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Abstract

A stabilized semi-implicit fractional step finite element method for solving coupled

fluid-structure interaction problems involving free surface waves is presented. The

stabilized governing equations for the viscous fluid and the free surface are derived at

a differential level via a finite increment calculus procedure. A mesh updating tech-

nique based on solving a fictitious elastic problem on the moving mesh is described.

Examples of the efficiency of the stabilized semi-implicit algorithm for the analysis

of fluid-structure interaction problems in totally or partially submerged bodies is

presented.

1 Introduction

Accurate prediction of the fluid-structure interaction effects for a totally or partially

submerged body in a flowing liquid including a free surface is a problem of great

relevance in civil and offshore engineering and naval architecture among many other

fields.

The difficulties in accurately solving the coupled fluid-structure interaction problem

in this case are mainly due to the following reasons:

1. The difficulty of solving numerically the incompressible fluid dynamic equa-

tions which typically include intrinsic non linearities except for the simplest

and limited potential flow model.

2. The obstacles in solving the constraint equation stating that at the free surface

boundary the fluid particles remain on that surface which position is in turn

unknown.

3. The difficulties in solving the problem of motion of the submerged body due

to the interaction forces while minimizing the distorsion of the finite elements

discretizing the fluid domain, thus reducing the need of remeshing.



This paper extends recent work of the authors [1–3] to derive a stabilized finite

element method which allows to overcome above three obstacles. The starting point

are the modified governing differential equations for the incompressible viscous flow

and the free surface condition incorporating the necessary stabilization terms via a

finite increment calculus (FIC) procedure developed by the authors [4–9]. The FIC

approach has been successfully applied to the finite element and meshless solution

of a range of advective-diffusive transport and fluid flow problems [1–12].

The stabilized governing equations are written in an arbitrary lagrangian-eulerian

(ALE) form to account for the effect of relative movement between the mesh and the

fluid points. These equations are solved in space-time using a semi-implicit fractional

step approach and the finite element method (FEM). Free surface wave boundary

effects are accounted in the flow solution either by moving the free surface nodes in

a lagrangean manner, or else for via the introduction of a prescribed pressure at the

free surface computed from the wave height.

The movement of a fully or partially submerged body within the fluid due to the

interaction forces is treated by solving a structural dynamic problem using the fluid

forces as input loads. A method to update the mesh for the fluid domain follow-

ing the movement of the submerged body which minimizes element distorsion is

presented. The mesh update procedure is based on the finite element solution of

a linear elastic problem on the mesh domain where fictitions elastic properties are

assigned so that elements suffering higher movements are stiffer [13].

The content of the paper is structured as follows. First details of the stabilized

form of the governing equations for a viscous flow and the free surface using a finite

increment calculus procedure are given. The semi-implicit fractional step approach

using the FEM is then described. Details of the computation of the stabilization

parameters are also given. Next the mesh updating procedure is presented. Finally

some examples of free surface wave problems and coupled fluid-interaction problems

are given.

2 Finite increment calculus formulation of fluid-

flow and free surface equations

Finite element solution of the incompressible Navier-Stokes equations with the clas-

sical Galerkin method may suffer from numerical instabilities from two main sources.

The first is due to the advective-diffusive character of the equations which induces

oscillations for high values of the velocity. The second source has to do with the

mixed character of the equations which limits the choice of finite element interpola-

tions for the velocity and pressure fields.

Solutions of these two problems have been extensively sought in the last years.

Compatible velocity-pressure interpolations satisfying the inf-sup condition ema-

nating from the second problem above mentioned have been used [14,15,40]. In

addition, the advective operator has been modified to include some “upwinding”
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effects [16–23]. Recent procedures based on Galerkin Least Square [24,25], Charac-

teristic Galerkin [26,27], Variational Multiscale [28–30] and Residual Free Bubbles

[31–33] techniques allow equal order interpolation for velocity and pressure by intro-

ducing a Laplacian of pressure term in the mass balance equation, while preserving

the upwinding stabilization of the momentum equations. Most of these methods

lack enough stability in the presence of sharp layers transversal to the velocity. This

defficiency is usually corrected by adding new “shock capturing” stabilization terms

to the already stabilized equations [35–37]. The computation of the stabilization pa-

rameters in all these methods is based in “ad hoc” generalizations of the parameters

for the 1D linear advective-diffusive-reactive problem [38,39].

This paper presents a different point view for deriving stabilized finite element meth-

ods for incompressible flow problems with a free surface. The starting point are the

stabilized form of the governing differential equations derived via a finite increment

calculus (FIC) procedure. This technique first presented in [4,5] is based on writ-

ting the different balance equations over a domain of finite size and retaining higher

order terms. These terms incorporate the ingredients for the necessary stabiliza-

tion of any transient and steady state numerical solution already at the differential

equations level. Application of the standard Galerkin formulation to the consistently

modified differential equations for the fluid flow problem leads to a stabilized system

of discretized equations which overcomes the two problems above mentioned (i.e. the

advective type instability and that due to lack of compatibility between the velocity

and pressure fields). Application of the FIC method to the free surface wave problem

leads to a new stabilized governing equations for the free surface which again can be

solved numerically by standard Galerkin FEM. In addition, the modified differential

equations can be used to derive a numerical scheme for iteratively computing the

stabilization parameters in a sort of model adaptivity procedure [5–8].

