
Construction of optimal 3-node plate bending triangles by templates
C. A. Felippa, C. Militello

Abstract A ®nite element template is a parametrized
algebraic form that reduces to speci®c ®nite elements
by setting numerical values to the free parameters. The
present study concerns Kirchhoff Plate-Bending Triangles
(KPT) with 3 nodes and 9 degrees of freedom. A 37-
parameter template is constructed using the Assumed
Natural Deviatoric Strain (ANDES). Specialization of this
template includes well known elements such as DKT and
HCT. The question addressed here is: can these parameters
be selected to produce high performance elements?
The study is carried out by staged application of con-
straints on the free parameters. The ®rst stage produces
element families satisfying invariance and aspect ratio
insensitivity conditions. Application of energy balance
constraints produces speci®c elements. The performance
of such elements in benchmark tests is presently under
study.

1
Introduction
This is a revised version of a paper (Felippa and Militello,
1998) contributed to the IV World Congress on Compu-
tational Mechanics. That paper dealt with the construction
of high-performance (HP) 3-node triangular ®nite ele-
ments for thin plate bending using the template approach.
The main revision has been a more systematic investiga-
tion of template constraints, and in particular invariant
conditions. This in turn has clari®ed how existing ele-
ments such as DKT and AQR ®t into element families. The
ordering of template coef®cients has been changed to
better ®t those conditions.

2
High performance finite elements
An important objective of present FEM research is the
construction of high performance (HP) ®nite elements.
These have been de®ned (Felippa and Militello, 1989) as
simple elements that deliver engineering accuracy with
arbitrary coarse meshes. This de®nition requires further
clari®cation.

Simple means the simplest geometry and freedom
con®guration that ®ts the problem and target accuracy,
consistent with human and computer resources. This can
be summed up in one FEM modeling rule: use the simplest
element that will do the job.

Engineering accuracy is that generally expected in most
FEM applications in Aerospace, Civil and Mechanical
Engineering. Typically this is 1% in displacements and
10% in strains, stresses and derived quantities. Some ap-
plications, notably in Aerospace, may require higher pre-
cision in quantities such as natural frequencies, shape
tolerances, or in long-time dynamic simulations.

Coarse mesh is one that suf®ces to capture the impor-
tant physics in terms of geometry, material and load
properties. It does not imply few elements. For example, a
coarse mesh for an aircraft undergoing combat maneuvers
may require several million elements. For simple bench-
mark problems such as a uniformly loaded square plate, a
mesh of 4 or 16 elements may be classi®ed as coarse.

Finally, the term arbitrary mesh implies low sensitivity
of the solution to element aspect ratio, skewness, distor-
tion and mesh directionality effects. This attribute is be-
coming important as push-button mesh generators gain
importance, because automatically generated unstructured
meshes can be of low quality compared to those produced
by an experienced analyst.

For practical reasons we are interested only in the
construction of HP elements with displacement nodal de-
grees of freedom. Such elements are characterized by their
stiffness equations, and thus can be plugged into any
standard ®nite element program.

3
From PVPs to templates
The approach to HP elements taken by the ®rst author
started in 1984 from collaborative work with Bergan in
Free Formulation (FF) high performance elements. The
results of this collaboration were a membrane triangle with
drilling freedoms (Bergan and Felippa, 1965) and a plate
bending triangle (Felippa and Bergan, 1985). It continued
with exploratory work using the Assumed Natural Strain
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(ANS) method of Park and Stanley (1986). Eventually FF
and ANS coalesced in a variant of ANS called Assumed
Natural Deviatoric Strain, or ANDES. Elements based on
ANDES are described by Militello and Felippa (1991).

This uni®cation work led naturally to a formulation of
elasticity functionals containing free parameters. These
were called parametrized variational principles, or PVPs in
short. Setting the parameters to speci®c numerical values
produced the classical functionals of elasticity such as
Total Potential Energy, Hellinger-Reissner and Hu-Wash-
izu. For linear elasticity, 3 free parameters in a 3-®eld
functional with independently varied displacements,
strains and stresses are suf®cient to embed all classical
functionals. The Euler-Lagrange equations of a PVP do
reproduce the ®eld equations but with different weights.
Two survey articles: (Felippa, 1994) and (Felippa, 1996)
contain references to the development of PVPs and the
original papers of the 1980s. These may be consulted for
practical and historic details. An extension to dynamic
modeling has recently been published (Brito Castro et al.,
1997).

One result from the PVP formulation is that, upon FEM
discretization, free parameters appear at the element level.
One thus naturally obtains families of elements. Setting the
free parameters to numerical values produces speci®c el-
ements. Although the PVP Euler-Lagrange equations are
the same excepts for weights, the discrete solution pro-
duced by different elements are not. Thus an obvious
question arises: which free parameters produce the best
elements? It turns out that there is no clear answer to the
question, because the best set of parameters depends on
the element geometry. Hence the equivalent question:
which is the best variational principle? makes no sense.

The PVP formulation led, however, to an unexpected
discovery. The con®guration of elements constructed ac-
cording to PVPs and the usual assumptions on displace-
ments, stresses and strains was observed to follow speci®c
algebraic rules. Such con®gurations could be parametrized
directly without going through the source PVP. This ob-
servation led to a general formulation of ®nite elements as
templates.

