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A Proper Generalized Decomposition (PGD) approach to crack
propagation in brittle materials: with application to random field
material properties

Hasini Garikapati1,2 · Sergio Zlotnik1 · Pedro Díez1 · Clemens V. Verhoosel2 · E. Harald van Brummelen2

Abstract
Understanding the failure of brittle heterogeneous materials is essential in many applications. Heterogeneities in material 
properties are frequently modeled through random fields, which typically induces the need to solve finite element problems 
for a large number of realizations. In this context, we make use of reduced order modeling to solve these problems at an 
affordable computational cost. This paper proposes a reduced order modeling framework to predict crack propagation in 
brittle materials with random heterogeneities. The framework is based on a combination of the Proper Generalized 
Decomposition (PGD) method with Griffith’s global energy criterion. The PGD framework provides an explicit parametric 
solution for the physical response of the system. We illustrate that a non-intrusive sampling-based technique can be applied 
as a post-processing operation on the explicit solution provided by PGD. We first validate the framework using a global 
energy approach on a deterministic two-dimensional linear elastic fracture mechanics benchmark. Subsequently, we apply 
the reduced order modeling approach to a stochastic fracture propagation problem.

Keywords Brittle fracture · Crack propagation · Model order reduction · Proper Generalized Decomposition · Random fields 
· Monte Carlo method12
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1 Introduction14

One of the important goals in engineering design is to avoid15

catastrophic failure. Besides, in many applications, it is often16

crucial to understand the failure processes. To realistically17

model failure processes in engineering systems it is often18

essential to study the impact of uncertainties in the system19
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parameters, such as loading conditions, specimen geometry, 20

material properties, etc. Taking into account such uncertain- 21

ties in an analysis typically implies that the number of times 22

that a solution must be computed increases rapidly with an 23

increase in the number of uncertain parameters. The use of 24

reduced order models is then indispensable as these make it 25

practical to solve the problem for many parameter realiza- 26

tions at an affordable computational effort. 27

While Reduced Order Modeling (ROM) is a well-estab- 28

lished concept in the field of linear elastic solid mechanics 29

[4,6,19], its application to fracture mechanics problems has 30

remained essentially unexplored, with Ref. [25] providing a 31

notable exception. In the present work, a new ROM tech- 32

nique for fracture propagation is presented which allows 33

failure to be studied as a post-processing operation of a 34

parameterized solution that incorporates varying loads, crack 35

lengths and material uncertainties. We propose a parame- 36

terization of the crack on the one hand, and a method to 37

take into account the fracture propagation criterion in the 38

reduced order model setting on the other hand. Furthermore, 39

we extend the framework to include random heterogeneities 40

in the material properties. 41
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The reduction method of choice in this work is the42

Proper Generalized Decomposition (PGD) method, which is43

a reduced order modeling technique specifically designed to44

counter the curse of dimensionality induced by the increase in45

system parameters to be considered in an analysis [10]. The46

key idea of the PGD technique is to represent the general-47

ized solution in the whole computational vademecum [28,31]48

(i.e., the high-dimensional parameter space) as a finite sum49

of terms that involve the product of functions of the system50

parameters. The computation of this generalized solution is51

referred to as the offline stage. Once the generalized solu-52

tion has been obtained, the solution space can be browsed53

in a computationally efficient way, making it suitable for54

real time computations [8,22]. This evaluation of the solu-55

tion space for a particular set of system parameters is referred56

to as the online stage.57

Our work is based on the concept of linear elastic frac-58

ture mechanics (LEFM), which is a frequently used model59

for brittle fracture [20]. We consider Griffith’s fracture prop-60

agation criterion, which evaluates the stability of a fracture61

based on an energy balance between the work done by exter-62

nal loads, the elastic energy stored within the system, and63

the energy dissipated through the fracture surface. Griffith’s64

theory in its basic form is restricted to elastic brittle materials65

in which there is no plastic deformation near the crack tip.66

The simulation of fracture evolution in the LEFM frame-67

work typically involves a stepwise incrementation of the68

crack path based on the evaluation of the fracture criterion,69

which implies that a linear elasticity problem (with a tip70

singularity) must be solved at each step in the propagation71

process. This finite element procedure is typically compu-72

tationally expensive because, on account of accuracy and73

stability requirements, the crack length increments must gen-74

erally be small, and because some form of mesh adaptation75

is required to accommodate changes in fracture geometry.76

The PGD approach in this work conveniently bypasses these77

problems, as the fracture length is considered as one of the78

coordinates of the obtained parametric solution, and differen-79

tiation with respect to the fracture length provides a suitable80

propagation measure in the form of the energy release rate at81

all configurations in the parametric domain.82

This paper is organized as follows. The model problem83

considered in this work is introduced in Sect. 2. Section 384

demonstrates how a separable form of the problem can be85

obtained in regard to the fracture length, which is a pre-86

requisite for the application of the PGD method discussed87

in Sect. 4. We herein adapt the PGD formulation to solve88

a linear system of equations, which we refer to as the PGD89

solver [27]. Sect. 5 studies the accuracy of the fracture length90

parametrization in the setting of a stationary fracture. Sec-91

tion 6 then describes the application of the PGD framework92

to Griffith’s fracture model, along with the consideration of93

an LEFM benchmark test case [26]. Section 7 then presents94

an application in the stochastic setting, where we use the 95

Karhunen-Loève expansion [15,23] to discretize random 96

field material properties. A Monte Carlo based stochastic 97

analysis is then performed that demonstrates the efficiency 98

of the PGD framework. Conclusions are presented in Sect. 8. 99

2 Model fracture problem 100

As a model problem we consider a straight fracture in a 101

homogeneous linear elastic two-dimensional (d = 2) con- 102

tinuum, see Fig. 1. The crack propagates in response to an 103

external traction imposed on the system. Inertia, gravity and 104

body forces are neglected. Assuming small deformations and 105

deformation gradients, along with plane strain assumptions, 106

the solid deformation is governed by the momentum balance 107

108

∇ · σ = 0 in �, 109

where the Cauchy stress, σ , follows Hooke’s law for isotropic 110

materials 111

σ = 2μ ε + λ tr(ε) I,

ε = ∇s u = 1

2
(∇u + (∇u)T),

(1) 112

where u = (ux , uy) denotes the displacement field, and ε the 113

infinitesimal strain field. The Lamé parameters μ and λ are 114

directly related to the Young’s modulus, E , and Poisson’s 115

ratio, ν. Exploiting the symmetry of the two-dimensional 116

model, the boundary conditions are given by 117

σ n = t on �top, 118

σ n = 0 on �right ∪ �crack, 119

u · n = 0 on �bottom ∪ �left, 120

σ n × n = 0 on �bottom ∪ �left, 121
122

where n is the outward pointing normal vector and t is the 123

imposed boundary traction. 124

Defining the function space for the vector-valued displace- 125

ment field as 126

V := {u ∈ [H1(�)]d : u · n = 0 on �bottom ∪ �left}, 127

the weak form of the problem reads as follows: 128

{
find u ∈ V such that,

a(u, v) = �(v) ∀v ∈ V. (2) 129

The bilinear and linear operators in (2) are defined as, 130

a(u, v) :=
∫
�

∇v : C : ∇s u d� and �(v) :=
∫
�top

v · t d�

(3) 131



Fig. 1 Setup of the model
fracture problem. Note that the
computational domain, �, is
taken as a quarter of the
specimen because of symmetry
conditions