For the sake of preciseness the basic ideas of the FIC method are given next.

2.1 Basic concept of the finite increment calculus (FIC)

method

Let us consider a sourceless transient problem over a one dimensional domain AB

of length L (Figure 1). The balance of flux q over a domain of finite size belonging

to L can be written as

qA − qB = 0 (1)

where A and B are the end points of the finite size domain of length h. As usual qA
and qB represent the values of the flux q at points A and B, respectively.

For instance, in an 1D advective-diffusive problem the flux q = −cuφ + k dφ
dx
, where

φ is the transported variable (i.e. the temperature in a thermal problem), u is the

advective velocity and c and k are the advective and diffusive material parameters,

respectively.
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The flux qA can be expressed in terms of the values at point B by the following

Taylor series expansion

qA = qB − h∂q
∂x

|B + h
2

2

d2q

dx2
|B +Oh3 (2)

Substituting (2) into (1) gives after simplification and neglecting cubic terms in h

dq

dx
− h
2

dq

dx
= 0 (3)

where all terms are evaluated at the arbitrary point B.

Eq. (3) is the finite increment form of the balance equation over the domain AB.

The underlined term in eq.(3) introduces the necessary stabilization for the discrete

solution of eq.(3) using any numerical technique. Distance h is the characteristic

length of the discrete problem and its value depends on the parameters of discretiza-

tion method chosen (such as the grid size [1,2]). Note that for h→ 0 the standard

infinitesimal form of the balance equation
(

dq
dx
= 0

)
is recovered.

Above process can be extended to derive the stabilized balance differencial equations

for any problem in mechanics as

rd − hj

2

∂ri
∂xj

= 0 (4)

where ri is the standard form of the ith differential equation for the infinitesimal

problem, hj are the dimensions of the domain where balance of fluxes, forces, etc.

is enforced, and j = 1, 2, 3 for 3D problems. Details of the derivation of eq.(4) for

steady-state and transient advective-diffusive and fluid flow problems can be found

in [4]. Applications of the FIC approach to the Galerkin finite element solution of

these problems are reported in [4–8].

The underlined stabilization terms in eqs.(3) and (4) are a consequence of accepting

that the infinitesimal form of the balance equations is an unreachable limit within

the framework of a discrete numerical solution. Indeed eqs.(3) or (4) are not longer

valid for obtaining an analytical solution following traditional integration methods

from calculus theory. The meaning of the new stabilized equations makes only sense

in the context of a discrete numerical method yielding approximate values of the

solution at a finite set of points within the analysis domain. Convergence to the

exact analytical value at the points will occur only for the limit case of zero grid

size (except for some simple 1D problems [1,14]) which also implies naturally a zero

value of the characteristic length parameters.

The FIC formulation presented below for incompressible flows with a free surface

can be considered an extension of that recently developed in [8] for finite element

analysis of incompressible Navier-Stokes flows. A new formulation of the stabilized

governing differential equations via the FIC method is here presented which holds

for the viscous (Stokes) and zero viscosity (Euler) cases. The stabilized fluid flow
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equations are completed by the FIC form of the free surface wave equation following

the ideas first presented in [12]. The set of stabilized governing equations is first

discretized in time and then solved in space using a Galerkin finite element method.

A semi-implicit fractional step procedure is used for the momentum and mass bal-

ance equations allowing for a equal order linear interpolations of the velocity and

pressure variables over tetrahedral elements.

2.2 FIC formulation of viscous flow and free surface equa-

tions

We consider the motion around a body of a viscous incompressible fluid including a

free surface.

The stabilized FIC form of the governing differential equations for the three dimen-

sional (3D) problem can be written in arbitrary lagrangian-eulerian (ALE) form as

[8,12]

Momentum

rmi
− 1
2
hmj
∂rmi

∂xj
− 1
2
δ
∂rmi

∂t
= 0 on Ω i, j = 1, 2, 3 (5)

Mass balance

rd +
1

2
hdj
∂rd
∂xj

= 0 on Ω j = 1, 2, 3 (6)

Free surface

rβ − 1
2
hβj

∂rβ
∂xj

− 1
2
γ
∂rβ
∂t
= 0 on Γβ j = 1, 2 (7)

where

rmi
= ρ

[
∂ui

∂t
+
∂

∂xj

(viuj)

]
+
∂p

∂xi

− ∂τij
∂xj

− bi (8)

rd =
∂ui

∂xi
i = 1, 2, 3 (9)

rβ =
∂β

∂t
+ vi

∂β

∂xi
− v3 i = 1, 2 (10)

and

vi = ui − um
i (11)

In above ui is the velocity along the i-th global reference axis, u
m
i is the velocity

of the mesh nodes and vi is the relative velocity between the moving mesh and the

fluid point i, ρ is the (constant) density of the fluid, p is the pressure, β is the wave
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elevation, bi are the body forces acting in the fluid and τij are the viscous stresses

related to the viscosity µ by the standard expression

τij = µ

(
∂ui

∂xj
+
∂uj

∂xi
− δij 2

3

∂uk

∂xk

)
(12)

The boundary conditions for the stabilized problem are written as

njτij + ti +
1

2
hmjnjrmi

= 0 on Γt (13)

uj − up
j = 0 on Γu (14)

where nj are the components of the unit normal vector to the boundary and ti
and up

j are prescribed tractions and displacements on the boundaries Γt and Γu,

respectively.

