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Abstract

Although appealing for their simplicity, low-order finite elements face inherent limitations related
to their poor convergence properties. Such difficulties typically manifest as mesh-dependent or ex-
cessively stiff behaviour when dealing with complex problems. A recent proposal to address such
limitations is the adoption of mixed displacement-strain technologies which were shown to satisfac-
torily address both problems. Unfortunately, although appealing, the use of such element technology
puts a large burden on the linear algebra, as the solution of larger linear systems is needed. In this
paper, the use of an explicit time integration scheme for the solution of the mixed strain-displacement
problem is explored as an alternative. An algorithm is devised to allow the effective time integra-
tion of the mixed problem. The developed method retains second order accuracy in time and is
competitive in terms of computational cost with the standard irreducible formulation.

Keywords : explicit, mized formulation, displacement-strain formulation.
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: (¢) Double contraction of tensor (Internal product).
- (8) Single contraction of vector and tensor.

Vector, matrix transpose.

n  Quantity (e) at time ¢,.

Vector of strain weighting function.

Stress tensor.

Total strain tensor.

Green-Lagrange strain tensor.

Gradient deformation tensor.

Vector of displacement shape functions.
Displacement field.

Vector of displacement weighting function.
Second derivative of (e) with respect to time ¢.

Time step.



0ij Kronecker’s symbol.

P Projection operator.

Pt Orthogonal projection operator.

V(e) Gradient operator.

V - (e) Divergence operator.

V#(e) Symmetric gradient operator V*(e) = 1(V(e) + V(e)T).
Q A given body without its boundary .

o9 Qs boundary.

p Density material.

T Stabilization parameter.
v Poisson’s Ratio.

g Enhancement strain.

E Young’s Modulus.

he Characteristic length of an element.

1 Introduction

The solution of problems in solid mechanics has been one of the main driving forces of the development
of the Finite Element Method (FEM), which in turn has allowed engineers to tackle a wide variety of
otherwise untreatable problems. In structural mechanics, displacements are normally chosen as unknowns
and strains are computed as dependent variables by differentiation of the displacement field. Since no
further reduction is possible in the choice of the unknown field, standard displacement-based approaches
are also known as irreducible formulations. Irreducible formulations are very effective in addressing a
wide range of practical problems, however, they may lead to stiff or mesh-dependent behaviour in corner
cases. The performance of standard low-order displacement-based elements is also known to be poor in
nearly incompressible conditions. Standard low-order elements tend to show ”volumetric locking” which
manifests as unrealistically stiff behaviour. A vast literature exists proposing cures for such problems,
with early proposals based on reduced integration techniques or on the use of corrected assumed-strains,
see for instance, the F-bar method [1]. Mixed displacement-pressure approaches started to be employed
in the 90s for the solution of truly incompressible problems [1, 2, 3, 4, 5]. Such techniques were also
shown to provide an accuracy advantage when used in application to compressible problems (see e.g.
[6])

A different mized formulation is employed here with the goal of improving the accuracy of the Finite
Element discretization. The idea is to combine different primary variables, in our case displacements
and strains, following the concept described in [7]. This approach was proved to show better mesh
independence properties while providing the formal guarantee of a strain field converging at the same
rate as the displacement one, which manifests in enhanced stress/analysis accuracy in both linear and
non-linear analyses [8]. Following the ideas in [9, 10, 11, 12, 13, 14], a stabilization technique is needed
to allow the use of the same order of interpolation for the two primary variables of interest. Specifically
the Variational Multiscale Method (VMS) is employed in the current work.

The inherent limitation of the displacement-strain technology is related to its computational cost, since
such technique involves higher number of degrees of freedom (dofs) per mesh node (9 vs 3 for the 3D
case) which results in much larger linear systems to be solved. The goal of the current paper is to
obviate this limitation by exploring the use of an explicit time integration scheme. We will prove that a
completely explicit approach is feasible when employing the mixed technology of interest and that it is
competitive with the irreducible case. In particular, we will show that, for a given mesh, the critical time



step is larger for the mixed formulation with respect to the irreducible case, thus enlarging the stability
region of the explicit scheme. For this purpose, three different cases are studied. First a simple small-
displacement example is analysed with the aim of obtaining an analytical estimation of the critical time
step. Second, a cantilever beam is studied, again in the small strain regime. Lastly, the same analysis
is performed in the large-deformation regime, proving that geometrical nonlinearities can be included
within the proposed mixed-displacement formulation, and that such extension comes very natural when
an explicit integration scheme is employed.