where C is the fourth-order elasticity tensor in accordance132

with Hooke’s law (1), i.e., σ = C : ε.133

The finite element discretization of the displacement field134

is given by135

u(x) =
n∑

i=1

Ni (x)ûi , (4)136

where {Ni (x)}n
i=1 denotes the set of n vector-valued finite137

element basis functions that conform to the space V , and138

{ûi }n
i=1 are the corresponding coefficients. Discretization of139

the weak problem (2) then yields the linear system of equa-140

tions141

Kû = f, (5)142

where the vector û = (û1, . . . , ûn) contains the solution143

coefficients, and the coefficients of the stiffness matrix K144

and load vector f are given by:145

Ki j = a(Ni ,N j ), fi = �(Ni ). (6)146
147

Evidently, the finite element problem (5) depends on the148

parameters of the model. In the case that one is interested in149

a single parameter configuration, this would simply require150

the assembly of the finite element system for that particular151

setting, and then to solve that system to find the approximate152

solution. In the context of this work, however, the central idea153

is that the system (5) must be assembled and solved for many154

different parameters. To this end, we introduce the parametric155

solution to the problem, u(x;μ), where the (scalar) problem156

parameters μ = (μ1, . . . , μnμ) are defined over the param- 157

eter domains Iμ = Iμ1 × · · · × Iμnμ
. 158

The pivotal idea of the PGD method is to attain u(x;μ) 159

as the solution to a problem posed on the higher-dimensional 160

domain�×Iμ, the spatial semi-discretization of which can 161

be written as: 162

K(μ)û(μ) = f(μ) ∀μ ∈ Iμ. (7) 163
164

The general PGD strategy to obtaining this solution is 165

to formulate a higher-dimensional weak form problem 166

corresponding to (2), and then to discretize this higher- 167

dimensional problem in space and in the parametric dimen- 168

sions; see, e.g., [9,10] for the fundamentals of PGD. An 169

essential aspect of the PGD framework is that in order to 170

efficiently compute the parametric solution, a separable form 171

of the weak form problem (or its discrete version) must be 172

available. With respect to the spatially discretized system (5) 173

this means that the stiffness matrix and force vector should 174

be of the form, 175

K(μ) =
nk∑

i=1

Ki
nμ∏
j=1

φi
j (μ j ), (8a) 176

f(μ) =
n f∑
i=1

f i
nμ∏
j=1

ψ i
j (μ j ), (8b) 177

178

where nk and n f denote the total number of terms needed 179

to represent the parametric stiffness matrix and parametric 180

force vector, respectively. Note that when these affine repre- 181

sentations are not available, it is possible to construct affine 182



Fig. 2 Mapping from a unit
reference domain �ref with a
fracture of length 0.5 to the
physical domain � with variable
fracture length lc

separable forms that approximate the stiffness matrix and183

force vector.184

A non-standard aspect in relation to the fracture problem185

considered in this work, is that the crack length parameter,186

lc, enters the problem through the definition of the domain.187

As a consequence, the separable forms (8), with lc as one of188

the parameters, will not follow naturally from (5). Obtaining189

separable forms instead requires recasting of the formulation190

in a canonical form through a pull back of the problem to a191

reference configuration. This reformulation of the problem192

is considered in the next section.193

3 Fracture length parametrization194

In this section we consider the parametrization of the system195

of equations with respect to the fracture length, lc ∈ Ilc =196

[lmin
c , lmax

c ]. For the sake of simplicity, we here consider this197

fracture length to be the only parameter, such that (8) reduces198

to:199

K(lc) =
nk∑

i=1

Ki φi (lc) and f(lc) =
n f∑
i=1

f i ψ i (lc). (9)200

The matrices Ki and the vectors f i do not depend on the201

parameter lc, and the functions φi (lc) and ψ i (lc) depend on202

the parameter only.203

In order to determine the parametric forms in (9), a ref-204

erence domain and a mapping function are introduced as205

illustrated in Fig. 2. The mapping function, M : �ref → �,206

which depends on the parameter lc, transforms the parameter-207

independent reference domain, �ref � X = (X , Y ), into a208

physical domain, Ω � x = (x, y), where the length of the209

crack is equal to lc. Through this mapping, the crack length210

can be described by applying the corresponding mapping to211

the reference domain. We here consider the following choice212

for the mapping x = M(X, lc):213

x =
{

2 lc X for X ≤ 0.5,

Hx + 2(Hx − lc)(X − 1) for X > 0.5,

y = Hy Y .

(10)214

The Jacobian of this mapping follows as: 215

J(X; lc) = ∂x
∂X

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
2lc 0

0 Hy

]
X ≤ 0.5,

[
2(Hx − lc) 0

0 Hy

]
X > 0.5.

(11) 216

The inverse of this Jacobian can be obtained analytically and 217

allows for an exact separable representation as the sum of 218

products of matrices that do not depend on the parameter lc 219

and functions that depend only on that parameter: 220

J−1(X; lc) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
0 0

0 1
Hy

]
+ 1

lc

[
1
2 0

0 0

]
for X ≤ 0.5,

[
0 0

0 1
Hy

]
+ 1

(Hx −lc)

[
1
2 0

0 0

]
for X > 0.5.

(12) 221

A separable form of the determinant of the Jacobian can 222

similarly be obtained: 223

det J(X; lc) =
{

2Hylc for X ≤ 0.5,

2Hy(Hx − lc) for X > 0.5.
(13) 224

The matrix and vector components in Eq. (6) can now be 225

transformed via the mapping M(X, lc) into equivalent inte- 226

grals over the reference domain as 227

Ki j =
∫
�ref

J−1∇Ni : C : J−1∇sN j det (J) d�ref, (14a) 228

fi =
∫
�ref

top

Ni · (t ◦ M)
∂x

∂X
(X; lc) d�ref , (14b) 229

230

where use has been made of the operators defined in (3), 231

and where �ref
top = [0, 1] is the top boundary of the refer- 232

ence domain. The basis functions N here are defined over 233

the reference domain. Note that the mapping function affects 234



Fig. 3 Schematic representation
of the finite element mesh
constructed over the reference
domain. The crack tip coincides
with a mesh line in the X
direction by virtue of the fact
that an even number of elements
is used in that direction. The
mapping onto the physical
domain results in non-uniformly
spaced elements in the physical
mesh

the entire domain and that therefore the traction at the top235

boundary needs to be mapped onto the reference domain to236

be integrated via the surface measure d� = ∂x(X;lc)
∂X d�ref .237

The linear system of equations corresponding to (14) is238

discretized using a finite element mesh constructed over the239

reference domain�ref. A regular, uniformly spaced, mesh is240

used, with an even number of elements in each direction (see241

Fig. 3). As a result, the boundary at X = 0.5, across which242

the mapping function (10) is non-smooth, coincides with an243

element boundary. This has been found to be advantageous244

from an implementation point of view, as an element is either245

completely in the left side of the reference domain, �ref
left =246

{X ∈ �ref | X ≤ 0.5}, or completely in the right side of247

the reference domain, �ref
right = {X ∈ �ref | X > 0.5}.248

Although this particular choice of the reference-domain mesh249

is favorable from the vantage point of implementation and250

accuracy, the methodology presented herein is not restricted251

to this choice of the mesh, and could equally well be applied252

to unstructured meshes.253

A fundamental difference between the finite element254

discretization over the reference grid, Eq. (14), and the sys-255

tem obtained using a direct discretization over the physical256

domain, equation (6), is that the crack length parameter in257

(14) appears inside the integrands of the matrix components,258

and not in the domain boundary (and constraints) definitions.259

This makes it possible to obtain the separable forms of the260

stiffness matrix and force vector required for the PGD frame-261

work.262

Substitution of the definitions of the inverse Jacobian (12),263

and the determinant of the Jacobian (13) into Eq. (14) yields264

a system of the form (9). From this substitution it directly265

follows that the separable form of the stiffness matrix is com-266

posed of nk = 4 parametric basis functions:267

φ1(lc) = 1,268

φ2(lc) = lc,269

φ3(lc) = 1

Hx − lc
,270

φ4(lc) = 1

lc
. (15)271

272

The corresponding stiffness matrices are obtained as: 273

K 1
i j =

∫
�ref

[
Hy 0
0 0

]
∇Ni : C :

[
0 0
0 2

]
∇sN j d�ref, (16a) 274

K 2
i j =

∫
�ref

[
0 0
0 2

]
∇Ni : C :

[
0 0
0 2

]
∇sN j d�ref, (16b) 275

K 3
i j =

∫
�ref

left

[
Hy 0
0 0

]
∇Ni : C :

[
Hy 0
0 0

]
∇sN j d�ref

left, (16c) 276

K 4
i j =

∫
�ref

right

[
Hy 0
0 0

]
∇Ni : C :

[
Hy 0
0 0

]
∇sN j d�ref

right.