4
Finite element templates
A ®nite element template, or simply template, is an alge-
braic form that represents element-level stiffness equa-
tions, and which ful®lls the following conditions:
(C) Consistency: the Individual Element Test (IET) form of
the patch test, introduced by Bergan and Hansen (1975), is
passed for any element geometry.
(S) Stability: the element stiffness matrix satis®es correct
rank and nonnegativity conditions.
(P) Parametrization: the element stiffness equations con-
tain free parameters.
(I) Invariance: the element equations are observer invari-
ant. In particular, they are independent of node number-
ing and choice of reference systems.
The ®rst two conditions: (C) and (S), are imposed to en-
sure convergence. Property (P) permits optimization as
well as tuning elements to speci®c needs. Property (I)
helps predictability and benchmark testing.

Setting the free parameters to numeric values yields
speci®c element instances.

4.1
The fundamental decomposition
A stiffness matrix derived through the template approach
has the fundamental decomposition

K � Kb�ai� � Kh�bj� �1�
Here Kb and Kh are the basic and higher-order stiffness
matrices, respectively. The basic stiffness matrix Kb is
constructed for consistency and mixability, whereas the
higher order stiffness Kh is constructed for stability
(meaning rank suf®ciency and nonnegativity) and accu-
racy. As further discussed below, the higher order stiffness
Kh must be orthogonal to all rigid-body and constant-
strain (curvature) modes.

In general both matrices contain free parameters. The
number of parameters ai in the basic stiffness is typically
small for simple elements. For example, in the 3-node KPT
elements considered here there is only one basic param-
eter, called a. This number must be the same for all ele-
ments in a mesh to insure satisfaction of the IET (Bergan
and Felippa, 1985).

On the other hand, the number of higher order pa-
rameters bj can be in principle in®nite if certain compo-
nents of Kh can be represented as polynomial series of
element geometrical invariants. In practice, however, such
series are truncated, leading to a ®nite number of bj pa-
rameters. Although the bj may vary from element to ele-
ment without impairing convergence, often the same
parameters are retained for all elements.

4.2
Constructing the component stiffness matrices
The basic stiffness that satis®es condition (C) is the same
for any formulation. It is simply a constant stress hybrid
element (Bergan and NygaÊrd, 1984; Bergan and Felippa,
1985). For a speci®c element and freedom con®guration,
Kb can be constructed once and for all.

The formulation of the higher order stiffness Kh is not
so clear-cut, as can be expected because of the larger
number of free parameters. It can be done by a variety of
techniques, which are summarized in a recent article
(Felippa, Haugen and Militello, 1995). Of these, one has
proven exceedingly useful for the construction of tem-
plates: the ANDES formulation. ANDES stands for As-
sumed Natural DEviatoric Strains. It is based on assuming
natural strains for the high order stiffness. For plate
bending (as well as beams and shells) natural curvatures
take the place of strains.

Second in usefulness is the Assumed Natural DEviatoric
STRESSes or ANDESTRESS formulation, which for bend-
ing elements reduces to assuming deviatoric moments. This
technique, which leads to stiffness templates that contain
inverses of natural ¯exibilities, is not considered here.

4.3
Basic stiffness properties
The following properties of the template stiffness equa-
tions are collected here for further use. They are discussed
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in more detail in the article by Felippa, Haugen and
Militello (1995). Consider a test displacement ®eld, which
for the KPT would be a continuous transverse displace-
ment mode w�x; y�. [In practical computations this will be
a polynomial in x and y.] Evaluate this at the nodes to
form the element node displacements u. These can be
decomposed into

u � ub � uh � ur � uc � uh ; �2�
where ur, uc and uh are rigid body, constant strain and
higher order components, respectively, of u. The ®rst two
are collectively identi®ed as the basic component ub. The
matrices (1) must satisfy the stiffness orthogonality con-
ditions

Kbur � 0; Khur � 0; Khuc � 0 �3�
while Kb represents exactly the response to uc.

The strain energy taken up by the element under ap-
plication of u is U � 1

2
uTKu. Decomposing K and u as per

(1) and (2), respectively, and enforcing (3) yields

U � 1
2
�ub � uh�TKb�ub � uh� � 1

2
uT

hKhuh � Ub � Uh

�4�
Ub and Uh are called the basic and higher order energy,
respectively. Let Uex be the exact energy taken up by the
element as a continuum body subjected to the test dis-
placement ®eld. The element energy ratios are de®ned as

q � U

Uex
� qb � qh; qb �

Ub

Uex
; qh �

Uh

Uex
: �5�

Here qb and qh are called the basic and higher order en-
ergy ratios, respectively. If uh � 0, q � qb � 1 because the
element must respond exactly to any basic mode by con-
struction. For a general displacement mode in which uh

does not vanish, qb is a function of the ai whereas qh is a
function of the bj.

4.4
Constructing optimal elements
By making a template suf®ciently general all published
®nite elements for a speci®c con®guration can be gener-
ated. This includes those derivable by orthodox techniques
(for example, shape functions) and those that are not.
Furthermore, an in®nite number of new elements arise.
The same question previously posed for PVPs arises: Can
one select the free parameters to produce an optimal ele-
ment?

The answer is not yet known for general elements. The
main unresolved dif®culty is: which optimality conditions
must be imposed at the local (element) level? While some
of them are obvious, notably those leading to observer
invariance, most of the others are not. The problem is that
a detailed connection between local and global optimality
is not fully resolved by conventional FEM error analysis.
Such analysis can only provide convergence rates expres-
sed as Chm in some error norm, where h is a characteristic
mesh dimension and m is usually the same for all template
instances. The key to high performance is the coef®cient C,
but this is problem dependent. Consequently, veri®cation
benchmarks are still inevitable.