2 Mixed Strain/Displacement Formulation In Transient Dy-
namics Problems

2.1 Continuous problem

The standard approach in computational solid mechanics is the use of irreducible formulations, in which
the deformation is expressed in terms of the derivatives of the displacement field. While this approach
is sufficient to satisfactorily address many problems, it suffers from severe limitations when used in
combination with low-order finite element discretization. This is evident, for example, in the case of
crack-propagation problems, which require guarantee on the local convergence of the strain field, which
can not be provided by the standard irreducible element technology. Similar requirements exist however
in other areas of application, such as when approaching the incompressible limit.

An appealing possibility to overcome such limitations is the use of mixed formulations, in which additional
fields are used as primary variables in combination with the displacement field. Among the many existing
possibilities is the use of the two primary variables u(x) and € = e(x), where u(x) is the displacement
field and e(x) is a suitable strain measure (e.g the linear strain V*u in small deformations or the Almansi
strain in the large deformations case), has appealing properties. The mixed formulation is constructed
by observing that, at continuous level, the primal variable € (we omit whenever possible the dependence
on x) coincides with the equivalent strain e(u) computed by differentiation of the displacement field.
Combining this with the linear momentum conservation equation yields

V-o+b=piinQ
—e(x)+e(u)=0in Q (1)

where (2 is the domain occupied by the solid in a space of ng;,,, dimensions, p denotes the material density,
the superposed dots on u denotes partial differentiation respect to time ¢ (in this case acceleration) and
o is the appropriate stress tensor field, which is generally written as

oc=Cle): e (2)
where C' is a fourth-order constitutive tensor, which may include non-linear behaviour. In addition to
equations (1), which must hold for all time ¢, the problem is subjected to appropriate Dirichlet and

Neumann boundary conditions applied respectively on the portions 02, and 9, of the boundary, and
to the initial conditions expressed by

Uli=0 = Vo (3)
uli=0 = o (4)

Introducing equation (2) in equations (1), the strong form becomes

V- (C(e):e)+b=piiin Q
—e(x)+e(u)=0 inQ (5)



The two fields w = u(x) and € = e(x) can be both discretized by the finite element method (FE) as
independent primary variables. Introducing the discrete nodal unknown w;, and €, and the corresponding
test functions wj, and =, and applying the Galerkin procedure we thus obtain

/wh (Eh) Eh dQ+/wh bd) = /pwh~1'ith (6&)
Q

/Q - (en — ) d2 = 0 (6b)

Unfortunately, if equal-order interpolation are used for u; and ej, the resulting Galerkin method is
unstable [15]. Lack of stability manifests as a spurious oscillations in the displacements field that may
entirely pollute the solution. A modified formulation needs to be devised to properly stabilize the
solution, hence guaranteeing the convergence of the method. Such stabilizations can be derived in the
framework of sub-grid approaches [11] as we show next.

2.2 Stabilized finite element methods

The origin of the instabilities of the proposed mixed method is that the finite element space employed is
not sufficiently large to accommodate the optimal solution. Sub-grid scale stabilization methods retrofit
this situation by enlarging the search space, via the introduction of sub-grid variables. The key idea of
the sub-grid approach is exactly to consider that the continuous fields can be split in two components,
a coarse one, to be solved for, and a finer one to be modelled. Such components correspond to different
scales or levels of resolution [7], and are naturally separated in the scales that can be resolved by the finite
element discretizations and the ones that can not be resolved at the given discretization level. For the
stability of the discrete problem, it is necessary to include the effects of both scales in the approximation,
that is, the effect of the finer (unresolved) scale needs to be included in the resolved model. For the
specific problem at hand we apply such scale separation to the strain variable to give

e(x) =ep(x)+€ (7)

where €, is the strain component of the (coarse) finite element scale and € is the enhancement of the strain
field corresponding to the sub-grid scale. While a similar assumption can be made for the displacements,
previous experience (see e.g.[7] [8][15]) hints that this splitting is not needed for this variable. Taking
into account such considerations, the stabilized model is in the form

