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Abstract

A new formulation for two{dimensional uid{rigid body interaction problems is de-

veloped. In particular, vortex{induced oscillations of a rigid body in viscous incom-

pressible ow are studied. The incompressible Navier{Stokes equations are used to

describe the motion of the uid, while it is assumed that the rigid body is mounted

on a system consisting of a spring and a dashpot. An arbitrary Lagrangian{Eulerian

formulation (ALE) is used in order to account for large boundary motion. A gen-

eral formulation for the coupled problem is obtained by uncoupling the translation

motion of the body from its rotational motion and developing a speci�c algorithm

to e�ciently handle the nonlinear dependence of the rotations. This general for-

mulation can be easily applied to multi{body problems. Two numerical examples

involving either translations and rotations are presented as an illustration of the

proposed methodologies for uid{rigid body interaction.
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1 INTRODUCTION

Over the last decades, technological development in several engineering �elds

has placed emphasis on uid-structure interaction [1,3,5,7,9,10]. As a conse-

quence, numerical simulation of coupled hydrodynamic/structural problems

has become one of the most challenging problems in computational uid dy-

namics. In some circumstances, especially when the structure is embedded

in a uid and its deformations are small compared to the displacements and

rotations of its center of gravity, it is justi�ed to idealize the structure as a

rigid body resting on an system consisting of springs and dashpots. Typical

situations in which such an idealisation is legitimate include the simulation

of wind-induced vibrations in high-rise buildings or large bridge girders, the

cyclic response of o�shore structures exposed to sea currents, as well as the

behaviour of structures in aeronautical and naval engineering where structural

loading and response are dominated by uid induced vibrations.

In most cases, oscillations are due to a vortex shedding process around a

structure that can be considered as a rigid body. As vortices are shed, the

pressure distribution on the body is modi�ed and time-dependent dynamic

forces appear, hence inducing structural vibrations. The rigid body motion

interferes with the ow pattern through a nonlinear interactive process and it is

possible that, for a speci�c range of Reynolds numbers, the shedding frequency

becomes close to one of the natural frequencies of the immersed body. In

these cases, resonance occurs, both frequencies collapse to the same value and

the rigid body motion, as well as the dynamic forces can become very large.

This phenomenon, known as lock{in, can be critical for the structural design,

because the ow induced dynamic forces have a direct inuence on the possible

catastrophic failure of the structure under consideration. It is, therefore, of

prime importance from the viewpoint of structural safety to determine in

which range of Reynolds numbers resonance can appear and to appraise the

ensuing oscillation amplitude.

In the numerical simulation of uid{structure interaction, see for instance

[6,7,9,11{14], one of the most critical issues is the treatment of the nonlinear

convective terms in the Navier{Stokes equations governing the uid motion.

However, when considering vortex induced oscillations of rigid bodies, the sit-

uation is further complicated due to the appearance of two geometric non

linearities. The �rst one arises from the explicit dependence of the governing

equations on the rotation angle of the rigid body. The second is related to the

interface between the uid and the solid domains. The interface is part of the

boundary of the uid domain, its position is unknown a priori, and its motion

may be relatively large. Thus, its location is governed by the incompressible

Navier-Stokes equations with large boundary motion, the rigid body equilib-

rium equations, and the restrictions imposed by the fact that the structure is
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rigid.

To solve the �rst problem, we introduce in the present paper a new algorithm

that allows to analyze the uid{rigid body interaction problem by uncoupling

the translation part of the rigid body motion from its rotational part. We also

develop a speci�c algorithm, based on Sherman and Morrison lemma [4], to

handle properly the nonlinear dependence of the rotations. For solving the

second problem above, we propose using the arbitrary Lagrangian{Eulerian

(ALE) formulation [5,7,9]. It allows to combine the ease of a Lagrangian de-

scription for treating the solid surface and for enforcing the compatibility and

equilibrium conditions between the uid and the rigid body. And, at the same

time, it exploits the superiority of an Eulerian description for dealing with the

possible distortions of the hydrodynamic domain far away from the moving

boundaries. Furthermore, the freedom o�ered by the ALE description to move

the mesh of nodal points independently of the material particles represents an

easy way of adapting the uid mesh in response to the solid movement.

The outline of the remainder of the paper is as follows. In Section 2 we intro-

duce the problem statement by describing the equations governing the tran-

sient motion of the uid and of the embedded rigid body. Then, we specify the

compatibility conditions at the uid/structure interface and briey discuss the

algorithm used for displacing the mesh points in the ALE domain. In Section

3 we develop a new algorithm to properly handle the nonlinearities due to ex-

plicit dependence of the ow equations on the rotation angle of the immersed

rigid body. Finally, in Section 4, we present and discuss our numerical results.

2 PROBLEM STATEMENT

2.1 Fluid motion equations

Consider a two{dimensional rigid body immersed in an incompressible uid.

The motion of the uid is governed by the incompressible Navier-Stokes equa-

tions which are given as follows in the ALE description:

@v

@t
+ (v � v̂) � rv = �rp + �r2v + f b;

r � v = 0;

where v is the uid velocity, v̂ the uid mesh velocity, p is the uid pressure

divided by the density, � is the kinematic viscosity, and f b represent body

forces. Appropriate initial and boundary conditions are assumed to be given.

3



After spatial discretization by the �nite element method, the unsteady Navier{

Stokes equations describing the motion of a viscous incompressible uid are

expressed as follows in the ALE formulation [7]:

Ma+ �(v � v̂) +K�v �Gp=f ; (1)

GTv= 0; (2)

where M is the mass matrix; � represents the nonlinear convective terms

depending on the relative velocity v � v̂ between uid velocity and mesh

velocity; K� is the uid viscosity matrix; G is the gradient matrix and GT

the divergence matrix; f is the global vector of external loads applied on

the uid; v, a and p are global vectors listing the nodal values of velocity,

acceleration and pressure, respectively; �nally, v̂ is the global nodal vector

listing the components of the uid mesh velocity.