Because conventional error analysis is of limited or no
value, most of the template optimization constraints dis-
cussed later are heuristic. But even if the local-to-global
connection were fully resolved, a second technical dif®culty
arises: the actual construction and optimization of tem-
plates poses formidable problems in symbolic matrix ma-
nipulation, because one has to carry along arbitrary
geometries, materials and free parameters. Until recently
those manipulations were beyond the scope of computer
algebra systems (CAS) for all but the simplest elements. As
personal computers and workstations gain in CPU speed
and storage, it is gradually becoming possible to process
two-dimensional elements for plane stress and plate bend-
ing. Most three-dimensional and curved-shell elements,
however, still lie beyond the power of present systems.

Practitioners of optimization are familiar with the
dangers of excessive perfection. A system tuned to operate
optimally for a narrow set of conditions often degrades
rapidly under deviation from such conditions. We will see
that a similar dif®culty exists in the construction of opti-
mal plate elements, and that expectations of an ``element
for all seasons'' must be tempered.

5
Templates for 3-node KPT elements
The application of the template approach is rendered
speci®c by studying a particular con®guration: a 3-corner-
node ¯at triangular element to model bending of Kirchhoff
(thin) plates. The element has the conventional 3 degrees
of freedom: one transverse displacement and 2 rotations at
each corner. For brevity this will be referred to as a
Kirchhoff Plate Triangle, or KPT, in the sequel. The
complete development of the template is given in the
Appendix. Here we summarize only the important results
necessary for the construction of HP elements.

5.1
Stiffness decomposition
For the KPT elements under study the con®guration of the
stiffness matrices in (1) can be shown in more detail.
Assuming that the 3� 3 moment-curvature plate consti-
tutive matrix D is constant over the triangle, we have

Kb � 1

A
LDLT;

Kh � A

3
BT

v4DvBv4 � BT
v5DvBv5 � BT

v6DvBv6

h i
: �6�

Here A is the triangle area, L is the 9� 3 force lumping
matrix that transforms a constant internal moment ®eld to
node forces, Bvm are 3� 9 matrices relating natural cur-
vatures at triangle midpoints m � 4; 5; 6 to node dis-
placements, and Dv is the plate constitutive matrix
transformed to relate natural curvatures to natural mo-
ments. Parameter a appears in L whereas parameters bj

appear in Bvm. Full expressions of these matrices are given
in the Appendix.

5.2
The KPT-1-36 and KPT-1-9 templates
A useful KPT template is based on a 36-parameter repre-
sentation of Kh in which the series noted above retains up
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to the linear terms in three triangle geometric invariants
k1, k2 and k3, de®ned in the Appendix. The template is said
to be of order one in the ks. It has a total of 37 free pa-
rameters: one a and 36 bs. Collectively the template is
identi®ed as KPT-1-36. Instances are displayed using the
following tabular arrangement:

acronym a b10 b20 b30 b40 b50 b60 b70 b80 b90 =bsc

b11 b21 b31 b41 b51 b61 b71 b81 b91

b12 b22 b32 b42 b52 b62 b72 b82 b92

b13 b23 b33 b43 b53 b63 b73 b83 b93

�7�

Here bsc is a scaling factor by which all displayed bij must
be divided; e.g. in the DKT element listed in Table 1
b10 � ÿ6=4 � ÿ3=2 and b41 � 4=4 � 1. If bsc is omitted it
is assumed to be one.

Setting the 37 parameters to numeric values yields,
speci®c elements, identi®ed by the acronym displayed on
the left. Some instances that are interesting on account of
practical or historical reasons are collected in Table 1. This
represents a tiny subset of the number of published KPT
elements, which probably ranges in the hundreds, and is
admittedly biased in favor of elements developed by the
authors. Table 2 identi®es the acronyms of Table 1, cor-
related with original publications where appropriate.

An interesting subclass of (7) is that in which the bot-
tom 3 rows vanish: b11 � b12 � � � � b93 � 0. This 10-pa-
rameter template is said to be of order zero because the
invariants k1, k2 and k3 do not appear in the higher order
stiffness. It is identi®ed as KPT-1-9. For brevity it will be
written simply as

acronym a b10 b20 b30 b40 b50 b60 b70 b80 b90 =bsc

�8�
omitting the zero entries.

5.3
Element families
Specializations of (7) and (8) that still contain free pa-
rameters are called element families. In such a case the free
parameters are usually written as arguments of the acro-
nym. For example, Table 4 de®nes the ARI (Aspect Ratio
Insensitive) family derived in Section 6. ARI has seven free
parameters identi®ed as a, b10, b20, b30, c0, c1 and c2.
Consequently the template acronym is written
ARI(a; b10; b20; b30; c0; c1; c2).

A family whose only free parameter is a is called an a
family. Its instances are called a variants. In some a fam-
ilies the b coef®cients are ®xed. For example in the AQR(a�
and FF(a) families only a changes. Some practically im-
portant instances of those families are shown in Table 1.
In other families, the b are functions of a. For example this
happens in the BCIZ(a� family, two instances of which,
obtained by setting a � 0 and a � 1, are shown on Table 1.

5.4
Template genetics: signatures and clones
An examination of Table 1 should convince the reader that
template coef®cients uniquely de®ne an element once and
for all, although the use of author-assigned acronyms has
been prevalent in the FE literature. The parameter set can
be likened to an ``element genetic ®ngerprint'' or ``element
DNA'' that makes it a unique object. This set is called the
element signature.