The underlined terms in eqs.(5)–(7) introduce the necessary stabilization for the

approximated numerical solution.

The characteristic length distances hmj , hdj and hβj
represent the dimensions of the

finite domain where balance of momentum, mass and transport of fluid particles is

enforced. The signs before the stabilization terms in eqs.(5)–(7) and (13) ensure

a positive value of the characteristic length distances. The parameters δ and γ in

eqs.(5) and (7) have dimensions of time. Details of the derivation of eqs. (5)–(7)

can be found in [1,7,8,12].

Eqs.(5–14) are the starting point for deriving a variety of stabilized numerical meth-

ods for solving the incompressible Navier-Stokes equations with a free surface. It

can be shown that a number of standard stabilized finite element methods allowing

equal order interpolations for the velocity and pressure fields can be recovered from

the modified form of the momentum and mass balance equations given above [8].

Remark 1

In reference [8] a modified version of the Dirichlet condition (14) is used including an

additional stabilization term. This term is not strictily necessary for the subsequent

derivation and will be neglected here.

2.3 Alternative form of the mass balance equation

Taking the first derivative of eq.(12) gives (assuming the viscosity µ to be constant)

∂τij
∂xj

= µ∆ui +
µ

3

∂rd
∂xi

(15)

where ∆ = ∂2

∂xi∂xi
is the Laplacian operator. Substituting eq.(11) into (15) gives

after small algebra
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∂rd
∂xi

=

(
µ

3
+
ρuihmi

2

)−1 [
r̄mi

− hmk

2

∂rmi

∂xk
+
ρuihmi

2

∂rd
∂xi

− δ
2

∂rmi

∂t

]
no sum in i (16)

where

r̄mi
= rmi

+
µ

3

∂rd
∂xi

(17)

and rmi
is given by eq.(8).

Inserting eq.(16) into eq.(6) gives

rd + ci

(
r̄mi

− hmk

2

∂rmi

∂xk
+
ρuihmi

2

∂rd
∂xi

− δ
2

∂rmi

∂t

)
= 0 no sum in i (18)

with

ci =

(
2µ

3hdi

+
ρuihmi

hdi

)−1

no sum in i (19)

Extracting the pressure terms from the brackets in (18) gives

rd − gii ∂
2p

∂xi∂xi

+ rp = 0 (20)

where

rp = cir̄mi
− gij ∂

∂xj

(
rmi

− δij ∂p
∂xi

)
+
ρuihmi

2

∂rd
∂xi

− δ
2

∂rmi

∂t
no sum in i (21)

and

gij =

(
4µ

3hdi
hmj

+
2ρuihmi

hdi
hmj

)−1

no sum in i (22)

Note that for hmi
= hmj

= h where h is a typical grid dimension (i.e. the average

element size), the value of gii is simply

gii =
(
4µ

3h2
+
2ρui

h

)−1

The stabilization parameter gii has now the form traditionally used in the GLS for-

mulation for the viscous (Stokes) limit (ui = 0) and the inviscid (Euler) limit (µ = 0)

and deduced from ad-hoc extensions of the 1D advective-diffusive problems [20–26].

Note, however, that the general form of the stabilization parameter gii is extracted

here from the general FIC formulation without further extrinsic assumptions.

Indeed, the precise computation of the characteristic length values is crucial for the

practical applications of above stabilized expressions.
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3 Fractional step approach

The momentum equations (5) are first discretized in time using the following scheme

un+1
i = un

i − ∆t
ρ

[
ρ
∂(uiuj)

n

∂xj
+
∂pn+1

∂xi
− ∂τ

n
ij

∂xj
− bni − h

n
mk

2

∂rnmi

∂xk
− δ

n

2

∂rnmi

∂t

]
(23)

Eq.(23) is now split into the two following equations

u∗i = un
i − ∆t

ρ

[
ρ
∂(uiuj)

∂xj
− ∂τij
∂xj

− bi − hmk

2

∂rmi

∂xk
− δ
2

∂rmi

∂t

]n

(24)

un+1
i = u∗i −

∆t

ρ

∂pn+1

∂xi
(25)

Note that the sum of eqs.(24) and (25) gives the original form of eq.(23).