Vectors a, v and f are decomposed in a similar manner to [14],

aT =
n
af ;as; ~ad

o
vT =

n
vf ; vs; ~vd

o
fT =

�
~f
f
;f s;f d

�
;

where superscript (f ) indicates values related to nodes placed in the uid or on

the Neumann portion of the boundary, superscript (s) means values related to

uid nodes on the rigid body surface, superscript (d) indicates values related

to nodes on the Dirichlet portion of the boundary and the tilde symbol (~ )

denotes prescribed values. According to this decomposition, the momentum

conservation equation (1) can be rewritten as

0
B@M

ff M fs M fd

M sf M ss M sd

M df M ds M dd

1
CA
8><
>:
af

as

~ad

9>=
>;+

0
B@K

ff Kfs Kfd

Ksf Kss Ksd

Kdf Kds Kdd

1
CA
8><
>:
vf

vs

~vd

9>=
>;

+

8><
>:
�f

�s

�d

9>=
>;�

0
B@G

f

Gs

Gd

1
CAP =

8><
>:
~f
f

f s

fd

9>=
>; ; (3)

while the mass conservation equation (2) takes the following form

�
GfT GsT GdT

�8><
>:
vf

vs

~vd

9>=
>; = 0: (4)

Equation (3) clearly shows that the coupling between the uid and the rigid

body has to be achieved through variables de�ned on the rigid body surface,

namely: as, vs and f s.

4



2.2 Rigid body motion equation

In the two{dimensional case, the motion of the rigid body has three degrees

of freedom de�ned at the center of gravity of the body: two translational

displacements, �1 and �2, and one rotational displacement, �. The rigid body is

assumed to be mounted on a system composed of elastic springs and dashpots

(see Fig. 1) and its equation of motion is given by

M�+ C� +K� = ' (5)

whereM, C andK are the mass, damping and sti�ness matrices, respectively.

If each individual system is uncoupled from the others, the above matrices are

diagonal and possess constant coe�cients. For the subsequent developments,

we also de�ne the following vectors (see Fig. 1):

�T = f�1; �2; �g �T = f _�1; _�2; _�g �T = f��1; ��2; ��g 'T = f'1; '2; '3g

where �, � and � are the center of gravity displacement, velocity and acceler-

ation, while ' contains the force and the momentum resultants. In particular

cases, some of the above degrees of freedom are �xed and system (5) is there-

fore reduced to one or two equations for the remaining degrees of freedom.

Fig. 1. Two{dimensional rigid body model
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2.3 Fluid{rigid body compatibility relationship

Compatibility equations are developed in order to relate variables de�ned at

the center of gravity of the rigid body with those de�ned on its surface, see

[14,15] for details. If the origin of the spatial coordinates is chosen at the

center of gravity, the displacements of a point located at the solid surface �s,

dc = (d1; d2), are related to the displacements of the center of gravity, � =

(�1; �2), by d
c = � +Rc(�)x

c, where xc = (xc1; x
c
2) denotes the surface nodes

coordinates, and Rc(�) is a matrix that explicitly depends on the rotation

angle �

Rc(�) =

�
cos � � 1 � sin �

sin � cos � � 1

�
:

By time di�erentiation it is possible to relate the velocity and the acceleration

of the surface points, vc and ac, to their counterparts � and � de�ned at the

center of gravity

vc = T c(�) �

ac = T c(�) �+ T̂ c(�) �
2

(6)

where matrices

T c(�) =

�
1 0 �Lc

2(�)

0 1 Lc
1(�)

�
and T̂ c(�) =

�
0 0 �Lc

1(�)

0 0 �Lc
2(�)

�
;

contain the following angle dependent coe�cients: Lc
1(�) = xc1 cos � � xc2 sin �,

and Lc
2(�) = xc1 sin � + xc2 cos �. Notice that matrix T̂ c has been introduced in

order to develop properly the new formulation. However, the term T̂ c(�) �
2

in (6), in fact, only contains the product of the vector f�Lc
1;�L

c
2g

T
times the

scalar �2.

An equivalent relation between the dynamic uid force acting at a point lo-

cated on the solid surface, f c, and its counterpart at the center of gravity, 'c,

can be determined

�T T
c (�)f

c = 'c: (7)

Relationships (6) and (7) are de�ned for each point on the rigid body surface.

Velocities, accelerations and forces of uid and rigid body do coincide on the

interface because the uid is viscous. Thus, the following assembled vectors,

which are needed in Eqs. (3) and (4), are produced:
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vs =

8>><
>>:

...

vc
...

9>>=
>>;=

0
BB@

...

T c(�)
...

1
CCA� = T (�) �; (8)

as =

8>><
>>:

...

ac

...

9>>=
>>;=

0
BB@

...

T c(�)
...

1
CCA�+

0
BB@

...

T̂ c(�)
...

1
CCA�2 = T (�) �+ T̂ (�) �2; (9)

�T T (�) f s=� ( : : : T T
c (�) : : : )

8>><
>>:

...

f c

...

9>>=
>>; = �

X
c

T T
c (�) f

c

=
X
c

'c = ': (10)

These expressions are the compatibility equations. They relate the variables

de�ned at a node of the uid boundary with those de�ned at the center of

gravity. Notice that the last equation is in fact a statement of equilibrium in

the solid. It states that the total force and momentum acting at the center

of gravity are the resultant of all the actions exercised on the solid boundary.

T (�) and T̂ (�) are the assembled transformation matrices. They explicitly

depend on the rotation angle �, i.e. Eqs. (8), (9), and (10) are nonlinear. It

has to be noted that the transformation matrices are rectangular and of order

NS �NG, where NS is the number of unknowns on the rigid body surface and

NG is the number of unknowns de�ned at the center of gravity (NG � 3).

2.4 Mesh motion description

Since the only moving boundary considered here is the rigid body surface, the

mesh motion is de�ned as follows: 1.- a Lagrangian description is imposed on

the rigid body surface in the sense that at the uid/solid interface the nodes

of the uid mesh are constrained to remain attached to the solid nodes during

the whole calculation. The mesh velocity of the uid nodes at the interface

is imposed equal to the velocity of the corresponding uid/solid nodes: v̂ =

vs = T (�) �; 2.- in the outer part of the hydrodynamic domain an Eulerian

description is imposed by stating: v̂ = 0; and 3.- in an area around the rigid

body the mesh velocity decreases along with the distance to the rigid body

surface according to a prescribed law, see [15] for details.