Table 1. Template signatures of some existing KPT elements

Acronym a b1j b2j b3j b4j b5j b6j b7j b8j b9j bsc

ALR 0 )3 0 0 0 0 0 0 3 0 /2
)6 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 )6 0

AQR0 0 Same bs as AQR1
AQRBE 1=

���
2
p

Same bs as AQR1
AQR1 1 )3 0 0 0 0 0 0 3 0 /2

)2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 )4
0 0 0 0 0 0 0 )2 0

AVG 0 )3 0 0 0 0 0 0 3 0 /2
BCIZ0 0 )3 1 1 0 0 )1 )1 3 0 /2
BCIZ1 1 )3 0 0 )1 1 0 0 3 0 /2

0 0 0 2 0 0 2 0 0
0 0 )2 0 0 )2 0 0 0
0 2 0 0 2 0 0 0 0

DKT 1 )6 1 1 )2 2 )1 )1 6 0 /4
0 0 0 4 0 0 )2 0 0
0 0 2 0 0 2 0 0 0
0 )2 0 0 4 0 0 0 0

FF0 0 )9 1 1 )2 2 )1 )1 9 0 /6
FF1 1 Same bs as FF0
HCT 1 )11 5 0 )2 2 0 )5 11 0 /4

6 0 0 4 0 0 10 0 0
0 0 20 0 0 20 0 0 0
0 10 0 0 4 0 0 6 0
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If signatures were randomly generated, the number of
element instances would be of course huge: more precisely
137 for 37 parameters. But in practice elements are not
fabricated at random. Attractors emerge. Some element
derivation methods, notably those based on displacement
shape functions, tend to ``hit'' certain signature patterns.
The consequence is that the same element may be dis-
covered separately by different authors, often using dis-
similar derivation techniques. Such elements will be called
clones. Cloning seems to be more prevalent among in-
stances of the order-zero KPT-1-9 template (8). Some ex-
amples discovered in the course of this study are reported.

The ®rst successful nonconforming triangular plate
bending element was the original BCIZ (Bazeley et al.,
1966). This element, however, does not pass the IET, and
in fact fails Irons' original patch test for arbitrary mesh
patterns. The cause of the disease resides in the basic
stiffness. The element can be ``sanitized'' by removing the
infected matrix as described by Felippa, Haugen and
Militello (1995). This is replaced by a healthy Kb with, for
example, a � 0 or a � 1. This transplant operation yields
the elements called BCIZ0 and BCIZ1, respectively, in
Table 1. [These are two instances of a BCIZ(a) family.]
Note that BCIZ0 pertains to the KPT-1-9 template.

In the 3rd MAFELAP Conference, Hansen, Bergan and
Syversten (1978) reported a nonconforming element which
passed the IET and (for the time) was of competitive

performance. Construction of its template signature re-
vealed it to be a clone of BCIZ0. The plate bending part of
the TRIC shell element (Argyris, Tenek and Olofsson,
1997) is also a clone of BCIZ0.

An energy orthogonal version of the HBS element was
constructed by NygaÊrd in his Ph.D. thesis (NygaÊrd, 1986).
Its signature turned out to agree with that of the FF0 ele-
ment, constructed by Felippa and Bergan (1987) with a
different set of higher order shape functions.

Clones seem rarer in the realm of the full KPT-1-36
template because of its greater richness. The DKT appears
to be an exception. Although this popular element is
usually constructed by assuming rotation ®elds, it co-
alesced with one of the ANDES elements derived by
Militello and Felippa (1991). At the time the coalescence
was suspected from benchmarks, and later veri®ed by di-
rect examination of stiffness matrices. Using the template
formulation such numerical tests can be bypassed, as it is
suf®cient to compare signatures.

5.5
Parameter constraints
To construct element families and in the limit, speci®c
elements, constraints on the free parameters must be im-
posed. One key dif®culty surfaces. Constraints must be
imposed at the local level of individual element or simple
mesh units, but they should lead to high performance

Table 2. Element identi®ers used in Table 1

Name Description

ALR Assumed Linear Rotation KPT element of Militello and Felippa (1991)
AQR1 Assumed Quadratic Rotation KPT element of Militello and Felippa (1991)
AQR0 a-variant of AQR1 with a � 0
AQRBE a-variant of AQR1 with a � 1=

���
2
p

; of interest because it is BME.
AVG Average curvature KPT element of Militello and Felippa (1991)
BCIZ0 Nonconforming element of Bazeley, Cheung, Irons and Zienkiewicz (1966) ``sanitized''

with a � 0 as described by Felippa, Haugen and Militello (1995). Historically the ®rst
polynomial-based, complete, nonconforming KPT and the motivation for the
original (multielement) patch test of Irons. See Section 5.4 for two clones of BCIZ0.

BCIZ1 Variant of above, in which the original BCIZ is sanitized with a � 1
DKT Discrete Kirchhoff Triangle of Stricklin et al. (1969), streamlined by Batoz (1982);

see also Bathe, Batoz and Ho (1980)
FF0 Free-formulation element of Felippa and Bergan (1987).
FF1 a variant of FF0 with a � 1.
HCT Hsieh-Clough-Tocher element (Clough and Tocher, 1966) with curvature ®eld collocated

at the 3 midpoints. The original (macroelement) version was the ®rst successful C1 conforming KPT.