Substituting eq.(25) into the stabilized mass balance equation (20) gives the stan-

dard Laplacian of pressure form

(
∆t

ρ
+ gnii

)
∂2pn+1

∂xi∂xi
= r∗d + r

n
p (26a)

where

r∗d =
∂u∗i
∂xi

(26b)

Standard fractional step procedures neglect the contribution from the terms involv-

ing gii in eq. (26). These terms have an additional stabilization effect which improves

the numerical solution when the values of ∆t are small. The influence of the cross

derivative terms ∂2p
∂xi∂xj

kept within rp should be studied in the future.

The stabilized free surface wave equation (7) is discretized in time to give

βn+1 = βn −∆t
[
vn+1

i

∂βn

∂xi

− vn+1
3 − hβj

2

∂rnβ
∂xj

− γ
2

∂rnβ
∂t

]
i, j = 1, 2 (27)

A typical solution in time includes the following steps.

Step 1. Solve explicitely for the so called fractional velocities u∗i using eq. (24).

Step 2. Solve for the pressure field pn+1 solving the laplacian equation (26a). The

pressures at the free surface computed from step 6 below in the previous time step are

used as boundary conditions for solution of eq.(26b). Alternatively a zero pressure

condition at the surface must be imposed if the mesh boundary nodes are updated

in a lagrangean manner and placed on the new free surface.
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Step 3. Compute the velocity field un+1
i at the updated configuration for each mesh

node using eq.(25)

Step 4. Compute the new position of the free surface elevation βn+1 in the fluid

domain by using eq.(27).

Step 5. Compute the movement of the submerged body by solving the dynamic

equations of motion in the body subjected to the pressure field pn+1 and the viscous

stresses τn
ij .

Step 6. Compute the new position of mesh nodes in the fluid domain at time n+ 1

by using the mesh update algorithm described in next section. The pressure in the

free surface is obtained from Benouilli equation as

pn+1 = po + ρg(βn+1 − βo) (28)

where βo and po are reference values of the free surface elevation and the pressure

respectively and g is the gravity constant.

As already mentioned the effect of changes in the free surface elevation can be

introduced in the step 2 of the flow solution as a prescribed pressure acting on the

free surface.

Equation (28) does not account for viscosity and rotational effects in the fluid. These

effects are however negligible in the free surface transport process and the pressure

given by eq.(28) is a good approximation. Note that if the mesh is deformed after

each time step so that the nodes are placed at the position defined by βn+1, the use

of eq.(28) is not longer necessary and a zero pressure condition can be applied on

the free surface when solving for pn+1 in step 2.

4 Finite element discretization

Space discretization is carried out using the finite element method [14]. The sta-

bilized formulation described allows an equal order interpolation of velocities and

pressure [8,14]. A linear interpolation over four node tetrahedra for both ui and p

is chosen in the examples shown in the paper. Similarly linear triangles are cho-

sen to interpolate β on the free surface mesh. The velocity and pressure fields are

interpolated within each element in the standard finite element manner as

ui =
∑

j

Nj
¯(ui)j (29a)

pi =
∑

j

Njp̄j (29b)

whereNj are the linear shape functions interpolating the velocity and pressure fields,

respectively and (̄·) denote nodal values.
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Similarly the wave height is discretized as

β =
∑

j

Nβj
β̄j (30)

where Nβj
are linear shape functions defined over the three node triangles discretiz-

ing the free surface.

The discretized integral form in space is obtained by applying the standard Galerkin

procedure to eqs.(24),(25),(26a) and (27) and the boundary conditions (13). Solution

of the discretized problem follows the pattern given below.

Step 1. Solve for the nodal fractional velocities

u∗ =M−1fn
1 (31)

with

Mij =
∫
Ω
NiNjdΩ (32)

fn =




f1
f2
...

fn




n

, fn
k =



fk1

fk2

fk1




n

(33)

fn
ki
=

∫
Ω
Nk

[
ui − ∆t

ρ

(
ρ
∂(uiuj)

∂xj
− bi − hmk

2

∂rmi

∂xk
− δ
2

∂rmi

∂t

) ]n
dΩ +

+
∫

Ω

∆t

ρ

∂Nk

∂xj
τn
ijdΩ−

∫
Γt

∆t

ρ
Nkt

n
i dΓ , i = 1, 2, 3 (34)

The solution of eq.(31) can be speeded up by diagonalizing matrixM. Alternatively

a simple Jacobi iteration procedure can be used and this has proved to converge in

very few iterations.

No boundary condition is applied when solving for the fractional velocities u∗i in
eq.(31) as these velocities can be interpreted as a predicted value of the actual

velocities. The kinematic boundary conditions (14) are applied in step 3 as shown

below.

Step 2. Solve for the nodal pressures at time n+1

Hpn+1 = qn (35)

Hkl =
∫

Ω

∂Nk

∂xi

(
∆t

ρ
+ gnii

)
∂Nl

∂xi

dΩ (36)

10



qnk =
∫
Ω

∂Nk

∂xi
u∗idΩ−

∫
Ω
Nkr

n
ddΩ+

∫
Γ
Nk
ρ

∆t

(
∆t

ρ
+ gnii

)
un

i nidΓ (37)

Note that for simplicity the velocities un+1
i in the boundary integral of eq.(40) have

been substituted by un
i . This integral can be neglected in solid walls and stationary

free surfaces where the normal velocity is zero.