Note that, if a free surface exists, a Lagrangian description will be imposed on

the nodes belonging to it, so that the computational mesh follows the motion

of the uid particles. Consequently, the algorithm for computing the mesh

motion has to be changed accordingly. However, this change will only a�ect

the mesh motion algorithm, and not to the general formulation of the problem.
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3 PROPOSED NONLINEAR ALGORITHM

3.1 General formulation

In order to simplify the notation, the explicit dependence on the rotation angle

will be dropped in the rest of the present paper. The general formulation for

the uid{rigid body interaction problem can be derived after substitution of

the compatibility conditions (8) and (9) into Eq. (3), where the component

related to the prescribed Dirichlet values is omitted. This yields the following

system of di�erential equations,

�
M ff M fs

M sf M ss

��
af

T �+ T̂ �2

�
+

�
Kff Kfs

Ksf Kss

��
vf

T �

�

+

�
�f

�s

�
�

�
Gf

Gs

�
p =

(
~f
f

f s

)
�

�
M fd

M sd

�
~ad
�

�
Kfd

Ksd

�
~vd: (11)

From the previous equation, an expression for the forces acting on the rigid

body surface, f s, is obtained. Using this expression of f s and Eq. (10), the

rigid body equilibrium equation (5) can be rewritten as,

M
��+ C�� +K�=�T T

"
(M sf M ss M sd )

8><
>:

af

T̂ �2

~ad

9>=
>;

+(Ksf Ksd Kss )

8><
>:
vf

0

~vd

9>=
>;+ �s

�Gsp

#
; (12)

where we have introduced the modi�ed mass and damping matrices

M
�=M+ T TM ssT ;

C
�=C + T TKssT :

It is important to notice that the order of the matricesM� and C� is NG � 3

(the number of degrees of freedom of the rigid body). Also, these matrices are

no longer diagonal, but they remain symmetric.

In conclusion, the uid{rigid body interaction problem can be described by

a system of ordinary di�erential equations composed by the �rst equation

in (11), Eq. (12) and mass conservation, Eq. (4). Rearranging the �rst two

equations into a single system, we obtain:
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�
M ff M fs T

T T M sf
M

�

��
af

�

�
+

�
Kff Kfs T

T T Ksf
C
�

��
vf

�

�

+

�
0 M fs T̂

0 T TM ssT̂

��
0

�2

�
+

�
0 0

0 K

��
0

�

�
+

�
�f

T T�s

�
�

�
Gf

T TGs

�
P

=

(
~f
f

0

)
�

�
M fd

T TM sd

�
~ad
�

�
Kfd

T TKsd

�
~vd (13)

and

�
GfT GsTT

�� vf
�

�
= �GdT ~vd; (14)

where the velocity compatibility condition (8) has been also included in (14).

It has to be noted that the mass, viscosity and divergence matrices depend on

the rotation angle �.

3.2 Fluid{rigid body interaction with translation only

As previously noted, if a certain degree of freedom of the rigid body is �xed, the

compatibility and the assembled transformation matrices have to be regarded

as a reduced system. In particular, if the �xed degree of freedom is the rigid

body rotation, then the equation of motion (5) can be written as:

Mtt�t + Ctt�t +Ktt�t = 't (15)

where subscript t means translation. Furthermore, the nodal transformation

matrices in (6) and (7) do not depend anymore on the rotation angle �. Their
order is NG � 2, and they are equal to identity and null matrices, respectively

(T c = Id and T̂ c = 0).

Therefore, the assembled transformation matrices are also constant coe�cient

matrices. In fact, matrix T̂ (�), see (9), is null and the compatibility conditions

for velocity and acceleration are identical

vs = T t�t as = T t�t � T T
t f

s = '

where matrix T t is the assembled transformation matrix for translations, and

it is composed by 2� 2 identity matrices.

The uid{rigid body interaction problem is now described by the following

system of ordinary di�erential equations, which is similar to (13) and (14). T

is replaced by T t and the �2 term has disappeared.
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�
M ff M fs T t

T T
t M

sf
M

�

tt

��
af

�t

�
+

�
Kff Kfs T t

T T
t K

sf
C
�

tt

��
vf

�t

�

+

�
0 0

0 Ktt

��
0

�

�
+

�
�f

T T
t �

s

�
�

�
Gf

T T
t G

s

�
p

=

(
~f
f

0

)
�

�
M fd

T T
t M

sd

�
~ad
�

�
Kfd

T T
t K

sd

�
~vd (16)

�
GfT GsTT t

�� vf
�t

�
= GdT ~vd (17)

where the modi�ed mass and damping matrices for translation problems are:

M
�

tt=Mtt + T T
t M

ssT t;

C
�

tt=Ctt + T T
t K

ssT t:

The time integration algorithm used in Eqs. (16) and (17) is standard in

viscous incompressible uid{structure interaction, see [2,9]. The basic charac-

teristic of our treatment of problems with translations only is the particular

computational implementation of Eqs. (16) and (17). This implementation is

based on a proper interpretation of three kinds of operations that appear very

often in (16) and (17). Such operations are classi�ed as follows: 1.- to premul-

tiply a matrix or a vector by the T T
t matrix, 2.- to postmultiply a matrix or

a vector by the T t matrix and 3.- to premultiply a matrix by T T
t and then

postmultiply the result by the T t matrix.

To this end, consider a general block square matrix A(n�n) composed of 2� 2

boxes, Aij i; j = 1; : : : ; n. Since matrix T t is also composed of T c matrices

of order 2� 2 (recall that T c = Id), then

T T
t AT t=

�
Id Id : : : Id

�
0
BBB@
A11 A12 : : : A1n

A21 A22 : : : A2n
... : : :

. . .
...

