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a b s t r a c t

In the case of dominating convection, standard Bubnov–Galerkin finite elements are known
to deliver oscillating discrete solutions for the convection–diffusion equation. This paper
demonstrates that increasing the polynomial degree (p-extension) limits these artificial
numerical oscillations. This is contrary to a widespread notion that an increase of the poly-
nomial degree destabilizes the discrete solution. This treatise also provides explicit expres-
sions as towhich polynomial degree is sufficiently high to obtain stable solutions for a given
Péclet number at the nodes of a mesh.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many stabilized finite element methods have been proposed in literature which can effectively reduce or even eliminate
numerical oscillations in convection-dominated convection–diffusion problems. A very popular approach is the streamline
upwind Petrov–Galerkin method (SUPG) [1,2]. It achieves stability by adding additional artificial diffusion which needs to
be modeled explicitly. Alternatively, the local projection stabilization (LPS) [3–5] suppresses numerical oscillations without
refining themesh or enriching the finite element space. Instead, locally constructed stabilization parametersmust be chosen.
Other methods, such as the orthogonal subgrid scale (OSS) [6], the Galerkin least-squares (GLS) [7] and the variational
multi-scale method (VMS) [8–10] provide a wealth of cures for the curse of artificial oscillations in convection-dominated
problems. These methods are usually applied to low order finite elements. A review of available approaches is given in [11],
for instance. For a review focusing on classic high order methods see [12], among others.

In the context of high-order accuracy, which is of particular interestwithin the scope of this paper, novel approaches such
as the nodal discontinuous Galerkin method [13] or a discontinuous Petrov–Galerkin method [14] provide computationally
attractive alternatives. The latter was extended in [15,16] and utilizes a space of discontinuous test functions tailored for
stability. It provides optimal error estimates with respect to the element size h and polynomial degree p in a given norm for
discrete solutions on a general mesh and is thus highly suitable for adaptivity [17].

In the parameter-free stabilized finite element method, which was developed by Bochev and Peterson [18], the rela-
tionship between nodal Galerkin diffusive fluxes and diffusion equations in one dimension on the mesh edges is extended
to the advection–diffusion case by solving simplified, one-dimensional versions of the governing equations on the edges.
This method is first-order accurate but less dissipative than the classical artificial diffusion approach. Extensions to higher
polynomial orders are promised but they have yet to be published.
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An interesting further option for a stable discretization of the steady convection–diffusion equation is provided by the
enforcement of constraints in a variational multiscale analysis [19]. The method decomposes the solution into a sum of fine
and coarse scale components. The fine scale is determined analytically in terms of the coarse scale component and the coarse
scale is then solved for numerically. The method defines the decomposition procedure through a constrained optimization
problem and allows for an enforcement of the maximum principle.

Another alternative is the Residual-Free Bubble method, as proposed by Brezzi and Russo [20–22] for convection–
diffusion problems. It has also been analyzed for a spectral Legendre discretization for advection–diffusion problems in [23].
Polynomial shape functions within an element are enriched by residual-free bubble functions. The effect of the residual-free
bubbles on the formulation is to add stability through jump terms measuring the differences in the streamline direction of
the bilinear (or linear) values of the solution [24–26]. Interestingly, the Residual-Free Bubble method and the variational
multiscale method (VMS) cited above are conceptionally equivalent. This was proven in [27].

For convection–diffusion problems discretized by high order finite element methods (also referred to as p-FEM), To-
biska [28] developed a new stabilized technique by combining the p-FEM and the VMS approach. Roos et al. [29] discovered
that higher order polynomial degrees behaved better in numerical experiments than low order elements. [30] looks at the
high order finite element method in conjunction with SUPG and shock-capturing stabilization.

All methods mentioned above provide the means for an effective stabilization of convection-dominated problems which
are also applicable, or even specifically designed for their use in high-order discretizations. Nevertheless, the high order Bub-
nov–Galerkin method itself, without extra stabilization, already exhibits a stabilizing effect, as will be shown in this paper.