(16d)

277

278

Similarly, n f = 2 parametric shape functions are found for 279

the force vector: 280

ψ1(lc) = 1, ψ2(lc) = lc. 281
282

The corresponding vector components are found as: 283

f 1
i =

∫

�ref
topright

2Hx Ni · (t ◦ M) d�ref
topright, (17a) 284

f 2
i =

∫

�ref
topleft

2 Ni · (t ◦ M) d�ref
topleft 285

−
∫

�ref
topright

2 Ni · (t ◦ M) d�ref
topright. (17b) 286

287

The system composed of these separable forms for the stiff- 288

ness matrix and force vector assumes the canonical form (7). 289

4 The Proper Generalized Decomposition 290

(PGD) method 291

The parametric problem (7) is solved here using the Proper 292

Generalized Decomposition (PGD) method [2,3,8]. The par- 293

ticular use of the PGD method considered here follows the 294

idea presented in [13,27], where the method is applied to a 295



discretized (in both space and parametric dimensions) sys-296

tem of linear equations. This differs from the standard use of297

PGD, where the method is applied to the weak form of the298

problem (e.g., [12,24,28,31]).299

The separated form of the PGD approximation, ûpgd(μ),300

takes a form similar to the separated versions of the stiffness301

matrix, K, and external force vector, f , in Eq. (8), viz.:302

ûpgd(μ) =
n pgd∑
i=1

ûi
nμ∏
j=1

Gi
j (μ j ) =

n pgd∑
i=1

β i ūi
nμ∏
j=1

Ḡi
j (μ j ),

(18)303

where the vectors ûi , for i = 1, . . . , n pgd , are constant vec-304

tors of the same size as a standard spatial finite element305

solution, and the scalar functions Gi
j (μ j ) are independent of306

space with μ1, μ2, . . . , μnμ as parameters and nμ being the307

total number of parameters. Note that the parametric func-308

tions Gi
j (μ j ) are represented discretely by a nodal vector309

associated with a mesh over the parameter domains Iμ j in310

accordance with311

Gi
j (μ j ) =

m j∑
k=1

M j,k(μ j )Ĝ
i
j,k, (19)312

where {M j,k}m j
k=1 is the set of linear finite element basis313

functions over the parameter domain Iμ j , and where ĝi
j =314

(Ĝi
j,1, . . . , Ĝi

j,m j
) is the corresponding vector of coeffi-315

cients. In Eq. (18) the vectors ūi and functions Ḡi
j (μ j ) are316

the spatial and parametric modes normalized with respect to317

the Euclidean norms ‖ûi‖ and ‖ ĝi
j‖, respectively, such that318

the modal amplitudes, βi , are given by:319

β i = ‖ûi‖
nμ∏
j=1

‖ ĝi
j‖. (20)320

We employ the PGD solver algorithm as presented in Ref.321

[27], the main ingredients of which are:322

– The PGD algorithm requires the determination of sep-323

arable forms of the stiffness matrix and force vector324

as input. As discussed in detail in Sect. 3, the discrete325

operator K(lc) for the parametric problem with the crack326

length lc as a parameter admits an exact separable rep-327

resentation. This is not generally the case, as we will328

discuss, for example, in the stochastic test case con-329

sidered in Sect. 7. In situations where the linear system330

cannot be separated analytically, it is often replaced by331

a separable approximation (e.g., [30,31]). There exist332

several methods to compute such separated approxima-333

tions. For higher-dimensional parameter domains various334

methods have been proposed in the literature, such as: an 335

approximation based on the PGD concept [14], Singular 336

Value Decomposition (SVD) type approximations [11], 337

approximations based on the CANDECOMP/PARAFAC 338

methods [7,18], and Tucker decomposition type approx- 339

imations [29]. An overview of these techniques can be 340

found in, e.g., Ref. [21]. It is noted that in the case of 341

high-dimensional parameter domains, the computation 342

of separable forms can be computationally demanding. 343

– A greedy algorithm [1,8] is used to sequentially compute 344

the terms to the PGD approximation ûpgd in Eq. (18). 345

Given the PGD approximation with n pgd −1 terms, here 346

denoted by 347

û
n pgd−1
pgd (μ) =

n pgd−1∑
i=1

ûi
nμ∏
j=1

Gi
j (μ j ). (21) 348

an enrichment term ûn pgd
∏nμ

j=1 G
n pgd
j is computed as to 349

obtain the PGD approximation with n pgd terms: 350

û
n pgd
pgd (μ) = û

n pgd−1
pgd (μ)+ ûn pgd

nμ∏
j=1

G
n pgd
j (μ j ). (22) 351

Each enrichment term is computed one at a time, con- 352

structing the summation progressively until the conver- 353

gence criterion 354

βn pgd

β1 = ‖ûn pgd ‖∏nμ
j=1 ‖ ĝ

n pgd
j ‖

‖û1‖∏nμ
j=1 ‖ ĝ1

j‖
≤ εglob, (23) 355

is met with a user-defined tolerance of εglob. Each step in 356

the greedy algorithm, i.e., computing each of the enrich- 357

ment terms, involves the computation of the enrichment 358

modes in space, ûi in discrete form, and in the parameter 359

spaces, Gi
j (μ j ). We herein compute these enrichments 360

iteratively using an alternate direction solver, which is 361

discussed in detail below. 362

– An alternating direction solution strategy [9] is used to 363

compute the enrichment terms ûn pgd
∏nμ

j=1 G
n pgd
j . Lever- 364

aging the separable forms, in this alternating direction 365

strategy the spatial and parametric directions are treated 366

sequentially as to reduce the higher-dimensional para- 367

metric problem to a series of low dimensional problems. 368

This iterative process is repeated until a fixed point is 369

reached within a defined tolerance. For the explanation 370

of this alternating direction strategy we will consider 371

nμ = 1 with the fracture length μ1 = lc as the only 372

parameter. 373

For the alternate direction solution strategy, the paramet- 374

ric problem (7) is considered in its weighted residual 375

form: 376



∫
Ilc

δv̂(lc)
T
[
K(lc)

(
û

n pgd−1
pgd (lc)+ ûn pgd G

n pgd
lc

(lc)
)

377

−f(lc)] dlc = 0 ∀δv̂(lc). (24)378
379

The unknowns in this system are the spatial and paramet-380

ric enrichment modes, ûn pgd and G
n pgd
lc

(lc), respectively.381

The corresponding test functions are defined as:382

δv̂(lc) = δ
(

ûn pgd G
n pgd
lc

(lc)
)

= δûn pgd G
n pgd
lc

(lc)383

+ûn pgd δG
n pgd
lc

(lc). (25)384

In the alternate direction strategy, the system (24) is385

solved per spatial or parametric dimension:386

– Given an approximation (or initial guess) for the387

parametric enrichment mode G
n pgd
lc

, the system (24)388

reduces to the linear system:389

∫
Ilc

G
n pgd
lc

(lc)
[
K(lc)

(
û

n pgd−1
pgd (lc)+ ûn pgd G

n pgd
lc

(lc)
)

390

−f(lc)] dlc = 0. (26)391
392

Using the separable forms for the stiffness matrix393

and force vector in equation (9), this system can be394

rewritten as395

[ nk∑
i=1

Ki
∫
Ilc

G
n pgd
lc

(lc)φ
i (lc)G

n pgd
lc

(lc)dlc

]
ûn pgd

=
n f∑
i=1

f i
∫
Ilc

G
n pgd
lc

(lc)ψ
i (lc)dlc

−
nk∑

i=1

Ki
∫
Ilc

G
n pgd
lc

(lc)φ
i (lc)û

n pgd−1
pgd (lc)dlc.

(27)396

with nk = 4 and n f = 2. An essential idea of the397

PGD method is that the parametric integrals in this398

equation can be evaluated efficiently on account of399

the fact that these are low-dimensional integrals (in400

this particular case one-dimensional). We herein use401

a standard trapezoidal integration rule for the evalu-402

ation of these integrals.403

– Given the spatial enrichment mode ûn pgd computed404

through the system (27), the parametric enrichment405

mode G
n pgd
lc

can be obtained from the system (24).406

From (24) it follows that for all δG
n pgd
lc

(lc):407

∫
Ilc

δG
n pgd
lc

(lc)
[(

ûn pgd
)T K(lc)

(
û

n pgd−1
pgd (lc)

+ûn pgd G
n pgd
lc

(lc)
)

− f(lc)
]

dlc = 0.