Recall that the pressures computed from step 6 are used as boundary condition for

solution of eq.(38). If the mesh boundary nodes are updated then a zero pressure

condition must be applied at the free surface nodes.

Step 3. Solve for the nodal velocities at time n+1

un+1 =M−1f̄n+1 (38)

where M is given by (35) and

f̄n+1
ki

=
∫
Ω
Nk

[
u∗i −

∆t

ρ

∂pn+1

∂xi

]
dΩ (39)

The kinematic boundary conditions on the nodal velocities (eq.(14)) are imposed

when solving eq.(41).

Step 4. Solve for the new free surface heights at the time n+1

The new free surface elevation βn+1 in the fluid domain is computed as

ββββββββββββββn+1 =M−1
β sn+1 (40)

with

Mβ =
∫
Γβ

NT
β NβdΓ (41)

sn+1
i =

∫
Γ
Nβi

[
βn −∆t

(
vn+1

k

∂βn

∂xk
− vn+1

3 − γ
2

∂rnβ
∂t

) ]
dΓ +

∫
Γ

hβj

2

∂Nβi

∂xj
rβdΓ (42)

In the derivation of eq.(42) the assumption that rβ = 0 at the contours of the free

surface domain has been made.

Steps 5 and 6 follow the process described in previous section.
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5 Computation of the stabilization parameters

Accurate evaluation of the stabilization parameters is one of the crucial issues in

stabilized methods. Most of existing methods use expressions which are direct ex-

tensions of the values obtained for the simplest 1D case. It is also usual to accept

the so called SUPG assumption, i.e. to admit that vector hm has the direction of the

velocity field. This unnecessary restriction leads to instabilities when sharp layers

transversal to the velocity direction are present. This additional defficiency is then

corrected by adding a shock capturing or crosswind stabilization term [10].

Let us first assume for simplicity that the stabilization parameters for the mass

balance equations are the same than those for the momentum equations. This

implies

hm = hd (43)

The problem remains now finding the value of the characteristic length vectors hm.

Indeed, the components of hm can introduce the necessary stabilization along the

streamline and transversal directions to the flow.

Excellent results have been obtained in all examples using linear tetrahedra and

a different value of the characteristic length vector for each momentum equation

defined by

hmi
= hs

u

|u| + hc
∇∇∇∇∇∇∇∇∇∇∇∇∇∇u
|∇∇∇∇∇∇∇∇∇∇∇∇∇∇u| i = 1, 2, 3 (44)

where u = |u| and hs and hc are the “streamline” and “cross wind” contributions

given by

hs = max(lTj u)/|u| (45)

hc = max(lTj ∇∇∇∇∇∇∇∇∇∇∇∇∇∇u)/|∇∇∇∇∇∇∇∇∇∇∇∇∇∇u| , j = 1, ns (46)

where lj are the vectors defining the element sides (ns = 6 for tetrahedra).

An alternative method for computing vector hm in a more consistent manner is

explained in next section.

As for the free surface equation the following value of the characteristic length vector

hβ has been taken

hβ = h̄s
u

|u| + h̄c
∇∇∇∇∇∇∇∇∇∇∇∇∇∇β
|∇∇∇∇∇∇∇∇∇∇∇∇∇∇β| (47)

The streamline parameter has been obtained by eq.(45) using the value of the ve-

locity vector u over the 3 node triangles discretizing the free surface and ns = 3.

The cross wind parameter has been computed by

h̄c = max[l
T
j ∇∇∇∇∇∇∇∇∇∇∇∇∇∇β]

1

|∇∇∇∇∇∇∇∇∇∇∇∇∇∇β| , j = 1, 2, 3 (48)
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Note that the cross-wind terms in eqs.(44) and (47) account for the effect of the gra-

dient of the solution in the stabiliztion parameters. This is an standard assumption

in most “shock-capturing” stabilization procedures [34–37].

Regarding the time stabilization parameters δ and γ in eqs.(5) and (7) the value

δ = γ = ∆t has been taken for solution of the examples presented in the paper.

A more consistent evaluation following the dimishing residual technique described

next is described in [7] for transient advective-diffusive problems.