Merely increasing the polynomial degree of the shape functions is, of course, not necessarily as efficient as schemes
directly designed for the job of stabilizing convection–diffusion problems. We do show, however, that a higher order might
already provide sufficient stability for convection-dominated problems in the case of low or moderate Péclet numbers, as
they appear in flows through porous media, for instance. In these cases, the scheme may also easily outperform low order
stabilized methods, thanks to its high accuracy and, in many cases, exponential rate of convergence. In this context, it is
still necessary to know from which polynomial degree a Bubnov–Galerkin discretization remains stable for a given Péclet
number. Estimates have been published in [31–33], for example. The current paper provides sharp stability bounds.

The layout of the paper is as follows: We start by introducing the problem in the form of a one-dimensional, convec-
tion–diffusion equation with constant coefficients in Section 2. Then, Section 3 recalls the Bubnov–Galerkin discretization
with linear elements and quantifies the truncation error of this low order scheme. The truncation error appears in the dif-
fusion term and is a decisive factor as it is directly related to the artificially generated, numerical oscillations in convection-
dominated problems. Up to this point, this analysis is familiar from descriptions in [34], for instance. Section 4 shows,
however, that a straightforward p-FEM extension naturally decreases this truncation error. The high order Bubnov–Galerkin
method, therefore, gradually compensates for the lost diffusivity of low order schemes as it approaches the quantified diffu-
sivity derived in Section 3. Section 5 derives which polynomial degree is sufficiently high to completely eliminate numerical
oscillations at the nodes. To validate the mathematical analysis, one- and two-dimensional numerical examples are studied
in Section 6. Section 7 then concludes the article.

2. Problem statement

This paper investigates the following one-dimensional steady convection–diffusion transport problem in Ω = (0, 1):

ac ′(x) − νc ′′(x) = f . (1)
Here, c is the scalar unknown (concentration, in this paper), a is the convection velocity, ν is the diffusivity of the fluid and f
is the source term. Throughout this paper it is assumed that these three coefficients have constant values across the whole
domain. For the source term f = 1 and the Dirichlet boundary condition c(x = 0) = c(x = 1) = 0, the analytical solution
reads:

c(x) =
1
a


x −

1 − e
ax
ν

1 − e
a
ν


. (2)

We discuss the discretization on an equidistant mesh with the size h. At this point, it is useful to introduce the mesh
Péclet number Pe [34] defined in Eq. (3) to characterize the local dominance of convection and diffusion from a numerical
perspective.

Pe =
ah
2ν

. (3)

It is well known that the numerical solution of Eq. (1) is stable for the problem with piecewise linear elements if Pe is not
greater than 1. The straightforward application of the Bubnov–Galerkin discretization leads to the correspondingweak form
of Eq. (1).


Ω

(ac ′w + c ′νw′)dΩ =


Ω

fwdΩ on Ω = {x|0 < x < 1}

c = 0 at x = 0
c = 0 at x = 1

(4)
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where w is a test function vanishing at the boundaries i.e. w, c ∈ H1
0 (Ω). The scalar functions c and w are both discretized

and approximated by the same shape functions Ni. This leads to Eq. (5) which contains the convection matrix C, diffusion
matrix K and force vector f.

(C + K)c = f. (5)

The matrices C and K are of dimension n × n, n denoting the number of unknown coefficients. C and K are obtained by
assembling the element convection matrix Ce and element diffusion matrix Ke, respectively.

In the one-dimensional example of Eq. (1), Ce,Ke and fe are defined as:

C e
ij =

 1

0
aNiNj,xdx

K e
ij =

 1

0
νNi,xNj,xdx

f ei =

 1

0
fNidx.

(6)

The Bubnov–Galerkin discretization is known to be optimal for elliptic problems. However, when the convection flux
becomes dominant, i.e. as Pe grows, the accuracy of the previously obtained solution declines for a fixed polynomial degree.
The next section explains the effect of Pe on the accuracy of the nodal solution.