(28)408

Equivalently, it holds that for each fracture length lc 409

[(
ûn pgd

)T K(lc)
(

û
n pgd−1
pgd (lc)

+ûn pgd G
n pgd
lc

(lc)
)

− f(lc)
]

= 0,
(29) 410

from which the parametric enrichment mode follows 411

directly as: 412

G
n pgd
lc

(lc) =
(
ûn pgd

)T (f(lc)− K(lc)û
n pgd−1
pgd

)
∥∥ûn pgd

∥∥2 . (30) 413

Substitution of the separable forms for the stiffness 414

matrix and force vector then finally yields: 415

G
n pgd
lc

(lc) 416

=
(
ûn pgd

)T (∑n f
i=1 f iψ j (lc)−∑nk

i=1 φ
i (lc)Ki û

n pgd −1
pgd

)
∥∥ûn pgd

∥∥2 . 417

(31) 418

This expression for the parametric enrichment mode 419

can be evaluated quickly by virtue of the fact that 420

the dimensions are separated in the sense that it is 421

not required to reassemble the finite element system 422

for each fracture length. The parametric enrichment 423

mode is represented discretely by projection onto the 424

parametric basis in Eq. (19). Since this discretiza- 425

tion pertains to a linear finite element basis, the 426

coefficients ĝ
n pgd
lc

can be computed by evaluation of 427

Eq. (31) in the parametric nodes. 428

The above alternate direction steps are repeated until 429

the relative difference between two successive steps is 430

smaller than a prescribed tolerance, εlocal , 431

∥∥∥∥ ûn pgd G
n pgd
lc

(lc)
∣∣∣
i ter+1

− ûn pgd G
n pgd
lc

(lc)
∣∣∣
i ter

∥∥∥∥∥∥∥∥ ûn pgd G
n pgd
lc

(lc)
∣∣∣
i ter+1

∥∥∥∥
< εlocal ,

(32) 432

with the subscript i ter denoting the alternate direction 433

step, and with the norms defined as: 434

∥∥∥ûn pgd G
n pgd
lc

(lc)
∥∥∥ = ∥∥ûn pgd

∥∥ ∫
Ilc

|Gn pgd
lc

(lc)|dlc. (33) 435

5 Numerical analysis of the PGD 436

approximation behavior 437

Before considering the application of the PGD framework to 438

fracture problems, in this section we first present a numerical 439



Table 1 Convergence study parameter settings

Domain width Hx 4 m

Domain height Hy 4 m

Young’s modulus E 1 GPa

Poisson ratio ν 0.1

Traction on top boundary t (0, 100) MPa

Parameter domain Ilc [1,3] m

Enrichment tolerance εglob 10−3

Fixed-point tolerance εlocal 10−6

study on the approximation properties of the PGD expan-440

sion introduced above. We specifically study the convergence441

behavior of the approximation under finite element mesh442

refinement, and the approximation behavior with respect to443

the number of PGD terms, n pgd . All results presented in this444

section are based on the consideration of the fracture length,445

lc, as the single quantity to be parametrized. Table 1 lists all446

parameters that are fixed throughout this section.447

In the setting considered here, the separable form derived448

in Sect. 3 is exact up to integration accuracy. Since the inte-449

grals are herein evaluated with Gauss schemes of sufficiently450

high degree, the separable forms are accurate up to floating451

point precision. In general, however, the separable form (9)452

is not exact, as we will consider, for example, in the context453

of the stochastic analysis presented in Sect. 7. An important454

first step in studying the approximation behavior of the PGD455

approximation is then to study the accuracy of the separable456

form (9). This accuracy can be assessed by comparison of457

the matrix and right hand side obtained through the separa-458

ble form (9) with their corresponding original finite element459

counterparts. Evidently, one has to perform this accuracy460

assessment in such a way that the parameter variations admit-461

ted by the PGD expansion are properly taken into account.462

5.1 Spatial mesh size dependence463

We first study the dependence of the PGD approximation464

(18) on the spatial finite element mesh size parameter, h,465

defined as the average element size in horizontal direction466

(h = Hx/nelems,x ). For the discretization of the parameter467

domain, Ilc , we consider 136 elements, and we use the PGD468

solver presented above to obtain an expansion comprising469

n pgd = 10 terms. In Fig. 13 the various components of this470

expansion are illustrated, viz. (a) the spatial modes ûi , (b)471

the parameter modes Gi
lc
(lc), and (c) the amplitudes β i . The472

amplitudes convey that the influence of the modes decreases473

significantly for increasing mode numbers, indicating that474

the displacement of the system is well characterized in the475

considered setting with 10 modes. A detailed study of the476

dependence of the PGD approximation on the modes is con-477

sidered below (Fig. 4).478

To study the approximation behavior of the PGD expan- 479

sion, we consider the relative energy error with respect to the 480

original finite element solution: 481

epgd(lc) =
∥∥ûpgd(lc)− û(lc)

∥∥
K∥∥û(lc)

∥∥
K

,

=
√[

ûpgd(lc)− û(lc)
]T K(lc)

[
ûpgd(lc)− û(lc)

]
√

û(lc)TK(lc)û(lc)
,

(34) 482

where ûpgd(lc) is the parametric solution provided by PGD 483

and û(lc) is the solution provided by the direct FE analysis 484

(5) when the parameter is fixed to the value lc. Note that while 485

the evaluation of ûpgd(lc) for a certain crack length lc involves 486

merely the evaluation of the PGD expansion (18), the compu- 487

tation of û(lc) involves the assembly and solution of a finite 488

element system. In addition to the parameter-dependent error 489

(34) we consider the mean energy error over the parameter 490

domain: 491

Epgd = 1

lmax
c − lmin

c

∫
Ilc

epgd(lc) dlc. (35) 492

In contrast to (34), this error measure provides one scalar 493

error value for the complete parametric solution and has no 494

dependency on lc. Figure 5 displays both error measures for 495

various spatial mesh sizes, h, and a fixed parametric mesh 496

size hlc ≈ 0.015 m. The parameter dependent error (34) dis- 497

played in Fig. 5a conveys that for a certain mesh size, the error 498

in the PGD solution is dependent on the crack length. The 499

reason for this is that the uniformity of the mesh in the phys- 500

ical domain is affected by the parameter-dependent mapping 501

function (10), which in general causes the error to increase 502

when the crack tip position deviates from lc/Hx = 0.5 (i.c., 503

lc = 2) provided that the mesh resolution is of sufficient 504

accuracy. The error epgd(lc) is especially significant at the 505

boundaries of the parameter domain, Ilc, because at those 506

points the non-uniformity caused by the mapping onto the 507

physical domain (see Fig. 3) is largest. 508

When we compute the mean of the error epgd(lc) over 509

the complete parameter domain, i.e., error measure (35), we 510

observe from Fig. 5b that this mean energy error is essentially 511

independent of the mesh size for the finer meshes (h � 0.25). 512

This conveys that for these meshes the studied error is dom- 513

inated by the PGD approximation, which is expected, as we 514

compare the PGD solution with the FE solution on the same 515

mesh. 516

To study the mesh size contribution to the PGD approxi- 517

mation error, in Fig. 6 we display the mean L2 error between 518

a PGD approximation upgd(x; lc) computed with mesh size h 519

and a PGD approximation, u�pgd(x; lc), with a high resolution 520

mesh with h� = 0.03125: 521



i = 1 i = 2 i = 3

i = 6 i = 7 i = 10

(a) Normalized displacement modes ūi(x) of the PGD expansion. Note that only a selection
of modes is shown.

(b) Normalized parametric modes Ḡi(lc). (c) Modal amplitudes βi.

Fig. 4 The three components of the upgd(lc) solution for n pgd = 10. Only a selection of modes is shown for conciseness. Note that all plotted
functions are normalized

Eh = 1

lmax
c − lmin

c

∫
Ilc

∥∥∥upgd(lc)− u�pgd(lc)
∥∥∥ dlc. (36)522

Both the number of PGD terms and the discretization of the523

parametric mesh are identical for both of the compared solu-524

tions, so that this error measure pertains to the mesh size 525

contribution only. For comparison the finite element conver- 526

gence plots for various settings of the fracture length are 527

displayed in Fig. 6. This comparison conveys that the PGD 528

solution converges with the mesh size with the same rate as 529



Fig. 5 Energy errors of the PGD approximation with respect to the original finite element solution as defined in Eqs. (34) and (35)

Fig. 6 Convergence of the mean L2 error, Eh of the PGD approxima-
tion (markers) under mesh refinement with respect to the PGD solution
computed with a high resolution spatial mesh (h� = 0.03125). The
convergence results for direct FE analyses with various fracture lengths
(lines) are shown for comparison

the finite element approximation. The observed error offsets530

for various settings of the fracture length in the finite ele-531

ment simulations are a result of the non-uniformity of the532

mesh resulting from the geometric mapping considered in533

this work.534

In Fig. 7 the mean energy error Epgd is plotted versus the535

number of PGD terms, n pgd , for various mesh sizes. The536

observed systematic decrease in this error with the increase537

in number of terms is as expected, as the PGD approxima-538

tion (18) converges toward the finite element solution. The539

fluctuations with respect to the mesh size are in agreement540

with the errors plotted in Fig. 5.541

Fig. 7 Mean energy error for various numbers of PGD modes and
different mesh sizes