Table 3. Linear constraints for KPT-1-36 template

ARI2: b11 � �2b10 � b20 � 3b30 ÿ 4b40�=3, b22 � �8b20 ÿ 4b30 � 2b40�=9
ARI1: b33 � b20 ÿ b30 ÿ b22, b92 � 2b10 � b20 � 3b30 ÿ 4b40 ÿ b11
ARI1: b23 � ÿ2b20 � b22, b32 � 2b30 � b33, b41 � ÿ2b40 ÿ b33
ARI1: b12 � b22, b93 � b33, b13 � ÿb33, b82 � b22, b43 � ÿb33
ARI0: b21 � b31 � b42 � b52 � b63 � b73 � 0
ENO1: b32 � b23 � b41, b92 � 2b11 ÿ b12 � b82, b13 � ÿb82 � b93, b33 � b22 � b43
ENO0: b40 � ÿb20 ÿ b30
OI1: b51 � b52 � b43 ÿ b42, b53 � b52 ÿ b42 � b41, b61 � b63 ÿ b31 � b33,
OI1: b62 � b63 � b32 ÿ b31, b71 � b73 ÿ b21 � b23, b72 � b73 ÿ b21 � b22,
OI1: b81 � b82 ÿ b12 � b13, b83 � b82 ÿ b12 � b11, b91 � b93
OI0: b50 � ÿb40, b80 � ÿb10, b60 � ÿb30, b70 � ÿb20, b90 � 0
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behavior at the global level. There is as yet no mathe-
matical framework for establishing those connections.

Several constraint types have been used in this and
previous work: (1) invariance, (2) skewness and aspect
ratio insensitivity, (3) distortion insensitivity, (4) trunca-
tion error minimization, (5) energy balance, (6) energy
orthogonality, (7) morphing. Whereas (1) and (2) have
clear physical signi®cance, the effect of the others has to be
studied empirically on benchmark problems. Conditions
that have produced satisfactory results are discussed below
with reference to the KPT template. The reader should be
cautioned, however, that these may not represent the ®nal
word inasmuch as templates are presently a frontier sub-
ject. For convenience the constraints can be divided into
linear and nonlinear, the former being independent of
constitutive properties.

5.6
Staged element design
Taking an existing KPT element that passes the IET and
®nding its template signature is relatively straightforward
with the help of a computer algebra program. Those listed
in Table 1 were obtained using Mathematica. But in ele-
ment design we are interested in the reverse process:
starting from a general template such as KPT-1-36, to ar-
rive at speci®c elements that display certain desirable
characteristics. Experience shows that this is best done in
two stages.

First, linear constraints on the free parameters are ap-
plied to generate element families. The dependence on the
remaining free parameters is still linear.

Second, selected energy balance constraints are im-
posed. For linear elastic elements such constraints are
quadratic in nature. Consequently there is no guarantee
that real solutions exist. If they do, solutions typically
produce families with few (usually 1 or 2) free parameters;
in particular a families. Finally, setting the remaining pa-
rameters to speci®c values produces element instances.

6
Linear constraints
Three types of linear constraints have been used to gen-
erate element families.

6.1
Observer invariance (OI) constraints
These pertain to observer invariance. If the element ge-
ometry exhibits symmetries, those must be re¯ected in the
stiffness equations. For example, if the triangle becomes
equilateral or isoceles, certain equality conditions between
entries of the curvature-displacement matrices must hold.
The resulting constraints are linear in the bs.

For the KPT-1-36 template one obtains the 14 con-
straints labeled as OI0 and OI1 in Table 3. The ®ve OI0
constraints pertain to the order zero parameters and
would be the only ones applicable to the KPT-1-9 template.
They can be obtained by considering an equilateral tri-
angle. The nine OI1 constraints link parameters of order
one. This constraint set must be the ®rst imposed and
applies to any element.

6.2
Aspect ratio insensitivity (ARI) constraints
A second set of constraints can be found by requiring that
the element be aspect ratio insensitive, or ARI for short,
when subjected to arbitrary node displacements. A triangle
that violates this requirement becomes in®nitely stiff for
certain geometries when a certain dimension aspect ratio r
goes to in®nite.

To express this mathematically, it is suf®cient to con-
sider the triangle con®gurations (A, B, C) depicted in
Fig. 1. In all cases L denotes a triangle dimension kept
®xed while the aspect ratio r is increased. In con®guration
A, the angle w is kept ®xed as r !1. The opposite angles
tend to zero and p=2ÿ w. The case w � 90� � p=2 is
particularly important as discussed later. In con®gurations
(B) and (C) the ratio n is kept ®xed as r !1, and angles
tend to p, p=2 or zero.

As higher order test displacements we select the four
cubic modes w30 � x3, w21 � x2y, w12 � xy2 and w03 � y3.
Any other cubic mode is a combination of those four.
Construct the element energy ratios de®ned in Section 4.3.
The important dependence of those ratios on physical
properties and free parameters is

q � qm
b �r;w; a� � qm

h �r;w; bj� �9�
where m � 30; 21; 12; 03 identi®es modes x3, x2y, xy2 and
y3, respectively. (The dependence on L and D is innocuous
for this study and omitted for simplicity). Take a partic-
ular con®guration (A, B, C) and mode m, and let r !1. If
q remains nonzero and bounded the element is said to be
aspect ratio insensitive for that combination. If q!1 the
element is said to experience aspect ratio locking, whereas
if q! 0 the element becomes in®nitely ¯exible. If q re-
mains nonzero and bounded for all modes and con®gu-
rations the element is called completely aspect ratio
insensitive. The question is whether free parameters can be
chosen to attain this goal.