3. The Bubnov–Galerkin method with linear elements

We now look at the problem set out in Eq. (1) with two adjacent elements [xj−1, xj] and [xj, xj+1], as depicted in Fig. 1,
where the node xj is shared by two elements. For the sake of simplicity, we apply the source term f = 1 and discretize the
geometry using a uniform mesh with element length h. The shape functions of a linear element are given by [35]

N1(ξ) =
1 − ξ

2
(7)

N2(ξ) =
1 + ξ

2
(8)

where ξ is the normalized local coordinate. Setting Ωe
j = [xj, xj+1] ∈ [−1, 1] and applying the transformation between

local and global coordinates, we obtain the following convective and diffusive matrix as well as the force vector [34] for
each element.

C e
= a


Ωe

N1
∂N1

∂x
N1

∂N2

∂x

N2
∂N1

∂x
N2

∂N2

∂x

 dx =
a
2


−1 +1
−1 +1


(9)

K e
= ν


Ωe


∂N1

∂x
∂N1

∂x
∂N1

∂x
∂N2

∂x
∂N2

∂x
∂N1

∂x
∂N2

∂x
∂N2

∂x

 dx =
ν

h


+1 −1
−1 +1


(10)

f e =


Ωe


N1
N2


dx =

h
2


+1
+1


. (11)

Assembling the global system matrix, we obtain:


−
a
2

+ · · ·
a
2

· · ·

−
a
2

a
2

−
a
2

a
2

. . . −
a
2

a
2

+ · · ·

+


ν

h
+ · · · −

ν

h
· · ·

−
ν

h
ν

h
+

ν

h
−

ν

h
. . . −

ν

h
ν

h
+ · · ·



cj−1

cj
cj+1


=


h
2

+ · · ·

h
2

+
h
2

h
2

+ · · ·

 . (12)

The second row of the matrix is related to the coupled degrees of freedom at xj and reads:

a

cj+1 − cj−1

2h


− ν


cj+1 − 2cj + cj−1

h2


= 1. (13)
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Fig. 1. 1D example with p = 1: three degrees of freedom in two elements.

By enforcing the exact solution in Eq. (2) at three adjacent nodes cj−1, cj and cj+1 and substituting the value in the differential
equation [34], we obtain Eq. (14), which has a similar form to Eq. (13):

a

cj+1 − cj−1

2h


− (ν + ν̄ex)


cj+1 − 2cj + cj−1

h2


= 1 (14)

where ν̄ex is an extra term not present in Eq. (13). This extra term can be interpreted either as the truncation error of the
first order Bubnov–Galerkin method or as an additional diffusivity required to provide nodally exact results. This term is a
function of the Péclet number and reads:

ν̄ex =


coth(Pe) −

1
Pe


νPe. (15)

Its value increases with the Péclet number. In fact, Eq. (15) forms the basic motivation behind using the streamline upwind
Petrov–Galerkin method. In many stabilization approaches, one attempts to control the artificial numerical oscillations in
convection dominated problems by compensating for the truncation error by adding extra diffusivity. As is shown in the
next section, however, the truncation error of the Bubnov–Galerkin method is reduced simply by increasing the polynomial
order of the spatial discretization.

4. Numerical diffusion in higher order finite element methods

This section looks at the same example as presented in Section 3. We first extend the analysis to the 2nd order whereby
we use the concept of hierarchic shape functions derived from the set of integrated Legendre polynomials as introduced
in [35]. In two dimensions, these shape functions can be classified into three groups: nodal or vertex modes, edge modes,
and internal modes. The nodal or vertex modes are defined by the standard bilinear shape functions, familiar from the
isoparametric four-noded quadrilateral element. Edge and internal modes are defined by tensor products of integrated Leg-
endre polynomials. The edge modes are non-zero only on the edges with which they are associated and vanish on all other
edges, whereas the internal modes are purely local, being zero on all vertices and edges of the quadrilateral element. In the
simpler case of one dimension, we need only consider nodal and edge modes. In view of the following analysis, it is further
remarked, that an increase in the order of approximation only leads to an addition of higher order modes while the lower
order modes remain unchanged.