5.2 Parametric mesh size dependence 542

All results presented above were based on a fixed paramet- 543

ric mesh size of hlc ≈ 0.015 and variations in the spatial 544

mesh size. We now consider the influence of variations in 545

the parametric mesh size under a fixed spatial mesh size of 546

h = 0.0625 m. 547

Figure 8 shows that both the parameter-dependent energy 548

error (34) and mean energy error (35) are virtually indepen- 549

dent of the parametric mesh size even on parametric meshes 550

as coarse as hlc = 0.125 m (8 elements). This conveys that, 551

in the setting considered here, the accuracy is governed by 552

the number of PGD modes rather than by the resolution of 553

the parametric mesh. 554



Fig. 8 Energy errors of the PGD approximation with respect to the original finite element solution as defined in equations (34) and (36), considering
various parametric mesh sizes

6 Application of the PGD framework to555

propagating fractures556

In this section we apply the PGD framework outlined above to557

the simulation of fracture propagation using Griffith’s energy558

criterion [16]. In Sect. 6.1 we commence with the formulation559

of the propagation criterion based on the PGD solution. Since560

the evolution of the fracture is driven by the external load,561

we herein use the PGD framework to compute the parametric562

solution with respect to both the fracture length (as already563

considered above) and with respect to the external load,564

û
n pgd
pgd (lc , λ) =

n pgd∑
i=1

β i ûi Gi
1(lc)G

i
2(λ), (37)565

where λ denotes a load scale parameter such that t = λ t̂566

with t̂ being a load vector defined as t̂ = (0, 1)MPa. For567

simplicity in notation, from hereon we denote ûpgd for û
n pgd
pgd .568

The separable forms of the stiffness matrix and force vector569

are a straightforward extension of those in Sect. 3 as a conse-570

quence of the fact that the external force vector scales linearly571

with the load scale λ. As a result, we only have to consider572

a single linear parametric shape function for the load scale573

parameter for the force vector in Eq. (8b), such that:574

ψ1(lc) = λ, ψ2(lc) = λlc.575
576

In Sect. 6.2 we will demonstrate the application of the577

PGD framework to a fracture propagation benchmark prob-578

lem, where the advantages of the PGD framework become579

apparent as it allows for the fast evaluation of the fracture580

propagation criterion throughout the evolution process of 581

the fracture, without the need for solving additional finite 582

element problems. For all the simulations we assume plane 583

strain conditions with Young’s modulus E = 2 GPa and the 584

other input values taken from Table 1. For the parametric 585

domain of the load scale we use Iλ = [6.25 , 62.5]. Further- 586

more, we define the resultant force F = ∫
�top

t · n d� as a 587

quantity of interest, where we assume the specimen to be of 588

unit thickness. 589

6.1 The fracture propagation criterion 590

We consider Griffith’s model [16] for crack propagation in 591

brittle materials. The conceptual idea of this model is that a 592

fracture will propagate if the energy stored in the material is 593

sufficiently large to overcome the fracture energy associated 594

with the creation of new fracture surface. For linear elastic 595

materials an equivalent interpretation of this energy-based 596

model is provided through the concept of stress intensity 597

factors [5]. In the context of the PGD framework we find the 598

energy perspective most suitable, as it provides the possibility 599

to evaluate the propagation criterion directly based on the 600

parametric solution (37). 601

For a fracture in a given configuration, i.e., with a cer- 602

tain length lc and a given load scale λ, it can be determined 603

whether or not the fracture will propagate by evaluation of 604

the energy release rate. To derive the PGD form of the energy 605

release rate, we consider the energy of the system: 606

P(lc, λ) = 1

2
ûpgd(lc, λ)

TK(lc)ûpgd(lc, λ) 607

−ûpgd(lc, λ)
Tf(lc, λ). (38) 608



The energy release rate is then defined as :609

G(lc, λ) = −∂P

∂lc
(lc, λ)

= −∂ûpgd(lc, λ)

∂lc

T

[K(lc)ûpgd(lc, λ)− f(lc, λ)]

= −1

2
ûpgd(lc, λ)

T ∂K(lc)
∂lc

ûpgd(lc, λ)

+ ûpgd(lc, λ)
T ∂f(lc, λ)

∂lc
.

(39)610

When the parametric problem K(lc)(lc, λ)ûpgd ≈ f(lc, λ)611

is solved using the PGD solver with sufficient accuracy, i.e.,612

with small enough tolerances, the energy release rate is given613

by,614

G(lc, λ) = −1

2
ûpgd(lc, λ)

T ∂K(lc)
∂lc

ûpgd(lc, λ)615

+ûpgd(lc, λ)
T ∂f(lc, λ)

∂lc
. (40)616

According to Griffiths energy balance, a crack will propagate617

when the energy release rate surpasses the critical energy618

release rate or fracture toughness, Gc, i.e.:619

G(lc, λ) ≥ Gc. (41)620

This implies that for any crack configuration in the paramet-621

ric space, i.e., (lc, λ) ∈ Ilc × Iλ, it can be readily evaluated622

whether or not the crack propagates. The PGD expansion623

(37) is crucial in this regard as: (i) The expansion allows624

for the analytical evaluation of the shape derivatives
(
∂
∂lc

)
625

in Eq. (40), this in contrast to the traditional FE setting, in626

which this derivative is typically evaluated using alternative627

techniques (e.g., J -integrals [5]). (ii) Evaluation of the frac-628

ture criterion at an arbitrary parametric coordinate is merely629

an evaluation of the expansion, and hence, does not require630

the solution of an FE model.631

6.2 Numerical example: a center-crack under tensile632

loading633

The numerical example discussed here demonstrates the634

PGD-based evaluation of the energy release rate G in two635

ways: (i) the energy release rate, G, is used to compute the636

stress intensity factor; (ii) PGD is used to mimic the fracture637

propagation process while loading the specimen.638

6.2.1 Stress intensity factors639

As a means to assess the PGD approximation of the energy640

release rate, we study the stress intensity factor for a given641

fracture length lc, and various ratio’s of horizontal and ver- 642

tical specimen dimensions, Hx and Hy , respectively. The 643

results presented in this section consider the parameters 644

Hx and Hy as additional parameters in the PGD expan- 645

sion. The separable forms based on these parameters can 646

be obtained without special treatment, and are omitted here 647

for the sake of brevity. The stress intensity factor is defined 648

as 649

K1(lc, Hx , Hy) =
√

G(lc, Hx , Hy)E ′, (42) 650

and hence is directly related to the energy release rate (40). 651

The material parameter E ′ in Eq. (42) is defined as E ′ = 652

E/(1 − ν2) for the plane strain problems considered herein. 653

Figure 9 shows the dimensionless stress intensity factors 654

K1/K0 for various parameter configurations, i.e., different 655

lc/Hx and Hx/Hy (see Ref. [26] for a benchmark result). 656

Note that the plotted factors are non-dimensionalized using 657

K0 = (λ t̂ · n)
√
πlc, where λ t̂ · n gives the magnitude of 658

the applied tensile traction. Figure 9 compares the PGD 659

results based on the settings mentioned in Table 1 for a 660

mesh size h = 0.0625 m. However, note that this plot of 661

non-dimensional stress intensity factors is independent of 662

the input values, i.e., even for different values of geome- 663

try and load, similar curves for K1/K0 are obtained. This 664

figure conveys that for the given PGD settings, the stress 665

intensity factor can be computed accurately using the PGD 666

expansion (37). While each point in Fig. 9 would typically 667

represent a finite element simulation in the traditional FEM 668

setting, in the PGD case these are all mere evaluations of the 669

expansion. 670

Fig. 9 Dimensionless stress intensity factors K1/K0 for various crack
lengths in specimens of various dimensions loaded in tension. The solid
lines represent the results computed through the PGD framework, while
the markers indicate the reference values reported in Ref. [26]