An1 An2 : : : Ann

1
CCCA

0
BBB@
Id
Id
...

Id

1
CCCA

=
�
Id Id : : : Id

�
0
BBBBBBBBB@

nP
j=1

A1j

nP
j=1

A2j

...
nP

j=1
Anj

1
CCCCCCCCCA

=
nX

i=1

 
nX

j=1

Aij

!
:
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Therefore, this operation of pre- and post-multiplication is equivalent to add

all the rows and columns corresponding to nodes on the rigid body surface.

Similarly, to premultiply by the T T
t matrix amounts to adding all the rows of

A, and postmultiply by the T t matrix is equivalent to adding all the columns

of A. Hence, the implementation of the above three kinds of operation is

extremely easy. It is equivalent to assigne the same equation to each degree

of fredom de�ned on each node on the rigid body surface. In this case, the

assembly process will automatically do all the work.

3.3 Nonlinear algorithm for interactions with rotations

As will become apparent from the developments in Section 3.4, the analysis

of uid{rigid body interaction problems with rotations, which corresponds to

the numerical resolution of Eqs. (13) and (14), will involve the solution of a

nonlinear system of the form

�
B11 b12(�)

bT21(�) b22(�)

��
x1
�

�
=

�
r1(x1; �)

r2(x1; �)

�
(18)

where x1 is the vector associated with the nodal unknowns in the whole uid

domain including the translation motion of the solid, while � represents the

unknown associated with the angular motion of the solid. The basic idea of the

algorithm proposed here relies on the following considerations: 1.- the basic

nonlinear equation in (18) is the scalar equation corresponding to rotation

angle �, and 2.- the B11 matrix, which does not depend on the rotation angle,

is well approximated by its lumped form [7,9,13,14]. The rotation angle � can
be written, using the second equation of (18), as

� =
1

b22(�)

�
r2(x1; �)� b

T
21(�) x1

�
(19)

then, substituting in the �rst equation of (18), one obtains,

�
B11 �

b12(�) bT21(�)

b22(�)

�
x1 = r1(x1; �)�

r2(x1; �)

b22(�)
b12(�): (20)

Note that, in the previous equation, the matrix on the left hand side does

not depend on x1. Thus, the left hand side in (20) is linear on x1. In fact, a

similar structure is also encountered in the algorithm used for uid and uid{

structure interaction problems in [2,9] (i.e. a system of equations with a linear

left hand side and a nonlinear right hand side). Our goal here is to obtain an

algorithm with an equivalent accuracy and e�ciency to the one proposed in
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[2,9], but dealing now with the extra nonlinearities due to rotations. Therefore,

if it is possible to invert e�ciently the matrix in (20), the resolution of (18)

only incorporates an extra scalar nonlinear equation, (19), which can be solved

e�ciently.

The system matrix in (20) can be inverted via the Sherman and Morrison

lemma [4] giving

�
B11 �

b12(�) bT21(�)

b22(�)

�
�1

=

�
B�1

11 �
1

�
B�1

11

b21(�) b
T
21(�)

b22(�)
B�1

11

�

where B�1
11 must exits and the condition � = 1 + bT21(�) B

�1
11 b21(�) 6= 0 must

hold.

Under these conditions an algorithm can be devised which uses the same

simpli�cation as the one proposed in [2,9] (i.e. B11 is well approximated by

its lumped form, B
Lump
11 ). Then, the solution of (20) is

x1=

��
B

Lump
11

�
�1
�

1

�

�
B

Lump
11

�
�1 b21(�) b

T
21(�)

b22(�)

�
B

Lump
11

�
�1
�

�
r1(x1; �)�

r2(x1; �)

b22(�)
b12(�)

�

where, from the computational point of view, only vector-vector and vector-

scalar products are required. This is also valid for the computation of �.

It is important to notice that this algorithm can be easily extended to prob-

lems with several rigid bodies. In this case, the scalar equation containing

the rotation angle becomes a linear system with as many unknowns as rigid

bodies. Consistently, the � constant becomes a matrix of the same order.

3.4 Fluid{rigid body interaction with rotations

In order to uncouple the translation motion of the rigid body from its rota-

tional motion, the local matrices in (6) and (7) are separated in two parts,

T c =

�
1 0 �Lc

2

0 1 Lc
1

�
= (T ct tcr ) and T̂ c =

�
0 0 �Lc

1

0 0 �Lc
2

�
= ( 0 t̂cr )

where the subscript (t) means translations, the subscript (r) means rotations.

Note that T ct is the nodal transformation matrix extensively used in section
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3.2. We have also introduced the following vectors

tcr =

�
�Lc

2

Lc
1

�
and t̂cr =

�
�Lc

1

�Lc
2

�

Consequently, the compatibility conditions (8-10) can be written as:

vs =

8>><
>>:

...

vc
...

9>>=
>>;=

0
BB@

...
...

T ct tcr
...

...

1
CCA� = (T t tr )� (21)

as =

8>><
>>:

...

ac

...

9>>=
>>;=

0
BB@

...
...

T ct tcr
...

...

1
CCA�+

0
BB@
...

...

0 t̂cr
...

...

1
CCA�2

=(T t tr )�+ ( 0 t̂r )�
2 (22)

�

�
T T

t

tTr

�
f s=�

�
: : : T T

ct : : :
: : : tTcr : : :

�8>><
>>:

...

f c

...

9>>=
>>; = �

X
c

T T
c f

c

=
X
c

'c = ' (23)

The same decomposition is applied to the rigid body mass, damping and

sti�ness matrices

M =

�
Mtt

M33

�
, C =

�
Ctt

C33

�
, K =

�
Ktt

K33

�
(24)

whereMtt, Ctt and Ktt are the mass, damping and sti�ness matrices used in

(15) for the translation case, and the scalar variablesM33, C33 and K33 contain

the rigid body rotation parameters. The same decomposition is applied to the

rigid body acceleration, velocity and displacement unknown vectors

� =

8><
>:
�1
�2
��

9>=
>; =

�
�t

��

�
, � =

8><
>:
�1
�2
_�

9>=
>; =

�
�t

_�

�
, � =

8><
>:
�1
�2
�

9>=
>; =

�
�t
�

�
(25)