We now continue with the analysis of the one-dimensional case. The convection and stiffness matrices for p = 2 are
computed as follows:

C e
= a


Ωe


N1

∂N1

∂x
N1

∂N2

∂x
N1

∂N3

∂x
N2

∂N1

∂x
N2

∂N2

∂x
N2

∂N3

∂x
N3

∂N1

∂x
N3

∂N2

∂x
N3

∂N3

∂x

 dx =
a
2


−1 +1 −

√
6
3

−1 +1

√
6
3√

6
3

−

√
6
3

0

 (16)

K e
= ν


Ωe


∂N1

∂x
∂N1

∂x
∂N1

∂x
∂N2

∂x
∂N1

∂x
∂N3

∂x
∂N2

∂x
∂N1

∂x
∂N2

∂x
∂N2

∂x
∂N2

∂x
∂N3

∂x
∂N3

∂x
∂N1

∂x
∂N3

∂x
∂N2

∂x
∂N3

∂x
∂N3

∂x

 dx =
ν

h


+1 −1 0
−1 +1 0
0 0 +2


(17)
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Fig. 2. 1D example with p = 2: five degrees of freedom in two elements.

f e =


Ωe

N1
N2
N3


dx =

h
2

 +1
+1

−

√
6
3

 . (18)

The total number of degrees of freedom in two elements is five, consisting of three nodal modes and two internal modes,
see Fig. 2.

It is worth noting that in one dimension the elements are only coupled by the linear modes. All higher order modes are
purely local in terms of the element and thus independent from other degrees of freedom. One block of the global matrix,
which corresponds to five degrees of freedom depicted in Fig. 2, is shown in Eq. (19).



cj−1 cj cj+1 aj−1 aj

cj−1
ν
h −

a
2 + · · · −

ν
h +

a
2 + · · · −

√
6
6 a

cj −
ν
h −

a
2

2ν
h −

ν
h +

a
2

√
6
6 a −

√
6
6 a

cj+1 −
ν
h −

a
2 + · · ·

ν
h +

a
2 + · · ·

√
6
6 a

aj−1

√
6
6 a −

√
6
6 a 2ν

h

aj

√
6
6 a −

√
6
6 a 2ν

h




cj−1
cj

cj+1
aj−1
aj

 =



h
2

+ · · ·

h
h
2

+ · · ·

−

√
6
6

h

−

√
6
6

h


. (19)

The discrete functions referring to degrees of freedom cj, aj−1 and aj can be computed independently. There are consequently
three equations to solve:

ν

h
(−cj−1 + 2cj − cj+1) +

a
2


−cj−1 +

√
6
3

(aj−1 − aj) + cj+1


= h

2ν
h

aj−1 +

√
6
6

a(cj−1 − cj) = −

√
6
6

h

2ν
h

aj +

√
6
6

a(cj − cj+1) = −

√
6
6

h

(20)

aj−1 and aj, the variables related to the internal mode, can be eliminated from the last two equations. Substituting these
variables into the first equation in Eq. (20), we arrive at the condensed Eq. (21), which is solely related to nodal degrees of
freedom:

a

cj+1 − cj−1

2h


− (ν + ν̄2)


cj+1 − 2cj + cj−1

h2


= 1 (21)

where

ν̄2 =
1
3
Pe2ν (22)

ν̄2 represents the additional numerical diffusion generated naturally1 by the 2nd order Bubnov–Galerkin method of second
order and can be regarded as an approximation to Eq. (15). Generally speaking, the system equation using polynomial

1 ‘Naturally’ here means that this is the diffusion modeled by a pure p-extension. It does not stem from a method explicitly designed for stabilization by
the ‘artificial’ addition of extra bubbles, as in the Residual-Free Bubble method [20–22].
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Fig. 3. Truncation error with different polynomial degrees.