/wh (é‘h) (Eh—|-g) dQ—i—/wh bd() = /prh-iith (8)
[ -en+&=etunyan-o 9)

substituting C(e},) instead of C(ey,+€) (see [7] [8] [15]). Next a model needs to be chosen for €. Following
the idea of Orthogonal Subscale Stabilization (OSS), we assume that the subgrid strain is proportional
to the orthogonal projection of the coarse scale residual, that is, the strain residual (re := e(uy) — €p)
is introduced, and

g =r1Pt(re) (10)

here P+ indicates the orthogonal projection operation (such that P+(e) = J—P(e) and P+(gj,) = 0) and
T is the algorithmic stabilization parameter, theoretically defined as

h
Te = Ce—

; (11)



with c., h and L being an “arbitrary” algorithmic constant, the element size and the characteristic length
of the computational domain respectively. For simplicity, in the case of constant meshes it is customary
to take a constant value of the stabilization parameter[8][15]. In this work typical values, in the range
0.1-0.5, were considered in all the examples.

Taking into account such definition, equation (10) gives

€= Te(rs - T(Ts))
= Te(E(Uh) —ep — ﬂ)(s(uh)) + ?(Eh))
= Te(e(un) — P(e(un))) (12)

Replacing into equation (6a) and simplifying we obtain

en = P(e(un)) (13a)

E‘_stab — (1 _ Te)eh + Tes(uh) (13b)

/ pwy, - i, dQ) +/ Viwy, : (Cl(ep) : (esmb)) dQ) = / wy, - bpdQ + wy, - tpdl (13c)
Q Q Q a0

which define the stable discrete problem to be solved. Note that the term added in equation (13b) to
secure a stable solution decreases rapidly upon mesh refinement, since ||e(up) — || — 0.

2.2.1 Remark: Projection Operations

It is interesting to make a short remark about the practical meaning of the orthogonal projection operator.
A projector P is a linear operator which takes a variable defined in a given space and gives the best
representation of such variable in the target space. As a requirement, a projector must comply with the
property P (y) = P (P (y)) which tells that the projection of a projected value is the projected value
itself. A non-orthogonal projection of y onto the FE space is nothing more than its FE discretized value,
that is, y, = P(y). Clearly the “best” FE approximation of a finite element value is the value itself,
hence y,, = P(y,,) is trivially verified. If we take into account the intuitive definition of projection and
we take as “best” a least-square approximation, we can readily see that the projected value y,; can be
obtained as

/Q wy - (g, — y(@)d2 = 0 (14)

which gives rise to a discrete problem of the type
/ wy, - Y, dQ = / wy, - y(x)d2 (15)
Q Q
we recognize on the left side a mass-like operator M , so that such operation can be understood as

My, = /Qwh - y(@)d0 (16)

If mass lumping techniques are applied to M a diagonal matrix is defined with each diagonal term
representing the nodal area of the corresponding node of the FE mesh. Under such assumption, the
projection operator can be approximated as an area-weighted smoothing of the original variable. By
definition, the orthogonal projection of the variable is the part of the variable that is orthogonal to the
FE space, that is, the part that can not be represented onto this space. We can define constructively the
orthogonal projector as the operator that takes away from the projected variable everything that can be
represented in the FE space. Since the projection operator is linear, this is done as

Pry)=y-Py)=y -y, (17)



with this definition is immediately verified that
PEP(yn) = Plyn) — P(P(yn)) =y —yn =0 (18)

thus proving the orthogonality.

3 Large deformation case

To handle large deformations, the strain € (u) needs to be defined as a large strain measure. A natural
possibility is to define it as the Almansi strain as € (u) := 3 (Vu + V'u + VuV'u) where the the gradients
are computed with respect to the deformed configuration. The discrete system can then be obtained
by integrating equation (9) onto the current (deformed) configuration €2, as normally done in Updated
Lagrangian approaches.

An equivalent formulation can be obtained by integrating on the reference (undeformed) domain g,
provided that appropriate conjugate strain measures are employed. The equivalent Total Lagrangian
formulation can be obtained following the traditional procedure described e.g. in [16]. We followed here
this approach in writing our system.