Equations (21) to (25) must be introduced in the general expressions (13)

and (14). Moreover, the equations associated to the uid motion and the rigid

body translation, see Eqs. (16) and (17) in section 3.2, are explicitly separated

from the rigid body rotation equation. The objective of this decomposition is

to identify, and then treat in a di�erent manner, the terms associated with

translations and those related to rotations. The following systems of ordinary

13



di�erential equations describe the uid-rigid body interaction with rotations

(see [15] for details)

�
M tt mtr

mT
tr mrr

��
at

��

�
+

�
Ktt ktr

kT
tr krr

��
vt
_�

�

+

�
0 m̂tr

0 m̂rr

��
0
_�2

�
+

�
K̂tt 0

0 k̂rr

��
dt
�

�
+

�
�t

�r

�

�

�
Gtt

gTr

�
p =

�
f t

0

�
�

�
M d

tt

mdT

r

�
~ad
�

 
Kd

tt

kdT

r

!
~vd (26)

and

(GT
tt gr )

�
vt
_�

�
= �GdT ~vd (27)

where several matrices, vectors and scalars have been introduced:

at �

�
af

�t

�
vt �

�
vf

�t

�

dt �

�
0

�

�
f t �

(
~f
f

0

)

M tt �

�
M ff M fs T t

T T
t M

sf
M

�

tt

�
M d

tt �

�
M fd

T T
t M

sd

�

Ktt �

�
Kff Kfs T t

T T
t K

sf
C
�

tt

�
Kd

tt �

�
Kfd

T T
t K

sd

�

K̂tt �

�
0 0

0 Ktt

�
Gtt �

�
Gf

T T
t G

s

�

�t �

�
�f

T T
t �

s

�
gTr � f tTrG

s
g

mtr �

�
M fs tr
T T

t M
sstr

�
mdT

r � tTrM
sd

ktr �

�
Kfs tr
T T

t K
sstr

�
kdT

r � ttr K
sd

m̂tr �

�
M fs t̂r
T T

t M
ss t̂r

�
�r � tTr e

mrr � M33 + tTr M
ss tr m̂rr � tTr M

ss t̂r

krr � C33 + tTr K
ss tr k̂rr � K33

Finally, note that: 1.{ at this point it is trivial to prove that, if the rigid body

rotation is �xed (no rotations exist), Eqs. (16) and (17) are a particular case

of (26) and (27); and 2.{ the generalized mass and uid viscosity matrices in

14



(26) and (27) have the same structure as the matrix in Eq. (18). Therefore,

the algorithm introduced in section 3.3 can be applied to this problem.

The details of the practical implementation of time integration algorithm are

presented in an appendix.

4 NUMERICAL EXAMPLES

Two examples are presented in this section to illustrate the algorithms for

uid-rigid body interaction discussed in the present paper. In both cases, we

have used an upwind Petrov-Galerkin [2] formulation for solving equations (26)

and (27). Bilinear velocity constant pressure (Q1P0) elements were employed

for the spatial discretization.

Fig. 2. Geometry and boundary conditions for the �rst example

In the �rst example, we analyze the attenuation of the rotational motion of

a rectangular cylinder submerged in a viscous uid (see Fig. 2). The struc-

tural damping is ignored in this case. Initially, the uid and the rectangu-

lar cylinder are at rest. The cylinder is then released from an initial an-

gular displacement �0 = 5o. The rigid body torsional frequency is taken

as !r =
q
kr=I = 0:266 s�1. The problem is scaled using half of the rigid

body base: L = b=2 = 1:25 as the characteristic length . The velocity

scale is the maximum linear velocity of point A rotating without damping:

V = �0 !r sin(!rT=2)L = 2:90245 10�2 (see Fig. 2). Since there is no damping

in the system, the potential energy of the spring has to be absorbed by uid

forces. Therefore, the rotation amplitude of the rectangular cylinder has to

decrease with both viscosity and time.

15



Fig. 3. Detail of the mesh for the �rst example

In order to analyze the rigid body motion dependence on the uid viscosity

three values of the kinematic viscosity, and hence three values of the Reynolds

number, were used:

� = 0:01 �! Re = 3:628

� = 0:001 �! Re = 36:28

� = 0:0001 �! Re = 362:8

The mesh employed consists of 3204 nodes and 3092 elements (see Fig. 3).

Figure 4 shows the evolution in time of the angular displacement, velocity and

acceleration of the rigid body for the above values of the Reynolds number.

The solid oscillates around its equilibrium position and the amplitude of the

oscillatory motion decreases with time due to the e�ect of the hydrodynamic

forces acting on the boundary of the solid. Note a strong amplitude attenuation

for Re = 3:628 (� = 0:01).

Figure 5 shows the streamlines for the two limit cases: Re = 3:628 and Re =

362:8. These results present a reasonable agreement with those obtained in

[7] for translational motion: for high Reynolds numbers most of the shearing

occurs in a small layer surrounding the rigid body and the vortices remain

attached to the rigid body surface.
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C o n t o u r  I n t e r v a l = 0 . 1 3 1 2 E - 0 2
c o n t o u r  l e v e l s

