is promising for uncertainty quantification applications, more research is
required in addressing the challenges associated with problems of increased complexity. The method is
promising and improvements in FEM and NN domains will enrich the efficiency and reduce the short
comings.
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