Introducing the Cauchy-Green strain (CG) measure

E = %(FTF ~1I) (19)

and a properly defined elasticity tensor C' we can compute the second Piola—Kirchhoff (PK2) stress
S = C(E,S) : E which completes the informations needed for the evaluation of all terms of interest.
The vector of internal forces f3,, can be obtained as

.= Bl'sdan, (20)
Qo

ox
where, F' := X is the deformation gradient. Strain variations can be computed on the basis of the
operators By, in the undeformed configuration, and B, in the deformed domain.

Matrix By (used in the Total Lagrangian approach) is composed of submatrices, each associated with a
node I. For a particular node I, the sub-matrix Bé is written in Voigt form as:

ON; Dr ON; 0y
) a
Bl — %% %ﬁ (21)
0 oy oY oY Y

0X gy 9Y 90X 00X Y 9Y 0X

For the Updated Lagrangian case, the corresponding matrix is By:

X
ON,
t 6y
oN, 0N
dy ox

Table 1 summarizes the values of the corresponding terms in Total Lagrangian and Updated Lagrangian
approaches.



Integration Domain €2

Entity Total Lagrangian £ Updated Lagrangian ),

Strain (CG) B(uy) := (FTF - I) (AL) e (uy) = 1 (I - F’TF’1>
Projection Jo, Yn - (En — E(up))dQ =0 Jovn - (en —e(uy))d2 =0
Stabilized Strain Esteb = (1—-71)EnL+ E(uh) et = (1 —7.)en + e(uy)
Stress(irreducible) (PK2) §=0Cy: Cauchy o =C : e
Stress(mixed) (PK2) S*'t = C, EStab Cauchy o°t® = C : e*?
External Forces 6t = 90, W Tdlg = oo Wh - tdl

Internal Forces(irreducible) ot fQ BTSdQO (Voigt Notation) fFit fQ BT od) (Voigt Notation)
Internal Forces(mixed) mt = Ja, BTSStabdQO (Voigt Notation) mt = [, B} 0%'9%dQ (Voigt Notation)

Table 1: Entities measures in both reference Qg and deformed Q; configuration for irreducible and mized
formulation.

As a final remark, we would like to observe how, in the Total Lagrangian case, it is natural to express
the projection operator in terms of E as

/Q - (En — Blu))d = 0 (23)

This choice is not exactly equivalent to projecting the Almansi strain (AL) e in the deformed domain,
but rather corresponds to a slightly different definition of the projection operator. In other words, the
corresponding projection operation in the deformed configuration is written as

/Q'yh (e, —e(up))dt=0 (24)

4 Explicit transient integration

To integrate the dynamic balance equation, a time-marching algorithm is needed. Implicit strategies
with unconditional stability balance the cost of solving large sparse linear systems with the possibility
of using large time steps. Explicit solvers are usually considered advantageous in addressing very short
transient phenomena or very high non-linearities need to be faced.

For the case of the mixed displacement-strain formulation no time derivative is present for the strains,
making less straightforward the definition of an explicit technique. The aim of the next section is to
propose a feasible, completely explicit, algorithm for the time integration. Within the same section
we also prove that the stability limit for the proposed explicit algorithm is not worse (and generally
better) than for the corresponding irreducible formulation. To do this we first recall the standard time
integration procedure, and then we develop the integration procedure applied to the mixed formulation
described herein.

4.1 Standard formulation in explicit dynamics (irreducible problem)

A commonly used algorithm in the time integration of problems in structural dynamics is the Central
Differences(CD) time marching scheme. As shown in figure (1), the essential idea of the CD is that
the dynamic equilibrium is written at time n so to allow the evaluation of the mid-step velocity and
successively of the displacements.

If we consider the discrete dynamic equilibrium problem in the form

My (t) + Doy (t) + F7 (un, t) = £ (t) (25)
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Figure 1: Central Differences Scheme

where M and D are the mass and damping matrices, assumed diagonal, f**(u) and f*** are the nodal
vector of internal and external forces, and i, & and w are the accelerations, velocities and displacements
respectively.