1    - 0 . 1 5 3 2 E - 0 1

2    - 0 . 1 4 0 1 E - 0 1

3    - 0 . 1 2 7 0 E - 0 1

4    - 0 . 1 1 3 8 E - 0 1

5    - 0 . 1 0 0 7 E - 0 1

6    - 0 . 8 7 5 9 E - 0 2

7    - 0 . 7 4 4 7 E - 0 2

8    - 0 . 6 1 3 5 E - 0 2

9    - 0 . 4 8 2 3 E - 0 2

1 0   - 0 . 3 5 1 1 E - 0 2

1 1   - 0 . 2 1 9 9 E - 0 2

1 2   - 0 . 8 8 6 7 E - 0 3

1 3    0 . 4 2 5 4 E - 0 3

1 4    0 . 1 7 3 8 E - 0 2

C o n t o u r  I n t e r v a l = 0 . 3 7 6 3 E - 0 3
c o n t o u r  l e v e l s

1    - 0 . 4 6 5 2 E - 0 2

2    - 0 . 4 2 7 5 E - 0 2

3    - 0 . 3 8 9 9 E - 0 2

4    - 0 . 3 5 2 3 E - 0 2

5    - 0 . 3 1 4 7 E - 0 2

6    - 0 . 2 7 7 0 E - 0 2

7    - 0 . 2 3 9 4 E - 0 2

8    - 0 . 2 0 1 8 E - 0 2

9    - 0 . 1 6 4 2 E - 0 2

1 0   - 0 . 1 2 6 5 E - 0 2

1 1   - 0 . 8 8 9 2 E - 0 3

1 2   - 0 . 5 1 2 9 E - 0 3

1 3   - 0 . 1 3 6 7 E - 0 3

1 4    0 . 2 3 9 6 E - 0 3

C o n t o u r  I n t e r v a l = 0 . 1 1 3 4 E - 0 2
c o n t o u r  l e v e l s

1    - 0 . 1 5 1 9 E - 0 2

2    - 0 . 3 8 4 7 E - 0 3

3     0 . 7 4 9 5 E - 0 3

4     0 . 1 8 8 4 E - 0 2

5     0 . 3 0 1 8 E - 0 2

6     0 . 4 1 5 2 E - 0 2

7     0 . 5 2 8 6 E - 0 2

8     0 . 6 4 2 1 E - 0 2

9     0 . 7 5 5 5 E - 0 2

1 0    0 . 8 6 8 9 E - 0 2

1 1    0 . 9 8 2 3 E - 0 2

1 2    0 . 1 0 9 6 E - 0 1

1 3    0 . 1 2 0 9 E - 0 1

1 4    0 . 1 3 2 3 E - 0 1

C o n t o u r  I n t e r v a l = 0 . 3 2 6 0 E - 0 3
c o n t o u r  l e v e l s

1    - 0 . 1 9 2 2 E - 0 3

2     0 . 1 3 3 9 E - 0 3

3     0 . 4 5 9 9 E - 0 3

4     0 . 7 8 5 9 E - 0 3

5     0 . 1 1 1 2 E - 0 2

6     0 . 1 4 3 8 E - 0 2

7     0 . 1 7 6 4 E - 0 2

8     0 . 2 0 9 0 E - 0 2

9     0 . 2 4 1 6 E - 0 2

1 0    0 . 2 7 4 2 E - 0 2

1 1    0 . 3 0 6 8 E - 0 2

1 2    0 . 3 3 9 4 E - 0 2

1 3    0 . 3 7 2 0 E - 0 2

1 4    0 . 4 0 4 6 E - 0 2

C o n t o u r  I n t e r v a l = 0 . 1 7 0 1 E - 0 2
c o n t o u r  l e v e l s

1    - 0 . 1 9 2 1 E - 0 1

2    - 0 . 1 7 5 1 E - 0 1

3    - 0 . 1 5 8 1 E - 0 1

4    - 0 . 1 4 1 1 E - 0 1

5    - 0 . 1 2 4 1 E - 0 1

6    - 0 . 1 0 7 1 E - 0 1

7    - 0 . 9 0 0 6 E - 0 2

8    - 0 . 7 3 0 5 E - 0 2

9    - 0 . 5 6 0 4 E - 0 2

1 0   - 0 . 3 9 0 3 E - 0 2

1 1   - 0 . 2 2 0 2 E - 0 2

1 2   - 0 . 5 0 1 2 E - 0 3

1 3    0 . 1 2 0 0 E - 0 2

1 4    0 . 2 9 0 0 E - 0 2

C o n t o u r  I n t e r v a l = 0 . 2 8 0 7 E - 0 3
c o n t o u r  l e v e l s

1    - 0 . 3 5 0 4 E - 0 2

2    - 0 . 3 2 2 3 E - 0 2

3    - 0 . 2 9 4 2 E - 0 2

4    - 0 . 2 6 6 2 E - 0 2

5    - 0 . 2 3 8 1 E - 0 2

6    - 0 . 2 1 0 1 E - 0 2

7    - 0 . 1 8 2 0 E - 0 2

8    - 0 . 1 5 3 9 E - 0 2

9    - 0 . 1 2 5 9 E - 0 2

1 0   - 0 . 9 7 7 9 E - 0 3

1 1   - 0 . 6 9 7 2 E - 0 3

1 2   - 0 . 4 1 6 6 E - 0 3

1 3   - 0 . 1 3 5 9 E - 0 3

1 4    0 . 1 4 4 7 E - 0 3

C o n t o u r  I n t e r v a l = 0 . 1 6 8 1 E - 0 2
c o n t o u r  l e v e l s

1    - 0 . 2 9 1 5 E - 0 2

2    - 0 . 1 2 3 3 E - 0 2

3     0 . 4 4 8 1 E - 0 3

4     0 . 2 1 3 0 E - 0 2

5     0 . 3 8 1 1 E - 0 2

6     0 . 5 4 9 2 E - 0 2

7     0 . 7 1 7 4 E - 0 2

8     0 . 8 8 5 5 E - 0 2

9     0 . 1 0 5 4 E - 0 1

1 0    0 . 1 2 2 2 E - 0 1

1 1    0 . 1 3 9 0 E - 0 1

1 2    0 . 1 5 5 8 E - 0 1

1 3    0 . 1 7 2 6 E - 0 1

1 4    0 . 1 8 9 4 E - 0 1

C o n t o u r  I n t e r v a l = 0 . 3 1 2 8 E - 0 3
c o n t o u r  l e v e l s

1    - 0 . 2 2 4 4 E - 0 3

2     0 . 8 8 3 7 E - 0 4

3     0 . 4 0 1 2 E - 0 3

4     0 . 7 1 4 0 E - 0 3

5     0 . 1 0 2 7 E - 0 2

6     0 . 1 3 4 0 E - 0 2

7     0 . 1 6 5 2 E - 0 2

8     0 . 1 9 6 5 E - 0 2

9     0 . 2 2 7 8 E - 0 2

1 0    0 . 2 5 9 1 E - 0 2

1 1    0 . 2 9 0 4 E - 0 2

1 2    0 . 3 2 1 7 E - 0 2

1 3    0 . 3 5 2 9 E - 0 2

1 4    0 . 3 8 4 2 E - 0 2

(a) (b)

Fig. 5. Streamlines for (a) � = 0:01 (Re = 3:628) and (b) � = 0:0001 (Re = 362:8).