As posed an answer appears dif®cult because the ratios
(9) are quadratic in the free parameters, rational in r, and
trascendental in w. Fortunately the question can be re-
duced to looking at the dependence of the curvature-dis-

x

x

y

y

L / r

L

L

ξ L (1− ξ) L

(B): H = r L

(C): H = r / L

r → ∞

r → ∞

r → ∞

Configuration (A)

Configuration (B,C)

ψ

x

x

y

y

L / r

L

L

ξ L (1− ξ) L

(B): H = r L

(C): H = r / L

r → ∞

r → ∞

r → ∞

Configuration (A)

Configuration (B,C)

ψ

Fig. 1. Triangle con®gurations for the study of ARI constraints

6



placement matrices on r as rÿ >1. Entries of these
matrices are linear functions of the free parameters. As
r !1 no entry must grow faster than r [because exact
curvatures grow as O�r�]. For example, if an entry grows as
r2, setting its coef®cient to zero provides a linear con-
straint from which the dependence on L and w is factored
out. The material properties do not come in. Even with this
substantial simpli®cation the use of a CAS is mandatory to
handle the elaborate symbolic algebra involved, which
involves the Laurent expansion of all curvature matrices.
The result of the investigation for the KPT-1-36 template
can be summarized as follows.

(1) The basic energy ratio qb is bounded for all w and all
m in con®guration (A). In con®gurations (B) and (C)
it is unbounded as O�r� in two cases: m � 30 if a 6� 1,
and m � 21 for any a.

(2) The higher order energy ratio qh can be made
bounded for all w and m by imposing the 18 linear
constraints listed in Table 3 under the ARI label.

(3) The foregoing bound on qh is not possible for the
KPT-1-9 template. Thus a signature of the form (8) is
undesirable from a ARI standpoint.

Because of the basic stiffness shortcoming noted in (1), a
completely ARI element cannot be constructed. However,
the bs can be selected to guarantee that qh is always
bounded. The resulting constraints are listed in Table 3.
They are grouped in three subsets labeled ARI0, ARI1 and
ARI2.

Subset ARI0 requires b21 � b31 � b42 � b52 � b63 � b73

� 0. If any of these 6 parameters is nonzero, one or more
entries of the deviatoric curvature displacement matrices
grow as r3 in the 3 con®gurations. This represents disas-
trous aspect ratio locking and renders any such element
useless.

Once OI0, OI1 and ARI0 are imposed, subset ARI1
groups 10 constraints obtained by setting to zero O�r2�
grow in con®guration (A) for all HO modes. This insures
that q � qb � qh stays bounded in that con®guration
(because qb stays bounded for any a). In Table 3 they are
listed in reverse order of that found by the symbolic

analysis program, which means that the most important
ones appear at the end.

Once OI0, OI1 and ARI0 and ARI1 are imposed, the 2-
constraint subset ARI2 guarantees that qh is bounded for
con®gurations (B) and (C). Since qb is not necessarily
bounded in this case these conditions have minor practical
importance.

Imposing OI0, OI1, ARI0 and ARI1 leaves 37ÿ 5ÿ 9
ÿ6ÿ 10 � 7 free parameters, and produces the so-called
ARI family de®ned in Table 4. Of the seven parameters,
four are chosen to be the actual template parameters a, b10,
b20, and b30. Three auxiliary parameters, called c1, c2 and
c3, are chosen to complete the generation of the ARI family
as de®ned in Table 4.

This family is interesting in that it includes all existing
high-performance elements, such as DKT and AQR1, as well
as some new ones developed in the course of this study.

6.3
Energy orthogonality (ENO) constraints
Energy orthogonality (ENO) means that the average value
of deviatoric strains over the element is zero. Mathemat-
ically, Bv4 � Bv5 � Bv6 � 0. This condition was a key part
of the early developments of the Free Formulation by
Bergan (1980) and Bergan and NygaÊrd (1984) as well as of
elements developed during the late 1980s and early 1990s.

The heuristic rationale behind ENO is to limit or pre-
clude energy coupling between constant strain and higher
order modes. A similar idea lurks behind the so-called ``B-
bar'' formulation, which has a long and checkered history
in modeling incompressibility and plastic ¯ow.

For the KPT-1-36 element one may start with the OI0
and OI1 constraints as well as ARI0 (to preclude cata-
strophic locking), but ignoring ARI1 and ARI2. Then the
ENO condition leads to the linear constraints labeled as
ENO0 and ENO1 in Table 3. These group conditions on
the order zero and one parameters, respectively. Imposing
OI0, OI1, ARI0, ENO0 and ENO1 leads to the ENO family
de®ned in Table 4, which has 12 free parameters. Elements
ALR, FF0 and FF1 of Table 1 can be presented as instance
of this family as shown in Table 7.

Table 4. Three element families derivable from KPT-1-36

ARI(a; b10; b20; b30; c0; c1; c2) a b10 b20 b30 b40 ÿb40 b30 ÿb20 ÿb10 0
b11 0 0 b41 ÿb61 b61 b71 ÿb61 b61

b22 b22 b62 0 0 b62 b22 b22 b92

ÿb61 b71 b61 ÿb61 b41 0 0 b11 b61

where b40 � ÿb20 ÿ b30 � c0, b11 � �2b10 � b20 � 3b30 ÿ 4b40�=3� c1,
b22 � �8b20 ÿ 4b30 � 2b40�=9� c2, b61 � b20 ÿ b22 ÿ b30, b41 � ÿb61 ÿ 2b40,
b62 � b20 ÿ b22 � b30, b71 � ÿ2b20 � b22 and b92 � 2b10 ÿ b11 � b20 � 3b30 ÿ 4b40.