degrees higher than 2 can also be similarly condensed in Eq. (23), as all higher modes are purely internal to the element. The
resulting equation at node xj is similar in form to Eq. (21):

a

cj+1 − cj−1

2h


− (ν + ν̄p)


cj+1 − 2cj + cj−1

h2


= 1. (23)

The additional numerical diffusion term ν̄p can be computed in the same way. For the third, fourth and fifth order it reads:

ν̄3 =
5Pe2ν

Pe2 + 15

ν̄4 =
ν(Pe4 + 35Pe2)
10Pe2 + 105

ν̄5 =
14ν(4Pe4 + 90Pe2)

4Pe4 + 420Pe2 + 3780
.

(24)

In fact, the condensation approach from Eqs. (20) to (21) can be interpreted as follows: the contribution of the internal
degrees of freedom in p-FEM is transferred to the contribution of nodal degrees of freedom located at the vertices of the
element only. The solutions for the condensed system in Eq. (23), which consists solely of nodal degrees of freedom, are
identical to the nodal solutions for the complete system, where the internal modes are also taken into account.

Compared to Eq. (15), the truncation error of p-FEM is defined as

1νp = ν̄ex − ν̄p (25)

and depicted in dependence of Pe in Fig. 3, where the ordinate displays 1νp. The curves generally have different tendencies
which correspond to the parity of the polynomial degree. Odd degrees generate curves that increase monotonically as Pe
increases, while the even ones decrease. Although the sign of the truncation error depends on the parity of the order, the
absolute value of the truncation error decreases as the order of shape functions grows. Accordingly, the numerical solution
at the nodes is closer to the exact solution.

On the other hand, using odd polynomial degrees, the numerical diffusivity of the high order approach is less than ν̄ex. This
lack of diffusivity is the reason for the oscillatory behavior of the numerical solution at high Pe. By contrast, the numerical
diffusivity is always greater than ν̄ex using even polynomial degrees. Consequently, nodal solutions exhibit an over-diffusive
behavior and never display nodal oscillations. This result is analyzed at greater depth from a mathematical perspective in
the next section.

5. Stability analysis of nodal solutions

As the previous section has shown, the high order approach can diminish the numerical oscillations at nodes by recov-
ering compensation for the lost diffusion of low order schemes. In this section, an eigenvalue analysis sets specific limits to
the stability range according to the polynomial degree of the shape functions. We note that stability is evaluated solely at
the nodal degrees of freedom and not for internal ones.
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Table 1
Sharp stability bounds.

p = 3 Pe = 2.322185
p = 5 Pe = 3.646738
p = 7 Pe = 4.971786
p = 9 Pe = 6.297019
p = 11 Pe = 7.622340

It is a well-known fact (see [36]), for example, that a tridiagonal matrix A, as defined by

Aalpha = tridiag(−1 − α, 2, −1 + α) (26)

only has real eigenvalues if α ∈ [0, 1). Using linear elements in a Bubnov–Galerkin discretization for the convection–
diffusion problem, the system matrix derived from Eq. (13) reads

A =
ν

h2
tridiag(−1 − Pe, 2, −1 + Pe), (27)

showing the direct correspondence between the Péclet number Pe and α. In the case of hierarchical higher order elements,
the equations of internal degrees of freedom can be condensed out so that the systemmatrix contains only the equations of
nodal degrees of freedom. Eq. (23) can be rewritten as

−
a
2h

−
(ν + ν̄p)

h2


· cj−1 +

2(ν + ν̄p)

h2
· cj +


a
2h

−
(ν + ν̄p)

h2


· cj+1 = 1. (28)

For the sake of clarity, we take the common factor (ν+ν̄p)

h2
out of the brackets. The condensed system now has the same

structure as Eq. (26).

Ap =
(ν + ν̄p)

h2
tridiag(−1 − αp, 2, −1 + αp)

αp =
ah

2(ν + ν̄p)
.