Assuming at time step At, the straightforward application of the CD to equation(25) leads to the
procedure

e compute the acceleration i, = *—x7—

e evaluate internal and external forces

e compute the mid-step velocity by solving
W, 1 = [2M + AtD]7Y[(2M — AtD)d,, 1 + 288(f57 = 1 (u,))]

e compute end-of-step displacements as w41 = u,, + Ata,, +1

where subscripts n and n + 1 are used to indicate quantities at time ¢t = ¢,, or ¢t = ¢,,1. Note that the
inverse of the sum of damping D and mass matrices M is straightforward since they are both taken as
diagonal. The critical time step is given by the Courant limit, which is the time necessary for a sound
wave to cross the smallest element in the mesh[17]. For the undamped case this critical time step is
given by

2

Atcr <

26)
wmaz (
where winqe 18 the maximum eigenvalue associated to the system’s stiffness matrix. The frequencies of
the discrete system are bounded by the maximum frequency, w¢,,, of the individual elements. A useful
approximation is given by.

2 €
W li S1° . = min{h°} (27)

where c is the elastic dilational wave speed and [{ ,,, is the smallest characteristic element size in the finite

element mesh corresponding to the smallest distance between any two element nodes in the discretized
model. Therefore, the critical time is finally expressed as:

€

At ~ -min (28)

ce



4.2 Mixed formulation in explicit dynamics

If we now focus on the mixed strain-displacement formulation, the discrete equation of motion (25) is
replaced by

My, (t) + Dy () + f (€51, 1) = (1) (29)
which differs from equation (25) in that the internal forces depend on €% i.e
fint(sstab) _ / BTO'dQ _ / BTC . EStabdQ (30)
Q Q

Taking into account the definition of €5'%® given in equation (13b) and replacing it into equation (30),

equation (29) can be rewritten as a set of two equations:

£

——
My, (t) + Dy, (t) + K,up + Grey, = £97(t) (31a)
Guy — Me, =0 (31b)

where (31a) represents the modified dynamic equilibrium and (31b) tells that €, shall be the projection
of e(u). In equations (31b), M is a diagonal mass matrix associated to the strain field (needed for the
computation of the orthogonal projection of the strain variable); G, and G are the discrete symmetric
gradient operators and K, is the standard stiffness matrix. For any pair of nodes A and B in one
element, these matrices can be written as

B
M — b (Z / N§N3d9> (32)
Qe

GAB —(1- 1) / BLC(epp) N 5d (33)
Qe

G = /Q BL N pdQ (34)

KAB :TE/Q B’ C(e,)BpdQ (35)

where §4p5 is the Kronecker delta (45 =1 for A= B, 645 =0if A # B).
It is convenient to rewrite equations (31a) and (31b) as

(o) @)@ 96 S )-(0) )

Since this form will make easier eigenvalue computations in the calculation of the critical time step. For
this reason we introduce the matrices

(37)

K. GT
Knized = < ‘-/ ‘C’)

G -M



M 0> 58)

Mmimad = ( 0 0
which we will use in the next section. Written in this form, the discrete system is very similar to the
one developed for the irreducible case, except that two independent unknowns variables, i.e, the nodal
displacement field up and the nodal strain field &; are now considered. We can however observe that
since M is diagonal and equation (31b) does not present any time dependence, we can formally express

v —1 v
the continuous strain as a function of the displacements field as, e, = M. Gwu and substitute it into
the equilibrium equation (31a). By introducing the new symbol

K=K, +GIM, G (39)

we can thus rewrite equation (31a) in terms of displacements only in the equivalent form

Miip,(t) + D (t) + Kup, = f°°(t) (40)

the resulting time integration procedure can be then developed similarly to the irreducible case as

1

. . cntd  on—1
e compute the acceleration i, = “—71%—=

e evaluate on every element the discontinuous strain e(u).

-1y
e cvaluate the strain e, = P(e(u))) ,that is, e, = M. Gu.
e compute internal forces taking into account the stabilized strain.

e compute the mid-step velocity by solving
W, 1 = 2M + AtD] 7V [(2M — AtD)d,, 1 + 288(f57 — f1 (wn, €5f%))]

n n n

e compute end-of-step displacements as w41 = u,, + At +1

We remark that, since the computation of the projections is very cheap, the cost per time step of the
proposed scheme is very similar to that of the original irreducible algorithm, making it very interesting in
view of the accuracy advantage guaranteed by the mixed formulation. In the next subsection we discuss
the critical time step for the proposed algorithm, considering first 1D case, for which an analytical
estimate is obtained. We then consider a 2D mesh and provide a numerical verification of the formula.