The snapshots correspond to t = �=4, t = �=2, t = 3�=4 and t = 2�
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In the second example, the proposed formulation is applied to a uid{rigid

body interaction problem with cross-ow and rotational oscillations. Figure 6

shows the geometry of the problem and the applied boundary conditions. The

computational mesh consists of 3204 nodes and 3092 elements (see Fig. 7).

The non-dimensional parameters are obtained from the rigid body height and

inow velocity. For Re = 1000 the non-dimensional rigid body parameters

are:

m�

t = 195:57 c�t = 0:0325 k�t = 0:7864

I� = 105:94 c�r = 0:0 k�r = 17:05

Fig. 6. Geometry and boundary conditions for the second example

Fig. 7. Unstructured quadrilateral mesh for the second example

Figure 8 shows the vertical and rotational rigid body displacements, velocities

and accelerations corresponding to Re = 1000. As can be seen, after the

initial transient, both motions only contain one main harmonic. In Figure 9

the stationary streamlines and the pressure �eld corresponding to the ultimate

instants are presented.
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Fig. 8. (a) Angular displacement and (b) vertical displacement of the rigid body
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C o n t o u r  I n t e r v a l = 0 . 2 2 3 7 E + 0 0
c o n t o u r  l e v e l s

1    - 0 . 1 0 6 3 E + 0 1

2    - 0 . 8 3 9 3 E + 0 0

3    - 0 . 6 1 5 6 E + 0 0

4    - 0 . 3 9 1 9 E + 0 0

5    - 0 . 1 6 8 2 E + 0 0

6     0 . 5 5 4 7 E - 0 1

7     0 . 2 7 9 2 E + 0 0

8     0 . 5 0 2 9 E + 0 0

9     0 . 7 2 6 6 E + 0 0

1 0    0 . 9 5 0 3 E + 0 0

1 1    0 . 1 1 7 4 E + 0 1

  

  

- 0 . 1 0 0 E + 0 1

- 0 . 8 8 7 E + 0 0

- 0 . 7 7 0 E + 0 0

- 0 . 6 5 4 E + 0 0

- 0 . 5 3 8 E + 0 0

- 0 . 4 2 1 E + 0 0

- 0 . 3 0 5 E + 0 0

- 0 . 1 8 8 E + 0 0

- 0 . 7 2 1 E - 0 1

 0 . 4 4 3 E - 0 1

 0 . 1 6 1 E + 0 0

 0 . 2 7 7 E + 0 0

 0 . 3 9 3 E + 0 0

 0 . 5 1 0 E + 0 0

C o n t o u r  I n t e r v a l = 0 . 2 2 9 6 E + 0 0
c o n t o u r  l e v e l s

1    - 0 . 1 1 7 8 E + 0 1

2    - 0 . 9 4 8 3 E + 0 0

3    - 0 . 7 1 8 7 E + 0 0

4    - 0 . 4 8 9 1 E + 0 0

5    - 0 . 2 5 9 5 E + 0 0

6    - 0 . 2 9 8 5 E - 0 1

7     0 . 1 9 9 8 E + 0 0

8     0 . 4 2 9 4 E + 0 0

9     0 . 6 5 9 0 E + 0 0

1 0    0 . 8 8 8 6 E + 0 0

1 1    0 . 1 1 1 8 E + 0 1

  

  

- 0 . 1 6 0 E + 0 1

- 0 . 1 4 4 E + 0 1

- 0 . 1 2 8 E + 0 1

- 0 . 1 1 1 E + 0 1

- 0 . 9 4 9 E + 0 0

- 0 . 7 8 5 E + 0 0

- 0 . 6 2 2 E + 0 0

- 0 . 4 5 8 E + 0 0

- 0 . 2 9 4 E + 0 0

- 0 . 1 3 1 E + 0 0

 0 . 3 3 1 E - 0 1

 0 . 1 9 7 E + 0 0

 0 . 3 6 0 E + 0 0

 0 . 5 2 4 E + 0 0

C o n t o u r  I n t e r v a l = 0 . 2 2 6 6 E + 0 0
c o n t o u r  l e v e l s

1    - 0 . 1 1 5 0 E + 0 1

2    - 0 . 9 2 3 8 E + 0 0

3    - 0 . 6 9 7 2 E + 0 0

4    - 0 . 4 7 0 6 E + 0 0

5    - 0 . 2 4 3 9 E + 0 0

6    - 0 . 1 7 3 2 E - 0 1

7     0 . 2 0 9 3 E + 0 0

8     0 . 4 3 5 9 E + 0 0

9     0 . 6 6 2 5 E + 0 0

1 0    0 . 8 8 9 1 E + 0 0

1 1    0 . 1 1 1 6 E + 0 1

  

  

- 0 . 9 0 3 E + 0 0

- 0 . 7 9 3 E + 0 0

- 0 . 6 8 4 E + 0 0

- 0 . 5 7 5 E + 0 0

- 0 . 4 6 6 E + 0 0

- 0 . 3 5 6 E + 0 0

- 0 . 2 4 7 E + 0 0

- 0 . 1 3 8 E + 0 0

- 0 . 2 8 6 E - 0 1

 0 . 8 0 7 E - 0 1

 0 . 1 9 0 E + 0 0

 0 . 2 9 9 E + 0 0

 0 . 4 0 9 E + 0 0

 0 . 5 1 8 E + 0 0

C o n t o u r  I n t e r v a l = 0 . 2 3 3 2 E + 0 0
c o n t o u r  l e v e l s

1    - 0 . 1 0 9 2 E + 0 1

2    - 0 . 8 5 9 2 E + 0 0

3    - 0 . 6 2 5 9 E + 0 0

4    - 0 . 3 9 2 7 E + 0 0

5    - 0 . 1 5 9 5 E + 0 0

6     0 . 7 3 7 4 E - 0 1

7     0 . 3 0 7 0 E + 0 0

8     0 . 5 4 0 2 E + 0 0

9     0 . 7 7 3 4 E + 0 0

1 0    0 . 1 0 0 7 E + 0 1

1 1    0 . 1 2 4 0 E + 0 1

  