(29)

The stability of nodal solutions is accordingly determined by the value of αp. It is, moreover, possible to quantify the value
of αp for higher order polynomial degrees based on Eqs. (22) and (24):

p = 2 α2 =
3Pe

Pe2 + 3

p = 3 α3 =
Pe(Pe2 + 15)
6Pe2 + 15

p = 4 α4 =
5Pe(2Pe2 + 21)

Pe4 + 45Pe2 + 105

p = 5 α5 =
Pe(Pe4 + 105Pe2 + 945)
15(Pe4 + 28Pe2 + 63)

p = 6 α6 =
21Pe(Pe4 + 60Pe2 + 495)

Pe6 + 210Pe4 + 4725Pe2 + 10395

p = 7 α7 =
Pe(Pe6 + 378Pe4 + 17325Pe2 + 135135)
7(4Pe6 + 450Pe4 + 8910Pe2 + 19035)

.

(30)

The corresponding values are plotted in Fig. 4. It can be observed that αp increases as Pe for odd polynomial degrees. For
even polynomial degrees, αp first increases and then decreases, while the value always remains smaller than 1. This in turn
means that the numerical solution never oscillates at nodal degrees of freedom for even polynomial degrees. This result also
coincides with the conclusion from the truncation error analysis in the previous section. To clarify this point further, we plot
the solution of the 1D example with Pe = 20, as shown in Fig. 5.

Fig. 5 illustrates that, when the polynomial degree is even, numerical oscillations only stem from internal modes and
numerical solutions do not oscillate at each node. For odd polynomial degrees, numerical oscillations are reflected by both
internal and nodal degrees of freedom.

By setting αp = 1 in Eq. (30), we are able to compute the highest Pe allowed, which guarantees nodally stable solutions
for the given polynomial degree of the shape functions.

In other words, the corresponding p stated in Table 1 is the minimum polynomial degree required for a given Péclet
number, and their relationship is depicted in Fig. 6. It turns out to be almost linear for polynomial orders p ≤ 11. This result
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Fig. 4. αp behaves differently for odd and even polynomial degrees.

Fig. 5. Numerical solutions with different Ansatz degree, Pe = 20.
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Fig. 6. The relation between a given Péclet number and the minimum required polynomial degree.

Fig. 7. The maximummesh size allowed with respect to a/ν for different polynomial degrees.

agrees well with the estimate published in [32], where exponential convergence is achieved under a pure p-extension iff
ha
νp is of order 1. The value of the Péclet number includes the information of the element size h, so Table 1 also contains the
relation between mesh size h and the polynomial degree p for a given a

ν
. The maximum mesh size allowed with respect to

the value of a
ν
is plotted for different orders in Fig. 7.

6. Numerical examples

6.1. One-dimensional convection–diffusion problem

In this example, the numerical result of the one-dimensional convection–diffusion transport problem is compared with
the exact solution to verify the Péclet numbers stated in Table 1. We again consider the 1D convection–diffusion equation:

ac ′(x) − νc ′′(x) = 1 (31)

where the boundary condition is c(x = 0) = c(x = 1) = 0 in the domain Ω = (0, 1). We choose the parameters
a = 1.2 m/h, ν = 0.02 m2/h, and compute the corresponding numerical solutions with 10 elements of the same length
h = 0.1. The Bubnov–Galerkin method using linear elements produces the expected oscillations, since the Péclet number
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a

b

c

Fig. 8. The comparison of the numerical and exact solution with different polynomial degrees.

Pe =
ah
2ν = 3 is greater than 1. Fig. 8 shows the comparison between the exact solution and the numerical solution for

different polynomial degrees.
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Fig. 9. Error in L2 norm with different Péclet numbers.

The oscillations tend to decrease as the polynomial degree increases. Although the numerical oscillations with linear
elements are considerably improved when we choose p = 3, the nodal solution still oscillates. The solution at node x = 0.8
is smaller than the exact solution, whereas the one at its neighboring node x = 0.9 is larger. With p = 5, the numerical
solutions at both nodes are bigger than the exact solution, which shows straight away that the nodal oscillation has now
vanished completely. This observation coincides perfectly with the results obtained mathematically which are collected in
Table 1 in Section 5.