6.2.2 Fracture propagation671

Now that we have established that the PGD expansion accu-672

rately approximates the stress intensity factor, we will here673

use it to predict the evaluation of the loading force under frac-674

ture propagation. To this end, we define the energy functional675

676

E(lc, λ) = P(lc, λ)− lcGc, (43)677

such that we can distinguish between three cases in the energy678

landscape over the Ilc × Iλ parameter domain:679

1. The region where the crack is stable:680

∂E
∂lc

< 0 or G(lc, λ) < Gc.681

682

2. The region where the energy balance is critical:683

∂E
∂lc

= 0 or G(lc, λ) = Gc.684

685

3. The unstable propagation region:686

∂E
∂lc

> 0 or G(lc, λ) > Gc.687

688

The energy landscape is plotted in Fig. 10a along with the689

values indicating the energy in kJ of the system. Note that690

plotting this landscape is computationally feasible using the691

PGD expansion, but would require a large number of FE692

solves in the case of a non-reduced model. The presented693

results are based on the assumption of plane strain conditions694

with material parameter E ′ = 2.01 GPa and the other settings695

listed in Table 1 with a fracture toughness ofGc = 700 kJ/m2,696

and with the parameter ranges for lc and λ defined as Ilc =697

[1, 3]m and Iλ = [6.25, 62.5] respectively (so the range of698

the force F = [25, 250]MN).699

For a particular load scale, until the critical point is reached700

the crack is stable (green region in Fig. 10a), and beyond the701

maximum point the crack is unstable (red region in Fig. 10a).702

The critical energy states are connected in the form of a curve703

which gives the critical load value for each fracture length.704

This curve can be identified in Fig. 10a as the line separating705

the green area from the red area. The key insight is to recog-706

nize that, for a shorter crack length, which is left of the critical707

value point, the total energy (43) of the system increases708

with increasing crack length. Therefore, additional energy709

must be stored into the material before the crack can propa-710

gate, and hence the crack is stable. However, at longer crack711

lengths, which is right of the maximum value, an increase712

in crack length leads to a decrease in total energy, which713

therefore leads to unstable crack propagation. Evidently, the714

load-bearing capacity of the specimen decreases as the frac-715

ture propagates.716

Fig. 10 Representation of the loading and fracture evolution process in
terms of a the energy landscape and b the force-displacement curve. The
elastic loading branch is labeled as I., whereas the softening/propagation
branch is labeled as II. The observed critical loading force of Fc ≈ 36.3
MN is in agreement with equation (44) and the corresponding stress
intensity factor reported in Fig. 9

A common way of representing the fracture evolution pro- 717

cess is by plotting the load versus the average displacement 718

of the loading boundary, which is depicted in Fig. 10b for 719

a initial crack length of l0
c = 2.495 m. Note that the elastic 720

loading branch (label I. in Fig. 10) corresponds to the region 721

where the crack is stable, i.e, the force varies with ∂E
∂lc

< 0. 722

The resultant force at which the crack becomes unstable, i.e., 723

when ∂E
∂lc

= 0, is defined as the critical loading force, Fc. This 724

corresponds to the maximum force in Fig. 10b. This critical 725

loading force is related to the dimensionless stress intensity 726

factors of Fig. 9 by: 727

Fc = K0

K1

Hx
√Gc E ′

( t̂ · n)
√
πlc

. (44) 728



The softening branch (label II. in Fig. 10) reflects the crit-729

ical values in Fig. 10a for lc ≥ l0
c . This part of the curve730

resembles the unstable propagation part of the process. The731

total area under the force displacement curve represents the732

energy carried by the system, which, upon complete failure733

is equal to the total energy dissipated by the fracturing, i.e.,734

Gc(Hx − l0
c ). Such force-displacement curves can be plotted735

for all l0
c ∈ Ilc by virtue of the explicit availability of the736

energy functional in (43) in the PGD framework.737

7 Application to fracture propagation in738

random heterogeneousmaterials739

In this section we extend the PGD framework for crack prop-740

agation to a stochastic setting. We introduce randomness in741

the material properties by representation of the Young’s mod-742

ulus by a random field Ẽ(x), where the tilde indicates the743

randomness. A truncated Karhunen-Loève expansion [15] is744

used for the parameterization of the Gaussian field Ẽ(x),745

which is defined as746

Ẽ(x) = μE +
nkl∑
α=1

√
ξαrα(x)z̃α, (45)747

where μE is the stationary mean of the Young’s modulus748

and where ξα and rα(x) are the eigenvalues and eigen-749

functions corresponding to the spatial covariance function750

σ 2
EρE (x1, x2), withσE the stationary standard deviation. The751

autocorrelation function is taken as752

ρE (x1, x2) = exp

(
−|x1 − x2|

lE

)
, (46)753

where x1 and x2 are two points in the domain and lE754

is the correlation length. The nkl Karhunen–Loève modes,755

Rα(x) = √
ξαrα (x), in Eq. (45) are scaled by independent756

standard normal random variables z̃α .757

On account of (45) the Young’s modulus at any fixed758

location, Ẽ(x), is normally distributed. The variation σ 2
E759

is selected such that physically impossible negative real-760

izations are avoided. Although not considered herein, the761

PGD framework can be applied without modification to,762

e.g., log-normal random fields. It is noted that we herein763

construct the random field over the computational domain,764

thereby implicitly assuming that the random material proper-765

ties adhere to the symmetries of the homogeneous problem.766

Preservation of the symmetries is in line with the considered767

parametrization of the fracture problem, as non-symmetries768

would result in deviations of the fracture path from the x-axis.769

Although such variations are evidently physical, considera-770

tion of these within the PGD framework is beyond the scope771

of this manuscript.772

In the context of the stochastic analysis considered here, 773

we use the PGD framework to compute the parametric solu- 774

tion with respect to the fracture length, external load, and 775

with the random variables z̃α that parametrize the random 776

Young’s modulus field: 777

ûpgd(lc, λ, z̃) =
n pgd∑
i=1

β i ûi Gi
1(lc)G

i
2(λ)

nkl∏
α=1

Gi
α+2(z̃α).

(47) 778

A prerequisite to apply our framework is to express the stiff- 779

ness matrix and force vector also in this separated format. 780

The separable forms of the stiffness matrix and force vec- 781

tor required here cannot be obtained in an analytical way 782

like in Sects. 3 and 6. Therefore, in Sect. 7.1 we first discuss 783

how the random heterogeneities, which are parametrized by 784

the random variables z̃, can be expressed in a separable form 785

for the stiffness matrix numerically. Furthermore, in Sect. 7.2 786

we outline the computational procedure for a sampling-based 787

stochastic analysis based on the Monte-Carlo method. This 788

stochastic analysis is highly efficient as it leverages the PGD 789

approximation to quickly compute critical force values for 790

realizations of the heterogeneous field of elastic properties. 791

Numerical results for the stochastic test case are presented 792

in Sect. 7.3. 793

7.1 Separable representation of the random system 794

of equations 795

The random field (45) enters the formulation through the 796

elasticity tensor in the bilinear operator (14a), which, in the 797

context of the stochastic setting considered here, is expressed 798

as 799

C̃(X; lc, z̃) = Ẽ(X; lc, z̃)D 800

=
(
μE +

nkl∑
α=1

{R ◦ M}α z̃α

)
D, (48) 801

where the constant tensor D depends on the Poisson ratio and 802

on the assumed plane strain state. Since the elasticity tensor 803

is evaluated over the reference domain, the KL modes {R ◦ 804

M}nkl
α=1 are pulled back to the reference configuration using 805

the geometric mapping function (10). Since this mapping 806

function is dependent on the fracture length parameter lc, the 807

random elasticity tensor (48) also becomes dependent on the 808

fracture length. 809

Substitution of the random tensor (48) into Eq. (14a) yields 810

a random stiffness matrix of the form 811

K̃(lc, z̃) = K0(lc)+
nkl∑
α=1

Kα(lc)z̃α, (49) 812



with the stiffness matrix contributions defined as813

K0,i j =
∫
�ref

J−1∇Ni : [μE D] : J−1∇sN j det (J) d�ref,

(50a)

814

Kα,i j =
∫
�ref

J−1∇Ni : [{R ◦ M}α
] : J−1∇sN j det (J) d�ref,

(50b)