Before proceeding we would also like to point out that the form used in writing the discrete system
obtained is slightly different from the one employed in [7], in that in the current approach the M is
purely diagonal. The approach we follow stems out of using a nodal integration rule in the calculation
of the projection and by noticing that the resulting mass term is block diagonal and can thus be solved
analytically block by block to make it diagonal. We also observe that this approach is not appealing for
the implicit case since it results in a non-symmetric matrix.

4.3 Stability of the explicit mixed formulation

4.3.1 1D mixed bar problem

€1 )] €3
U E 1e Uy E % U3

Figure 2: one-dimensional bar example.



Let us consider the one-dimensional problem in figure (2). This corresponds to a bar with unit cross
section, discretized using two elements of length h. Constant material properties Young’s modulus F
and density p are assumed. The degrees of freedom of displacement u; and ug are fixed for the nodes 1
and 3. For irreducible case, the system’s fundamental frequency is given by:

Wirre = 57:—}2 (41)
It is possible to compute analytically the eigenvalues of the mixed problem by evaluating the eigenvalues
of the corresponding discrete system. Here A and B represent the local nodes corresponding to the
two ends of a 1D bar element. The same linear interpolation function IN are used for the strain and
displacement fields. Applying the mixed formulation, the local mixed stiffness matrix K ﬁfmd of one bar
element is a 4 X 4 matrix compose by terms affecting degrees of freedom of displacements and strains.
The sub-matrices M,G, G, and K, defined in (32-35) for one mixed bar element are

=30 1) “
ke () ()
=37 ) =
e ~H () "

The mass matrix for each mixed bar element is trivially computed as

AB @ 10
M =3 ( 0 1 (46)
Accordingly, the local mixed stiffness matrix K ,,;zcq of a bar element is the assembly of these matrices.
Hence, using the expression in equation (37), it can finally express the mixed local stiffness matrix of a
bar element

Et. —ET. E(1e—1) _ BT
h h 2 2
AB —ET. ET. E(re—1)  E(r—1)
Kmixed = jl 7}1 72ﬁ 02 (47)
12 12 2 h
2 2 0 -3

Assembling the elemental contribution of both K ,;.cq and M ,,;.eq and fixing the displacements of node
1 and 3, we can obtain the relevant natural frequencies by solving

det(Kmi:ced - )\Mm'ixed) =0
w2 A (48)

mized



(b) 2D case test for checking second
(a) 2D case test for stability analysis order time accuracy.

Figure 3: 2D case test.

Therefore, after some algebra we obtain the following analytical expression for the first frequency of the
mixed system:

E(l+7)
mized = 4
w d phg ( 9)

As expected the irreducible solution (see equation(41)) can be recovered for 7. = 1 (which is the limit
case at which only the discontinuous strain is taken into account).

4.3.2 2D case

Consider now a 2D benchmark example, described in figure (3a) to verify numerically that the 1D
predictions also apply to the 2D case. The model has an unit dimension 1 x 1 and is discretized in four
elements. The corner nodes are fixed. Density p, Young’s Modulus E, thickness ¢t and Poisson ratio v
are 100kg, 10 N/m?, 1m and 0.3 respectively. As the above example, a modal analysis is performed for
irreducible and mixed formulation.

The plot of Wimized/Wirre, for varying values of the stabilization parameter is given in figure (4). w
represents here the highest frequency in the system. As predicted by the theoretical analysis, the system
becomes more and more flexible as the stabilization parameter decreases, to reach a minimal frequency of
about half that of the original irreducible model when the stabilization parameter approaches zero. The
immediate implication is that the critical time step for the explicit dynamic analysis is greater for the
mixed formulation than for the irreducible one. The numerical experiments shown in figure (5) show that,
the estimated gain for the two-dimensional case is even more favourable than for the one-dimensional
case.