  

- 0 . 1 5 9 E + 0 1

- 0 . 1 4 2 E + 0 1

- 0 . 1 2 6 E + 0 1

- 0 . 1 1 0 E + 0 1

- 0 . 9 3 2 E + 0 0

- 0 . 7 6 7 E + 0 0

- 0 . 6 0 3 E + 0 0

- 0 . 4 3 9 E + 0 0

- 0 . 2 7 4 E + 0 0

- 0 . 1 1 0 E + 0 0

 0 . 5 4 5 E - 0 1

 0 . 2 1 9 E + 0 0

 0 . 3 8 3 E + 0 0

 0 . 5 4 8 E + 0 0

(a) (b)

Fig. 9. (a) Stationary streamlines and (b) pressure �eld around the rigid body
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5 CONCLUSIONS

In this paper a new ALE algorithm for the numerical simulation of uid{rigid

body interaction problems has been developed. The basic characteristics of the

proposed methodology are that 1.- the equations governing the uid motion

and the rigid body translations are uncoupled from the scalar equation gov-

erning the rigid body rotation; and 2.- a speci�c algorithm has been developed

for e�ciently solving the nonlinear system that appears when rotations of the

rigid body are included. It is important to note that the resulting algorithm

possesses the same structure as the standard predictor{multicorrector method

used for the unsteady incompressible Navier{Stokes equations [2,7,9,14]. Fur-

thermore, it maintains the same truncation error in time indicating that no

loss in the time accuracy has resulted from the coupling between the uid and

a rigid solid. Finally, it is stressed that the present algorithm can be easily

extended to deal with problems incorporating several rigid bodies.

6 APPENDIX: Time marching algorithm

In order to solve the systems of di�erential equations (26) and (27) a time

discretization algorithm needs to be introduced. As already indicated, a nowa-

days standard time integration algorithm used in viscous incompressible uid{

structure interaction is employed, see [2,9]. In this predictor-corrector method

[8], which belongs to the Newmark family, calculations start with the given

initial data and the unknowns are then updated according to:

a�+1
t = a�

t +�a�+1
t

���+1 = ��� +����+1

v�+1t = v�t + �t�a�+1
t

_��+1 = _�� + �t����+1

d�+1t = d�t + ��t2�a�+1
t ��+1 = �� + ��t2����+1

_p�+1 = _p� +� _p�+1 p�+1 = p� + ��t� _p�+1

(28)

where the superscript � is the iteration counter, and �t is the time step. By

introducing (28) into (26) and (27) the following system is obtained,

�
B c

eT s

��
�a�+1

t

����+1

�
���t

�
Gtt

gTr

�
� _p�+1 =

�
r1
r2

�

�t (GT
tt gr )

�
�a�+1

t

����+1

�
= �rp

9>>=
>>;
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where the following matrices, vectors an scalars have been de�ned

B �M tt + �t Ktt + ��t2K̂tt

c � mtr + �t

�
ktr + 2 _��m̂tr

�
+ 2�t2m̂tr(��

�)
2

eT � mT
tr + �t kT

tr

s � mrr + �t

�
krr + 2 _��m̂rr

�
+ ��t2k̂rr + 2�t2m̂rr(��

�)
2

r1 � f t �M
d
tt~a

d
�Kd

tt~v
d
�M tta

�
t �Kttv

�
t�

K̂ttd
�
t �mtr

��� � ktr
_�� � m̂tr( _�

�)
2
� ��

t +Gttp
�

r2 � �mdT

r ~ad
� kdT

r ~vd �mrr
��� � krr _�

�
� m̂rr( _�

�)
2
� k̂rr�

�

�mT
tra

�
t � k

T
trv

�
t � ��r + gTr p

�

rp �
�
GT

tt gr GdT
�8><
>:
v�t
_��

~vd

9>=
>;

(29)

As in the standard method, the acceleration increments are decomposed in

the form

�a�+1
t =�at +�a�t

����+1=��� +����

where �at and ��� can be interpreted as the acceleration increments due

to the increment of the time derivative of the pressure, while �a�t and ����

correspond to the increments due to the residual of the previous iteration.

After some matrix manipulation, see [15] for details, it can be proved that

three systems must be solved at each time step. The �rst one reads

�
B c

eT s

��
�a�t
����

�
=

�
r1
r2

�
(30)

Then, once �a�t and ���� are obtained, we have to solve for the increments of

the temporal derivative of the pressure

(
1

s
grg

T
r +

�
GT

tt �
1

s
gre

T

� �
B �

1

s
ceT

�
�1�

Gtt �
1

s
cgTr

�)
� _p�+1

=
�1

��t2
r�p (31)
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where the following residual for the pressure has been introduced:

r�p = rp + �t (Gtt gr )

�
�a�t
����

�

Third, and �nally, we have to solve the system

�
B c

eT s

��
�a�t
����

�
=

�
rat
r�

�
(32)

where the following residuals have been introduced for the accelerations

rat ����t

�
1

s
cgTr �G

T
tt

�
� _p�+1

r�����tgTr � _p�+1

At this point, several aspects of the time-stepping procedure should be high-

lighted. If a �rst order approximation is chosen in (29), then B =M tt. Hence,

matrix B can be substituted by the lumped approximation of M tt, but more

importantly, one has c = eT and the matrices in Eqs. (30), (31) and (32) are

symmetric matrices.

Moreover, the systems of equations that must be solved in (30) and (32)

have the same structure as the one in (18). Therefore, the solution technique

presented in section 3.3 can be applied. That is, the Sherman and Morrison

lemma [4] can also be applied to invert the matrix [B �
1
s
c eT ] in system

(31). Actually, system (31) can be rewritten as

(
1

s
grg

T
r +

�
GT

tt �
1

s
gre

T

� �
B�1

� B̂
�1
��
Gtt �

1

s
cgTr

�)
� _p�+1

=
�1

��t2
r�p

where we have de�ned

B̂
�1

=
1

�
B�11

s
c eTB�1
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