ENO(a; b10; b20; b30; b11;
b41; b12; b22; b82; b23; b43; b93)

a b10 b20 b30 b40 ÿb40 ÿb30 ÿb20 ÿb10 0
b11 0 0 b41 b43 b33 b23 b81 b93

b12 b22 b32 0 0 b32 b22 b82 b92

b13 b23 b33 b43 b41 0 0 b83 b93

where b40 � ÿb20 ÿ b30, b81 � ÿb12 � b93, b32 � b23 � b41, b92 � 2b11 ÿ b12 � b82,
b13 � ÿb82 � b93, b33 � b22 � b43 and b83 � b11 ÿ b12 � b82.

ARIENO(a; b10; b20; b30) ARI(a; b10; b20; b30; 0; 0; 0)
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If instead one starts from the ARI family it can be
veri®ed that ENO is obtained if c0 � c1 � c2 � 0; that is,
only three constraints are needed instead of ®ve. [This is
precisely the rationale for selecting those ``ENO devia-
tions'' as free arguments]. Moreover, the order-one con-
straints c1 � c2 � 0 are precisely ARI2 in disguise.

Setting c0 � c1 � c2 � 0 in ARI yields a four-parameter
family called ARIENO (pronounced like the French ``Ari-
enne''). The free parameters are a, b10, b20 and b30. Its
template is de®ned in Table 4. As noted, this family in-
corporates all constraints listed in Table 3. (These adds up
to 37 but there are 4 redundancies.)

As noted all high performance elements found to date
are ARI. Most are ENO, but there are some that are not.
One example is HCTS, a ``smoothed HCT'' element de-
veloped in this study. Hence circumstantial evidence
suggests that ARI is more important than ENO. In the
present investigation ENO is used as a guiding principle
rather than an a priori constraint.

7
Quadratic constraints
As noted in the foregoing section, the ARI family ± and its
ARIENO subset ± is a promising source of high perfor-
mance KPT elements. But seven parameters remain to be
set to meet additional conditions. Such conditions fall into
the general class of energy balance constraints introduced
by Bergan and Felippa (1985). Unit energy ratios are im-
posed for speci®c mesh unit geometries, loading and
boundary conditions. The common feature of such con-
straints is that (for linear elements) they are quadratic in
the free parameters, and involve the constitutive proper-
ties. Because of the quadratic character, real parameter
solutions are not guaranteed. Even if they have real solu-
tions, the resulting families may exist only for limited
parameter ranges.

Numerous variants of the energy balance tests have
been developed over the years. Because of space con-
straints only three variations under study are described
below. All of them have immediate physical interpretation
in terms of the design of custom elements. They have been
applied assuming isotropic material with zero Poisson's
ratio.

7.1
Morphing constraints
This is a class of constraints that is presently being studied
to ascertain whether enforcement would be generally
bene®cial to element performance. Consider the 2-KPT-
element rectangular mesh unit shown in the center of
Fig. 2. The aspect ratio r is the ratio of the longest rect-
angle dimension L to the width b � L=r. The plate is
fabricated of a homogeneous isotropic material with zero
Poisson's ratio and thickness t. Axis x is selected along the
longitudinal direction. We study the two morphing pro-
cesses depicted in Fig. 2. In both cases the aspect ratio r is
made to increase, but with two different objectives.

Plane Beam Limit. The width b � L=r is decreased while
keeping L and t ®xed. The limit is the thin, Bernoulli-Euler
plane beam member of rectangular cross section t � b,
b << t, shown on the right of Fig. 2. This member can
carry exactly a linearly-varying bending moment M�x� and
a constant transverse shear V , although shear deforma-
tions are not considered.

Twib Limit. Again the width b � L=r is decreased by
making r grow. The thickness t, however, is still consid-
ered small with respect to b. The limit is the twisted-ribbon
member of narrow cross section t � b, t << b, shown on
the left of Fig. 2. This member, called a ``twib'' for brevity,
can carry a longitudinal torque T�x�. This torque may vary
linearly in x.

Conditions called morphing constraints are now posed
as follows.

(1) Does the mesh unit approach the exact behavior of a
Hermitian (cubic) beam? If so, the plate element is
said to be beam morphing exact or BE for short.

(2) Does the mesh unit approach the exact beam behavior
as both r !1 and r ! 0? If so, the plate element is
said to be double beam morphing exact or DBE for
short.

(3) Does the mesh unit approach the exact behavior of a
twib under linearly varying torque? If so, the plate
element is said to be twib-morphing-exact or TME.

The BE and TE conditions can be derived by symbolically
expanding transformed mesh-unit stiffness equations in
Laurent series as r !1. The DBME condition requires

T

T

M

M

V

V

L

t

b=L /r

Twib morphing

Beam morphing

Fig. 2. Morphing a rectangular plate
mesh unit to beam and twib
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also a Taylor expansion as r ! 0. They can also be derived
as asymptotic forms of energy ratios.

An element satisfying (1) and (3) is called BTE, and one
satisfying (1), (2) and (3) is called DBTE. The practical
interest for morphing conditions is the appearance of very
high aspect ratios in modeling certain aerospace structures
such as the stiffened panel depicted in Fig. 3.