The simple mesh considered here is also suitable to verify that second order time accuracy is retained by
the modified algorithm. To verify this fact, we slightly modify the boundary conditions and consider the
settings shown in figure (3b). A dynamic analysis is performed, comparing the mixed and the irreducible
formulation. Since a Lagrangian approach is followed, the spatial error and the time integration error
are decoupled. We can hence compute a reference solution employing an extremely small time step. We
then compute the solution using different time steps and sample the values of displacement and strain at
the point A of figure (3b) at the time instant ¢ = 0.4s. By comparing the results to the reference we can
then plot (in logarithmic scale) the error as a function of the employed time step size. Since the curve
At? shown in figure(6) is parallel to the error plot, the graph proves the expected convergence rates.
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Figure 5: Variation of normalized Time with stabilization parameter.

4.4 Numerical accuracy of the mixed formulation

In this section the accuracy of the proposed mixed explicit formulation is assessed in the application
to a real transient dynamic problem, in both small and large deformations. The test case consists of a
cantilever beam with the geometrical dimensions described in the figure 7 and table 2. The displacements
are completely constrained at the left side. Material parameters are given in table 2. In order to obtain
comparable results, the same time step was employed for the mixed and irreducible approaches. A
reference solution was computed employing a very dense finite element mesh (and consequently a very
small time step). Calculations are performed with the Multi-physics finite element program KRATOS
[27, 28], developed at the International Center for Numerical Methods in Engineering (CIMNE). Pre and
post-processing is done with GiD, also developed at CIMNE [20].
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Figure 6: Time error mixed explicit formulation.

4.4.1 Dynamic cantilever beam. Small deformations case.

We begin by considering a small deformation case. According to Bernoulli’s beam theory, the maximum
static deflection §5¢, of the cantilever beam under its own weight occurs at its free end ( equation 50a).

Under the same assumptions the first natural frequency wy of the same beam is given in equation 50b.

Figure 7: 3D dimension view of cantilever beam.
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1|~

Figure 8: Boundary conditions for small deformations in cantilever beam and section cuts.
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For the dynamic case, the maximum dynamic deflection 6% is expected to be exactly twice the value

of the maximum static deflection. For the test we consider three different structured triangle meshes A,
B and C depicted in the figure 9, 10 and 11 respectively. Details of discretization are shown in the table
3.

L

Figure 9: Finite element mesh of cantilever beam model. Mesh A

L

Figure 10: Finite element mesh of cantilever beam model. Mesh B

Figure 11: Finite element mesh of cantilever beam model. Mesh C'

Material and Geometric Data Value(N —m)

Young’s Modulus F 2.0 GPa
Poisson’s ratio v 0.2
Density p 1000.00 Kg/m3
Length [ 5.00 m
Cross Section A 0.25 m?
Inertia I 2.604167x1073 m?
Thickness t 0.25 m
Gravity ¢ 9.80665 m/s?

Table 2: Material and Geometric data for the dynamic analysis of the cantilever beam.

Discretization Data

Mesh Type | Number of nodes | Number of elements
Mesh A 255 400

Mesh B 909 1600

Mesh C 3417 6400

Table 3: Discretization data for Mesh A, B and C.

The analytical maximum static deflection §5¢ =~ and the first natural frequency wy is 18.3875mm and
28.705 rad/s respectively. The corresponding period T of this frequency is 0.219s. A linear step-by-
step dynamic analysis is done using C'D for both irreducible and mixed formulation. The results of the

analysis are depicted in figures 12, 13 and 14. They correspond to absolute values of vertical displacement



(displacement Y direction) evolution at free end (point @ in figure 8). As expected, for values of 7. in the
typical range 0.1-0.5, at any given mesh resolution, the mixed formulation is slightly more accurate than
the irreducible one. This is true both in terms of phase accuracy and in terms of stiffness. Interestingly,
depending on the value of the stabilization parameter the structure can be either too flexible or too stiff
compared to the analytical solution, which is not unexpected since a mixed-formulation may converge
from either side. As expected, as the mesh is refined, all formulations converge to the reference solution.
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Figure 12: Step-by-step dynamic analysis using both irreducible and mixed explicit formulation for mesh

A.