5.1 Computation of the characteristic length parameters via

a diminishing residual procedure

The idea of this technique first presented in [4] and tested in [5–7] for advective-

diffusive problems is the following. Let us assume that a finite element solution

for the velocity and pressure fields has been found for a given mesh. The point

wise residual of the momentum equation corresponding to this particular solution is

(assuming δ = 0 in eq.(5))

1rmi
= rmi

− 1
2
hmj

∂rmi

∂xj
(49)

The average residual over an element can be defined as

1r(e)mi
=

1

Ω(e)

∫
Ω(e)

1rmi
dΩ (50)

Let us assume now that an enhanced numerical solution has been found for the

same mesh and the same approximation (i.e. neither the number of elements nor

the element type have been changed). This enhanced solution could be based,

for instance, in a superconvergent recovery of derivatives [14,38,39]. The element

residual for the enhanced solution is denoted 2r(e)mi
. As the element residuals must

tend to zero, the following condition must be satisfied

1r(e)mi
−2 r(e)mi

≥ 0 (51)

Above equation applies for 1r(e)mi
> 0. Clearly for 1r(e)mi

< 0 the inequality in eq.(51)

should be changed to ≤ 0.
Eq. (54) provides a system of equations which unkowns are the characteristic length

parameters. Substituting eq.(49) into (51) and appling the identity condition in

eq.(51) gives

h(e)
m = A−1f (52)
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with

Aij = 2

[
2∂r(e)mi

∂xj
−

1∂r(e)mi

∂xj

]
(53)

fi = 2r(e)mi
−1 r(e)mi

(54)

The following “adaptive” algorithm can be proposed for obtaining a stabilized solu-

tion:

1. Solve for numerical values of velocities and pressure for an initial value h(e)
m =

h(e)
o . Compute

1r(e)mi
.

2. Evaluate the enhanced velocity and pressure fields. Compute 2r(e)mi
.

3. Compute the updated value of h(e)
m using eq.(52).

4. Repeat (1)–(3) until a stable solution is found.

Above strategy can be naturally incorporated into a transient solution scheme where

the value of h(e)
m is updated after the solution for each time step has been found.

The assumption hd = hm can be relaxed and an independent value of the char-

acteristic length vector hd for the mass balance equation can be found following a

similar approach as described for computing hm. Further details can be found in

[2–6] where this technique has been successfully tested for steady state and transient

advective-diffusive problems.

6 A simple algorithm for updating the mesh nodes

Different techniques have been proposed for dealing with mesh updating in fluid-

structure interaction problems. The general aim of all methods is to prevent element

distorsion during mesh deformation [44,48].

Chiandussi, Bugeda and Oñate [13] have recently proposed a simple method for

movement of mesh nodes ensuring minimum element distorsion. The method is

based on the iterative solution of a fictitious linear elastic problem on the mesh

domain. In order to minimize mesh deformation the “elastic” properties of each

mesh element are appropiately selected so that elements suffering greater movements

are stiffer. The basis of the method is given below.

Let us consider an elastic domain with homogeneous isotropic elastic properties

characterized by the Young modulus Ē and the Poisson coefficient ν. Once a dis-

cretized finite element problem has been solved using, for instance, standard Co

linear triangles (in 2D) or linear tetraedra (in 3D), the principal stresses 1σi at the

center of each element are obtained as

1σi = Ē[εi − ν(εj + εk)] i, j = 1, 2, 3 for 3D (55)
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where εi are the principal strains.

Let us assume now that a uniform strain field εi = ε̄ throughout the mesh is sougth.

The principal stresses are then given by

2σi = Eε̄(1− 2ν) i = 1, 2, 3 for 3D (56)

where E is the unknown Young modulus for the element.

A number of criteria can be now used to find the value of E. The most effective

approach found in [13] is to equal the element strain energies in both analysis. Thus

U1 = 1σiεi = Ē[(ε
2
1 + ε

2
2 + ε

2
3)− 2ν(ε1ε2 + ε2ε3 + ε1ε3)] (57)

U2 = 2σiεi = 3Eε̄
2(1− 2ν) (58)

Equaling eqs.(57) and (58) gives the sought Young modulus E as

E =
Ē

3ε̄2(1− 2ν)[(ε
2
1 + ε

2
2 + ε

2
3)− 2ν(ε1ε2 + ε2ε3 + ε1ε3)] (59)

Note that the element Young modulus is proportional to the element deformation

as desired. Also recall that both Ē and ε̄ are constant for all elements in the mesh.

The solution process includes the following two steps.

Step 1. Consider the finite element mesh as a linear elastic solid with homogeneous

material properties characterized by Ē and ν. Solve the corresponding elastic prob-

lem with imposed displacements at the mesh boundary. These displacements can

be due to a prescribed motion of a body within a fluid, to changes in the shape of

the domain in an optimum design problem, etc.

Step 2. Compute the principal strains and the values of the new Young modulus in

each element using eq.(59) for a given value of ε̄. Repeat the finite element solution

of the linear elastic problem with prescribed boundary displacements using the new

values of E for each element.

The movement of the mesh nodes obtained in the second step ensures a quasi uniform

mesh distorsion. Further details on this method including other alternatives for

evaluating the Young modulus E can be found in [8].

The previous algorithm for movement of mesh nodes is able to treat the movement of

the mesh due to changes in position of fully submerged and semi-submerged bodies.

Note however that if the floating body intersects the free surface, the changes in

the analysis domain geometry can be very important. From one time step to other

emersion or inmersion of significant parts of the body can occur.