815

816

where the index 0 corresponds to the mean contribution, and817

the index α = 1, . . . , nkl to the stiffness contributions of the818

KL modes.819

The separable form (8a) of the mean stiffness matrix (50a)820

is identical to that presented in Eqs. (15) and (16) with the821

elasticity tensor set to C = μE D, which we denote by822

K0(lc) =
nk∑

i=1

Ki
0φ

i (lc). (51)823

The derivation of an analytical separable form for the KL824

contributions to the stiffness matrix, Eq. (50b), is obstructed825

by the appearance of the geometric mapping, M, in the826

Karhunen–Loève modes, Ri . A semi-analytical separable827

form can, however, be obtained through the singular-value828

decomposition of the discretized KL modes. For the con-829

struction of this decomposition, we first interpolate the KL830

modes on the spatial mesh and crack length parameter831

domain mesh used for the PGD approximation as:832

Rα(X, lc) ≈
n∑

i=1

m∑
j=1

Ni (X)M j (lc)Rα,i j . (52)833

The coefficients of this interpolation, represented by the834

matrix R̂α , are computed using the KL modes constructed835

on a significantly refined mesh compared to that used for the836

PGD approximation. Since (bi)linear Lagrangian basis func-837

tions are used for both the spatial domain and the parameter838

domain, the coefficients are determined by evaluation in all839

nodal coordinates, (X, lc), in the higher-dimensional param-840

eter domain, where the mapping (10) is used to transfer data841

between the physical domain and the reference domain. The842

interpolation (52) on the mesh used for the PGD approxima-843

tion is convenient from an implementation perspective, but844

the usage of this specific mesh is not necessary to attain the845

separable form of the stiffness matrix.846

A separable form of the discrete KL modes (52) is then847

obtained through the singular-value decomposition848

R̂α,i j =
min(n,m)∑
β=1

σ(α,β)ĥ(α,β),i m̂(α,β), j , (53)849

where σ(α,β) is the β-th singular value for KL mode α, and 850

where ĥ(α,β) and m̂(α,β) are the corresponding spatial and 851

parametric modal vectors, respectively. For reasons of effi- 852

ciency this singular-value decomposition is truncated to a 853

number of terms, nsvd , that is significantly smaller than the 854

total system size. Substitution of this decomposition into Eq. 855

(52) then yields the singular-value decomposition for the KL 856

modal functions, 857

Rα(X, lc) ≈
nsvd∑
β=1

σ(α,β)h(α,β)(X)m(α,β)(lc), (54) 858

where the modal functions are defined as 859

h(α,β)(X) =
n∑

i=1

Ni (X)ĥ(α,β),i , (55a) 860

m(α,β)(lc) =
m∑

j=1

M j (lc)m̂(α,β), j . (55b) 861

862

The singular value decomposition of the Karhunen–Loève 863

modes (54) involves two approximations, viz.: (i) an approx- 864

imation related to the interpolation step (52); and (ii) an 865

approximation associated with the truncation of the decom- 866

position (53). 867

Now that we have obtained an approximate separable form 868

for the KL modes in the form of Eq. (54), separation of the 869

stiffness matrix follows from substitution of this decompo- 870

sition into the KL stiffness matrix contributions (50b): 871

Kα(lc) =
nsvd∑
β=1

σ(α,β)m(α,β)(lc)K(α,β)(lc). (56) 872

The components of the matrices K(α,β)(lc) are given by: 873

K(α,β),i j (lc) 874

=
∫
�ref

J−1∇Ni : [h(α,β)(X)D] : J−1∇sN j det (J) d�ref.

(57)

875

876

Since the spatial modes, h(α,β)(X), are independent of the 877

parameter lc, the matrices K(α,β) can be separated analo- 878

gously to the Eqs. (15) and (16) with the elasticity tensor 879

set to C = Dh(i,β)(X). Similarly to the separable form of 880

the mean stiffness contribution in Eq. (51), we express this 881

separable form as: 882

K(α,β)(lc) =
nk∑
j=1

K j
(α,β)φ

j (lc). (58) 883



Substitution of this separable form for the SVD mode β into884

Eq. (56) then yields885

Kα(lc) =
nsvd∑
β=1

σ(α,β)m(α,β)(lc)
nk∑
j=1

K j
(α,β)φ

j (lc), (59)886

with nk = 4 in accordance with Eq. (15). Further substitution887

into the expansion of the random stiffness matrix (49) gives:888

K̃(lc, z̃) =
nk∑

i=1

889

×
⎡
⎣Ki

0 +
nkl∑
α=1

nsvd∑
β=1

σ(α,β)m(α,β)(lc)Ki
(α,β) z̃α

⎤
⎦φ j (lc).890

(60)891

Note that this equation is of the same form as the separable892

form (8a), with the parameter functions given by combina-893

tions of the functions in (15), the random variables, z̃α , and894

the singular-value modes for the length parameter, m(α,β).895

From (60) it is observed that the total number of terms in896

the separable form is equal to nk(1 + nklnsvd). Since the897

stiffness contributions Ki
0 and Ki

(α,β) are independent of the898

considered parameters, these can be precomputed. Hence,899

construction of the stiffness matrix in the PGD solver requires900

evaluation of (60) only, and not the assembly of a finite ele-901

ment system.902

7.2 Monte Carlo analysis of the critical load903

Using the separable form for the stiffness matrix as discussed904

in Sect. 7.1, the PGD solver discussed in Sect. 4 is used to905

attain the PGD solution (47). We here use this parametrized906

solution to perform a Monte Carlo simulation to attain the907

probability distribution and statistical moments of the criti-908

cal loading force for specimens with various initial fracture909

lengths.910

To construct the PGD solution (47) it is necessary to con-911

sider a finite dimensional domain for the random parameters,912

z̃, which parametrize the Karhunen–Loève expansion for913

the Young’s modulus (45). We herein truncate the random914

domain to Iz̃i = [−5, 5] for i = 1, . . . , nkl , based on the915

idea that realizations beyond this range are unlikely and will916

have a minor effect on the mean and standard deviation of917

the critical force. We generate realizations of the uncorre-918

lated random variables z̃ using a random number generator,919

and we discard realizations outside of the truncated random920

domain.921

Using the realizations of the random variables z̃ we then922

employ Griffith’s fracture model as discussed in Sect. 6 to923

compute the corresponding critical forces, Fc. The mean and924

standard deviation for the critical force are then obtained as 925

μFc = 1

nsample

nsample∑
ı=1

Fc,ı , 926

σFc =
√√√√ 1

nsample − 1

nsample∑
ı=1

(
Fc,ı − μFc

)2
, (61) 927

928

where nsample is the Monte-Carlo sample size. 929

In a typical FE-based Monte Carlo simulation, evaluation 930

of the critical loads is computationally demanding, which 931

practically restricts the sample sizes that can be considered. 932

Therefore, in such cases, a sample size is selected that strikes 933

an adequate balance between the confidence level of the 934

attained statistical moments and the required computational 935

effort. In the PGD setting considered here, the computational 936

effort involved in determining the critical force for a given 937

realization of the random field is negligible compared to the 938

corresponding full finite element simulation. This allows for 939

the consideration of sample sizes that are orders of magni- 940

tude larger than those that could be considered using direct 941

FE analysis, which in turn enables the computation of the sta- 942

tistical moments with confidence levels that are practically 943

beyond the reach of direct FE analyses. Evidently, the selec- 944

tion of the sample size should be based on a trade-off between 945

the error in the PGD approximation and the confidence level 946

of the Monte Carlo method. 947

7.3 Numerical example: a center-crack under tensile 948

loading 949

We consider the same numerical experiment as introduced in 950

Sect. 6.2 (see Table 1), but now with a random field of elastic 951

properties. For the random field (45) we set the mean toμE = 952

2 GPa and the standard deviation as σE = 0.2 GPa (a coef- 953

ficient of variation of 10%). We consider moderate spatial 954

fluctuations in the random field by selecting the correlation 955

length in Eq. (46) as lE = 1.5 Hx = 6 m. The parameter 956

domain for the load scale is taken as Iλ = [6.25, 62.5]. 957

We consider a Karhunen–Loève discretization consisting 958

of nkl = 3 modes, which are shown in Fig. 11. In Fig. 12 959

we show two realizations of the KL expansion, as well as a 960

sampling-based reconstruction of the auto-correlation func- 961

tion (46). On account of the low spatial frequency of the 962

variations, the KL expansion with only 3 terms is observed 963

to already appropriately reproduce the auto-correlation func- 964

tion. 965

Using the tolerances specified in Table 1, the PGD solution 966

(47) is truncated at n pgd = 27 terms. The various compo- 967

nents of the PGD solution are displayed in Fig. 13. From the 968

modal amplitudes it can be observed that the PGD approx- 969

imation based on 27 terms approximates the finite element 970



Fig. 11 Karhunen–Loève modes for the Young’s modulus field (45) with nkl = 3

problem well, in the sense that the amplitudes of even higher-971

order modes will be negligible compared to the considered972

modes.973

Figure 14 displays the probability distribution of the crit-974

ical load for various settings of the initial crack length. The975

displayed results are based on a sample size of 5000. Note976

that for each of the displayed subplots in Fig. 14 a sepa-977

rate Monte Carlo simulation is required, which would be978

computationally impractical using a direct FE approach. The979

efficiency with which realizations can be computed from the980

PGD approximation (47) allows us to perform Monte Carlo981

analyses for different settings in the parameter space. This982

results, for example, in the evaluation of the critical force983

versus the initial crack length as displayed in Fig. 15a. The 984

confidence level of the mean values displayed in this plot is 985

approximately 98% based on a sample size of 5000 realiza- 986

tions. Such confidence levels are impractical to obtain using 987

direct FE Monte Carlo. 988

Figures 14 and 15 show that the average critical load 989

bearing capacity decreases with an increase in crack length, 990

while a decrease in the standard deviation is observed. The 991

deterministic result is plotted for reference, from which it is 992

observed that the computed mean is slightly smaller than the 993

deterministic value. The observed results from the Monte 994

Carlo simulation are in good agreement with perturbation 995

analysis results (see [17] for an overview) based on the ana- 996



Fig. 12 (a, b) Examples of realizations of the random elasticity field in accordance with (45). c Reconstruction of the auto-correlation kernel (46)