With a stabilized solution, it is now possible to enjoy the benefits of the exponential convergence rate of the p-version
of the finite element method. The numerical error in the finite element approximation can be quantified by the error in the
L2 norm defined by:

∥e∥2
L2 =


Ω

e2dΩ =


Ω

(cex − cfe)2dΩ. (32)

The result is plotted in Fig. 9 with a logarithmic scale, showing the convergence rate of the error in the L2 norm by a pure
h- and p-extension respectively.With different values of a/ν, the p-extension exhibits exponential convergence,whereas the
h-extension only obtains an algebraic rate of convergence. This agrees verywell with the results published in [32], according
to which the order of the convergence for a pure h-extension in the energy norm should be O


N−1/2


. We achieve double

that rate in L2. In addition, the effect of a/ν can also be observed in Fig. 7. If (a/ν, h) is located under any curve in Fig. 7, the
nodally stable solution of the system for the corresponding polynomial degree p can be guaranteed.

6.2. Two-dimensional steady rotating pulse problem

Here, the stabilization of the Bubnov–Galerkin finite elements for high order shape functions is demonstrated on a two-
dimensional diffusion–convection–reaction transport problemwith a rotating velocity and a discontinuous source. Thewell-
known partial differential equation reads:

a · ∇c − ∇ · (ν∇c) + σ c = f (33)

where σ is the reaction coefficient. We apply the following boundary conditions c(x = −1) = c(x = 1) = c(y = −1) =

c(y = 1) = 0 in the domain Ω = (−1, 1) × (−1, 1). The velocity field is given as

a = φ(ρ)


−y
x


(34)

whereφ(ρ) =


1 − ρ2 if ρ ≤ 1
0 else

ρ =


x2 + y2.

(35)

For the following computations, the coefficients are defined as σ = 2, ν = 0.0001 and the source term is:

f =


1 if ρ ≤ 1/2
0 else. (36)
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(a) p = 1. (b) p = 3.

(c) p = 6. (d) p = 9.

Fig. 10. Two-dimensional steady rotating pulse problem: The numerical solutions with different polynomial degrees.

Fig. 11. Two-dimensional steady rotating pulse problem: Error in L2 norm with different Péclet numbers.

This example is also discussed in [34]. The result has a front layer along the circle ρ = 1/2. In this case, a uniform mesh
with 20 × 20 elements is applied and the numerical solution based on different polynomial degrees of shape functions is
depicted in Fig. 10.

The numerical result exhibits a strong oscillation along the front with the application of linear elements. This numerical
oscillation is drastically reduced or even suppressed by increasing the polynomial degree, as shown in Fig. 10. The conver-
gence for different meshes and polynomial degrees is depicted in Fig. 11.

7. Conclusion and outlook

This paper investigates theBubnov–Galerkinmethod for convection–diffusionproblems. It leads to numerical oscillations
for convection-dominated problems where low order finite elements are employed. This treatise demonstrates, however,
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that it is possible to achieve nodally stable solutions for a given Péclet number greater than 1 by increasing the degree of the
shape functions. The polynomial degree required for a certain Péclet number is analytically derived in this paper. Numerical
examples verify these theoretical findings.

A high-order discretization does not only provide numerical stability. Numerical examples show that the solution con-
verges exponentially when the polynomial degree is increased. This observation forms the basic motivation for using
standard Bubnov–Galerkin finite elements with a p-extension for problems connected with multi-component flow, etc.
Moreover, this result is especially important for applying the method in simulations of ground water flow through highly
heterogeneous media, where only moderate Péclet numbers appear. This is subject to current research, see [37,38], for in-
stance, for an extension of the findings of this paper to include the finite cell method, a combination of high order finite
elements and a fictitious domain method.
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