A posible solution to this problem is to remesh the analysis domain. However for

most problems, a mapping of the moving surfaces linked to mesh updating algorithm

described above can avoid remeshing (Figure 2).
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The surface mapping technique used in this work is based on transforming 3D curved

surfaces into reference planes. This allows to compute within each plane the local

(in-plane) coordinates of the nodes for the final surface mesh accordingly to the

changes in the floating line. The final step is to transform back the local coordinates

of the surface mesh in the reference plane to the final curved configuration which

incorporates the new floating line [3].

7 Examples

7.1 Example 1. Square cavity problem

The purpose of this example is to test the stabilized formulation presented in the so-

lution of a standard benchmark problem solved by a number of authors [22,23,40,41].

Figure 3 shows the definition of the problem solved with an unstructured mesh of

3000 linear tetrahedra for a Reynolds number value of 1.

The steady-state solution was sought using the fractional step algorithm previously

described. Results in Figure 3 are tabulated for the horizontal velocity along the

vertical centerline of the mid-section and for vertical velocity and pressure along the

horizontal centerline is of the same section. Numerical results are fully stable and

agree well with similar solutions reported in the mentioned reference.

7.2 Example 2. Submerged NACA 0012 profile

A 2D submerged NACA0012 profile at α = 5◦ angle of attack is studied. This
configuration was tested experimentally by Duncan [42] for high Reynolds numbers

(Re=400000) and modelled numerically using the Euler equations by several authors

[43–45]. The submerged depth of the airfoil is equal to the chord and this was used

as the length (L) for normalizing the problem. The Froude number for all the cases

tested was set to Fr = u√
gL
= 0.5672 where u is the incoming flow velocity at

infinity.

The stationary free surface and the pressure distribution in the domain are shown

in Figure 4. The non-dimensional wave heights compare well with the experimental

results of [42].

7.3 Example 3. Sphere falling in a tube filled with liquid

The movement of a sphere falling by gravity in a cylindrical tube filled with liquid is

studied. The relationship between the diameters of the sphere and the tube is 1:4.

The Reynolds number for the stationary speed is 100. The mesh has 85765 element

with 13946 nodes (Figure 5).

Figures 6 and 7 show the mesh deformation and contours of the mesh deformation

and of the velocity in the domain for different times, respectively. The evolution of
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the falling speed is shown in Figure 8. Note the good agreement with the so called

Stokes velocity computed by equaling the weight of the sphere with the resistance

to the movement of the sphere expressed in terms of the velocity. Obviously, this

value is slightly greater than the actual one as frictional effects are neglected.

A similar problem for a much greater number of spheres has been solved by Johnson

and Tezduyar [47].

7.4 Example 4. Movement of a submerged sphere in an

open channel

Figure 9 shows the geometry of the channel and the position of the sphere of 2m

diameter with a weight of 1000 N and a rotational inertia of 1000 kgm2. A mesh of

19870 linear tetrahedra with 4973 nodes has been used for the analysis.

The problem has been analyzed for values of Reynolds number = 200 and Froude

number = 0.71 corresponding to a velocity of 1m/s at the inlet.

It is assumed that the sphere can only move vertically and rotate around the global y

axes due to the forces induced by the fluid. The vertical displacement is constrained

by a spring linking the sphere to the ground. An initial vertical velocity of 1m/s for

the sphere has been taken.

Figure 10 shows a plot of the time evolution of the vertical displacement of the

sphere. The contours of the velocity module in the fluid on two perpendicular

planes at different times is shown in Figure 11. the deformation of the free surface

at t = 0.47 s. and 3.16 s. is shown in Figure 12.

7.5 Example 5. Interactions of a rigid vertical cylinder with

a moving stream

The definition of the problem is clearly seen in Figure 13. The cylinder diameter is

2 m and the stream speed is 1 m/s. The Froude and Reynolds numbers are 1.0 and

200, respectively. The walls of the cylinder are assumed to be rigid in this case. A

mesh of 35567 tetrahedra and 4670 nodes is used for the analysis.

Figure 14 shows the contours of the velocity module and the vertical displacement

in the mesh for a time t = 4.57 s. Note the important deformation of the free surface

in this problem.

7.6 Example 6. Wigley hull

The last case considered here is the well known Wigley Hull, given by the analytical

formula y = 0.5B(1 − 4x2)(1− z2/D2) where B and D are the beam and the draft

of the ship hull at still water.
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Experimental Numerical

Test 1 5.2 10−3 4.9 10−3

Test 2 5.2 10−3 5.3 10−3

Test 3 4.9 10−3 5.1 10−3

Table 1. Wigley Hull. Total resistance coefficient

The same configuration was tested experimentally in [46] and modelled numerically

by several authors [43–45]. We use here a non structured 3D finite element mesh of

65434 linear tetrahedra, with a reference surface of 7800 triangles, partially repre-

sented in Figure 15.

Figure 15 also shows the viscous analysis of the Wigley model in three different

cases (Lpp = 6m,Fn = 0.316, µ = 10
−3Kg/m.s). In the first case the volume mesh

was considered fixed, not allowing free surface nor ship movements. Secondly the

volume mesh was updated due to free surface movement, considering the model

fixed. The third case corresponds to the analysis of a real free model including the

mesh updating due to free surface evaluation and ship movement (sinkage and trim).