lytical fracture loads for homogeneous specimens, which is997

to be expected on account of the considered low spatial fre-998

quency of the random input.999

The Monte Carlo analysis allows us to inspect which real-1000

izations of the input lead to a certain response in terms of1001

the fracture load. Figure 16 shows three interesting realiza-1002

tions for the case of an initial crack length of l0
c = 1 m and a1003

coefficient of variation of the Young’s modulus of 10%, viz.:1004

a. The realization closest to the mean fracture load of1005

77.5 MN corresponds to a Young’s modulus field which is1006

very close to its mean value everywhere in the specimen.1007

b. The realization with the largest fracture load of 88.5 MN1008

corresponds to a Young’s modulus field which is very1009

high throughout the specimen (on average approximately 1010

25% higher than its mean value), and is particularly large 1011

near the tip of the initial crack. 1012

c. The realization with the smallest fracture load of 66.6 MN 1013

corresponds to a Young’s modulus field which is very low 1014

throughout the specimen (on average approximately 25% 1015

lower than its mean value), and particularly near the tip. 1016

In the context of the PGD approach employed in this work it 1017

is noted that, in order to inspect these realizations, only the 1018

parameters corresponding to the realization (random vari- 1019

able realizations) have to be stored. The input and output 1020

corresponding to these parameters is generated through post- 1021



Fig. 13 The seven components
of the upgd(lc, z̃1, z̃2, z̃3, λ)

solution for n pgd = 27. Only a
selection of modes is shown for
conciseness. Note that all plotted
functions are normalized

i = 1 i = 2 i = 3

i = 6 i = 7 i = 10

(a) Normalized displacement modes ūi(x) of the PGD expansion. Note that only a selection
of modes is shown.

(b) Parametric modes for lc. (c) Parametric modes for z̃1.

(d) Parametric modes for z̃2. (e) Parametric modes for z̃3.

(f) Parametric modes for λ. (g) Modal amplitudes βi.
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Fig. 14 Histograms of the critical force for different initial crack lengths l0
c corresponding to a 10% variation in the Young’s modulus

processing of the PGD approximation. This contrasts the1022

direct FE setting, in which either the FE solution would have1023

to be stored, or the FE problem would have to be solved again1024

to acquire all results corresponding to a realization.1025

8 Conclusions1026

In this work we have proposed a reduced-order modeling1027

technique for a prototypical linear elastic fracture mechanics1028

problem. An essential ingredient in the proposed approach is1029

to introduce the parametrization of the crack through a geo-1030

metric mapping. For the considered model problem it then1031

follows that a separable form of the stiffness matrix and exter-1032

nal force vector can be obtained analytically, which makes1033

it possible to apply the Proper Generalized Decomposition 1034

method to obtain a solution to the parametric problem. 1035

The suitability and performance of the proposed frame- 1036

work is demonstrated using a series of numerical test cases, 1037

starting with a convergence study for the parametric decom- 1038

position. This study conveys that the introduced geometric 1039

mapping function for the fracture parameter behaves in 1040

accordance with the well-understood behavior of the PGD 1041

framework. The PGD fracture framework is further demon- 1042

strated using two propagating fracture test cases. 1043

In the first test case it is demonstrated how Griffith’s prop- 1044

agation criterion can be evaluated efficiently using the PGD 1045

approximation. The representation of the fracture length in 1046

the PGD solution enables the straightforward computation 1047

of the energy release rate, which is in contrast with standard 1048



Fig. 15 Dependence of the mean critical force (solid blue line) on the initial crack length with a 98% confidence interval (shaded area) for 10%
variation and 5% variation in the Young’s modulus

finite element methods, which generally require dedicated1049

numerical techniques for the evaluation of the correspond-1050

ing shape derivative.1051

In the second test case the PGD approximation is used1052

to efficiently perform a fracture analysis in the presence1053

of random material heterogeneities. Using a singular value1054

decomposition for the interpolation of the random field1055

of elastic properties pulled back to the reference config-1056

uration, an approximate separable form of the stiffness1057

matrix is obtained. The random variable coefficients of the1058

Karhunun–Loève field for the modulus of elasticity appear1059

as parameters in this separable form. Since the fracture load1060

can be computed as a post-processing operation on the PGD1061

approximation, Monte-Carlo simulations can be performed1062

with sample sizes (and confidence levels) that are beyond1063

the typical reach of direct sampling-based stochastic finite1064

element analyses.1065

Although the presented study clearly demonstrates that the1066

PGD framework can be applied efficiently for the simulation1067

of fractures in the considered model problem, the question1068

naturally arises to what extend the proposed technique can1069

be generalized to more complicated fracture problems. In1070

this regard there are two aspects that must be considered in1071

particular:1072

– While the considered fracture is parametrized by a single1073

variable, namely the fracture length, this is evidently not1074

possible in the case of more complex fractures. Of course,1075

the range of applicability of the proposed technique can1076

be extended to a reasonably sized class of fracture prob-1077

lems using a relatively low dimensional parameter space1078

for the fracture geometry. Think for example of slanted1079

fractures in plane strain or plane stress settings, which, 1080

besides the length, would require the fracture angle as an 1081

additional parameter. In general, however, representing 1082

more complex fracture geometries will rapidly increase 1083

the number of parameters, which is detrimental to the 1084

performance of the PGD framework. This is particularly 1085

the case when one opts to consider a piecewise repre- 1086

sentation of fractures, which is natural to finite element 1087

methods. 1088

– For more complex fracture patterns, constructing a suit- 1089

able geometric mapping function will be considerably 1090

more challenging than in the prototypical benchmark 1091

considered in this work. Constructing a mapping analyti- 1092

cally is very restrictive, but it is very well imaginable that 1093

one can construct discrete mapping operators (mapping 1094

nodal reference coordinates to nodal physical coordi- 1095

nates). Such more advanced mappings – the construction 1096

of which evidently warrants further investigation – will, 1097

however, pose several difficulties. For example, the ana- 1098

lytical separation of the system of equations as obtained 1099

in this work will not be generally obtainable, which hence 1100

requires the consideration of potentially computation- 1101

ally demanding approximations for the separable forms. 1102

Moreover, an open research question remains how to deal 1103

with fractures with changing topology (e.g., branching, 1104

merging), as topological changes can in general not be 1105

captured by the proposed mapping technique. 1106

These complications when extending to more complex frac- 1107

tures are evidently very serious. Although future research 1108

developments can ameliorate some of these difficulties, 1109

obtaining PGD approximations that are able to accurately 1110



Fig. 16 Realizations of the Young’s modulus field corresponding to the mean fracture load, maximum fracture load and minimum fracture load.
All results pertain to an initial fracture length of l0

c = 1 m

parametrize the complete high-dimensional solution space1111

for complex fracture patterns will likely remain impracti-1112

cal. It should, however, be noted that reduced-order models1113

typically do not serve the role of a direct replacement of high-1114

fidelity finite element models. Instead, reduced-order models1115

typically play the role of a relatively cheap surrogate to evalu-1116

ate approximations of the corresponding high-fidelity model.1117

In this regard it is imaginable that the high-dimensional1118

parameter space associated with the fracture geometry in the1119

finite element model can be reduced significantly, without1120

compromising the properties of the reduced-order model to 1121

serve as a cheap approximation of the full model or to provide 1122

an improved prior. 1123
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