As a remark we observe that as shown in previous works[7, 8, 15], where the static case was explored,
the explicit mixed formulation is always (independently on the 7.) more accurate than the irreducible
formulation on a given mesh.

4.4.2 Dynamic cantilever beam. Large deformations case.

As a second example, we consider the same settings and increase by a factor 100 the applied load (100
times higher gravity load), thus triggering a large deformation response. The results shown in figure 15,
16 and 17 depicts the displacement of the tip (intended as the center point of the rightmost face) for the
three meshes identified as A, B and C.

As it can be expected convergence is guaranteed, even for large deformations cases using a mixed-explicit
Total Lagrangian approach. It is also interesting to compare the irreducible and mixed formulations
Green-Lagrange strain distributions over two different cross sections as shown in figure 8.

The strain distribution in the middle-right section and at the constraint is shown in figures 18 and 19
for mesh A, 20 and 21 for mesh B and 22 and 23 for mesh C.

As the images suggest, and in accordance to the theory, the strain spatial convergence is faster for the
mixed formulation than for the irreducible one. Note that already for the structured non-symmetric
coarse mesh (mesh A), the distribution of strains in the section gives sensibly better results with respect
to the irreducible one. The strain distribution also appears to converge faster to the reference result as
the mesh is refined.

Applying the mixed formulation, in pictures 24, 25 and 26 we observe how the imposed load excites the
first, second and third modes of the beam. As expected, if a finer discretization is used more vibration
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Figure 13: Step-by-step dynamic analysis using both irreducible and mixed explicit formulation for mesh
B.
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Figure 14: Step-by-step dynamic analysis using both irreducible and mixed explicit formulation for mesh

C.

modes appear in the analysis.

Since the stability analysis developed is only valid for the linear case, we experimentally increased the
time step used in the analysis until the method failed, so to approximate the largest possible time step.
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Figure 15: Step-by-step dynamic analysis using both irreducible and mixed CD scheme for mesh A.
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Figure 16: Step-by-step dynamic analysis using both irreducible and mixed CD scheme for mesh B.

The results are shown in table 4 together with the time step for one-dimensional mixed and irreducible
case. We approximate the length of the triangular element [, as the half-root square of the quadrilateral
area closed by the triangle, i.e; [, = %\/E As we can note, even for large deformation case the time step
used in the mixed-explicit formulation is larger than irreducible one, closely following the predictions in
figure 5. Specifically we numerically verify that the stable time step for this example is at least a factor
of 1.43 larger for the mixed formulation than for the original irreducible one, which represents a very
important performance gain for the proposed formulation.
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Figure 17: Step-by-step dynamic analysis using both irreducible and mixed CD scheme for mesh C.
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Figure 18: Section A normal shear strain distribution at maximum displacement for mesh A.

Critical At™%* computed

Mesh Type | At™** Irreducible 1D | At™** Irreducible || At™** Mixed 1D || At™** Mixed || factor
Mesh A 1.76e-04s 5.30e-5s 2.38e-04s 7.585e-bs 1.43
Mesh B 8.83e-05s 2.55e-5s 1.19e-04s 3.795e-5s 1.49
Mesh C 4.41e-05s 1.07e-5s 5.95e-05s 1.80e-05s 1.68

Table 4: Maximum At™** for analysis in irreducible and mixed formulation.

5 Conclusion

This paper presents the formulation of a stable, OSS based, mixed explicit strain/displacement formula-
tion for the solution of linear and non-linear problems is solid mechanics. In the work we describe a simple
algorithm allowing the explicit time integration of such mixed formulation. The resulting explicit scheme
retains second order accuracy in time and has a favourable stability estimate when compared to the ir-
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Figure 21: Section B normal shear strain distribution at maximum displacement for mesh B.

reducible formulation. The numerical results also show how the results obtained compare favourably in
terms of accuracy with the corresponding irreducible formulations at any mesh resolution. The advantage
is particularly evident in the strain predictions.
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Figure 23: Section B normal shear strain distribution at maximum displacement for mesh C.
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Figure 24: First vibration mode of the cantilever beam in mesh C.

i,
Figure 25: Second vibration mode of the cantilever beam in mesh C.
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Figure 26: Third vibration mode of the cantilever beam in mesh C.
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