A Smagorinsky turbulence model was used in all the cases.

Table 1 shows the obtained total resistance coefficient in the three cases studied

compared with the experimental data.

In the study of the free model the numerical values of sinkage and trim were -0.1%

and 0.035, respectively, while experiment gave -0.15% and 0.04.

Figure 15 whows the pressure distribution obtained near the Wigley hull in the case

of the free model. The free surface in transparent allowing seeing some streamlines.

The obtained mesh deformation in this case is also presented.

Comparisons of the obtained body wave profile with the experimental data for the

free and fixed models are shownin Figure 15. Significant differences are found close

to stern in the case of the fixed model.

8 Conclusions

The finite increment calculus method allows to derive stabilized forms of the govern-

ing differential equations for a viscous fluid with a free surface. Solution of the new

stabilized equations written in ALE form with a semi-implicit fractional step finite

element method provides a straight-forward algorithm for fluid-structure interaction

analysis.

The mesh-moving scheme presented ensures minimummesh distorsion for large mesh

displacements. The formulation presented is adequate for solving large scale fluid-

structure interaction problems in naval architecture and offshore engineering.
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[23] M.A. Cruchaga and E. Oñate, “A generalized streamline finite element approach for
the analysis of incompressible flow problems including moving surfaces”, Computer
Methods in Applied Mechanics and Engineering, 173, 241–255, 1999.

[24] T.J.R. Hughes, L.P. Franca and G.M. Hulbert, “A new finite element formulation for
computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-
diffusive equations”, Comput. Meth. Appl. Mech. Engng., 73, pp. 173–189, 1989.

[25] T.E. Tezduyar, S. Mittal, S.E. Ray and R. Shih, “Incompressible flow computa-
tions with stabilized bilinear and linear equal order interpolation velocity–pressure
elements”, Comp. Meth. Appl. Mech. Engng., 95, 221–242, 1992.

[26] O.C. Zienkiewicz and R. Codina, “A general algorithm for compressible and incom-
pressible flow. Part I: The split characteristic based scheme”, Int. J. Num. Meth. in
Fluids, 20, 869-85, (1995).

21



[27] O.C. Zienkiewicz, K. Morgan, B.V.K. Satya Sai, R. Codina and M. Vázquez, “A gen-
eral algorithm for compressible and incompressible flow. Part II: Tests on the explicit
form”, Int. J. Num. Meth. in Fluids, 20, No. 8-9, 886-913, 1995.

[28] T.J.R. Hughes, “Multiscale phenomena: Greens functions, subgrid scale models, bub-
bles and the origins of stabilized methods”, Comput. Meth. Appl. Mech. Engng, Vol.
127, pp. 387–401, 1995.

[29] R. Codina, “A stabilized finite element method for generalized stationary incompress-
ible flows”, Publication PI-148, CIMNE, Barcelona, February 1999.

[30] R. Codina and J. Blasco, “Stabilized finite element method for the transient Navier-
Stokes equations based on a pressure gradient operator”. To appear in Computer
Methods in Appl. Mech. Engng.

[31] F. Brezzi, M.O. Bristeau, L.P. Franca, M. Mallet and G. Rogé, “A relationship be-
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Figure 1. Equilibrium of fluxes in a finite balance domain
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Figure 2. Changes in the fluid interface in a floating body
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Figure 3. Square cavity problem. Problem definition and mesh of 3000

linear tetrahedra. Velocity field for Re = 1. Distribution of

pressure and vertical velocity along horizontal centerline of

mid-section and horizontal velocity along vertical centerline
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(a)

(b)

Figure 4. Submerged NACA0012. Mesh of 70 000 linear tetrahedra cho-

sen. (a) Pressure contours, (b) Stationary. —– present work.

- - - experimental values [42]
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Figure 5. Sphere falling in a tube filled with liquid. Detail of the mesh

of 85765 linear tetrahedra chosen
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Figure 6. Sphere falling in tube. Sphere position and mesh deformation

at different times during the falling process
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(a)

(b)

Figure 7. Falling sphere. Evolution of contours of the mesh deformation

(a) and the velocity module (b)
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Figure 8. Falling sphere. Evolution of the falling speed. Straight line

indicates the Stokes speed (1,195 m/s)

Figure 9. Geometry of the chanel with submerged sphere
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Figure 10. Time evolution of vertical displacement of sphere

Figure 11. Contours of velocity module in the fluid on two perpendicular

planes at different times
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Figure 12. Deformation of the free surface amplified 10 times at times

t = 0.47 s. and t = 3.16 s.

Figure 13. CAD definition of the vertical cylinder problem
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Figure 14. Vertical cylinder. Contours of velocity module and of vertical

deformation of the mesh for t = 4.57 s.
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Figure 15. Wigley hull. Pressure distribution, free surface contours and

mesh deformation for the truly free ship motion
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