7.2
Mesh direction insensitivity constraints
This class of constraints is important in high frequency
dynamics to minimize mesh induced dispersion. Consider
a square mesh unit fabricated of 4 overlapped triangles to
try to minimize directionality from the start. Place Carte-

sian axes x and y at the mesh unit center. Apply higher
order modes �x3 and �x2 �y where �x forms an angle u with x,
and require that q � 1 for all u. Starting from ARIENO
one can construct a families which satisfy that constraint.
The simplest one is the MDIT(a) family, which for a � 1
yields the element MDIT1 de®ned in Table 5.

7.3
Distortion minimization constraints
An element is distortion insensitive when the solution
hardly changes even when the mesh is signi®cantly chan-
ged. Precise quanti®cation of this de®nition in terms of
energy ratios on standard benchmarks tests is presently
under study. Preliminary conclusions suggest that sensi-
tivity to distortion is primarily controlled by the basic
stiffness parameter a whereas the bs only play a secondary
role. For the KPT templates a � 1 appears to minimize the
distortion sensitivity.

8
New KPT elements
Starting from the ARI family and applying various energy
constraints, a set of new elements with custom properties
have been developed in this study. The most promising
ones are summarized in Tables 5 and 6. Table 7 gives the

Fig. 3. Stiffened panels modeled by facet shell elements are a
common source of high aspect ratio elements

Table 5. Template signatures of selected new KPT elements

Acronym a b1j b2j b3j b4j b5j b6j b7j b8j b9j bsc

BTE13 1/3 )9 2 )1 )1 1 1 )2 9 0 /6
)5 0 0 1 )1 1 )2 )1 1

2 2 )1 0 0 )1 2 2 )10
)1 )2 1 )1 1 0 0 )5 1

DBE00 ARIENO(0, )3/2, b20, b30), with b20 � 3
���
6
p ÿ 2
ÿ �

=4 and b30 � ÿb20.
DBE13 ARIENO(1/3, )3/2, b20, b30) with

b20 � ÿ3=2ÿ
����������������������
25ÿ �������

609
pp� �

=12� 25� �������
609
pÿ �

=4 and

b30 � 3=2ÿ
����������������������
25ÿ �������

609
pp� �

=12ÿ 25� �������
609
pÿ �

=4.

DBE12 ARIENO(1/2, )3/2, b20, b30) with

b20 � ÿ12ÿ
����������������������
10ÿ 2

�����
21
pp

� 3
����������������������
10� 2

�����
21
pp� �

=8 and

b30 � 12ÿ
����������������������
10ÿ 2

�����
21
pp

ÿ 3
����������������������
10� 2

�����
21
pp� �

=8.
DBEN00 0 )3 0 0 0 0 0 0 3 0 /2

2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 )8
0 0 0 0 0 0 0 2 0

DBEN13 1/3 )27 )1 )1 2 )2 1 1 27 0 /18
4
�����
61
p ÿ 22 0 0 )4 0 0 2 0 0

0 0 )2 0 0 )2 0 0 ÿ4
�����
61
p � 11
ÿ �

0 2 0 0 )4 0 0 4
�����
61
p ÿ 22 0

DBEN12 1/2 )12 )1 )1 2 )2 1 1 12 0 /8
4

���
6
p ÿ 3
ÿ �

0 0 )4 0 0 2 0 0
0 0 )2 0 0 )2 0 0 ÿ4

���
6
p � 6
ÿ �

0 2 0 0 )4 0 0 4
���
6
p ÿ 3
ÿ �

0
DBTE13 ARIENO(1/3, )1.3100926, 0.40467862, )0.49926464)
HCTS 1 )18 5 5 )1 1 )5 )5 18 0 /12

8 0 0 2 0 0 )10 0 0
0 0 10 0 0 10 0 0 )20
0 )10 0 0 2 0 0 8 0

MDIT1 1 )45 6 )6 0 0 6 )6 45 0 /30
)34 0 0 )4 )4 4 )4 )4 4

8 8 )8 0 0 )8 8 8 )68
)4 )4 4 )4 )4 0 0 )34 4
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genealogy (in the sense of element family membership) of
all elements listed in Tables 1 and 6.

The performance of the old and new elements in a
comprehensive set of plate bending benchmarks is still in
progress, and will be reported in a sequel paper. It should
be noted that the uni®cation brought about by the tem-
plate approach is very bene®cial for such comparisons,
because all possible elements of a given type and node/
freedom con®guration can be implemented with a single
program module.

9
Conclusions
The usual ®nite element construction process, which in-
volves a priori selection of a variational principle and
shape functions, hinders the exploration of a wide range of
admissible ®nite element models. As such it is ineffectual
for the design of ®nite elements with desirable physical
behavior. The application described here illustrates the

effectiveness of templates to build custom elements. The
template approach attempts to implement the hope long
ago expressed by Bergan and Hansen (1975) in the In-
troduction of their MAFELAP II paper:

``An important observation is that each element is, in fact, only
represented by the numbers in its stiffness matrix during the
analysis of the assembled system. The origin of these stiffness
coef®cients is unimportant to this part of the solution process ...
The present approach is in a sense the opposite of that normally
used in that the starting point is a generally formulated conver-
gence condition and from there the stiffness matrix is derived ...
The patch test is particularly attractive [as such a condition] for
the present investigation in that it is a direct test on the element
stiffness matrix and requires no prior knowledge of interpolation
functions, variational principles, etc.''
This statement sets out what may be called the direct al-
gebraic approach to ®nite elements: the element stiffness is
derived directly from consistency conditions ± provided
by the Individual Element Test ± plus stability and accu-
racy considerations to determine algebraic redundancies if
any. It has in fact many points in common with energy-
based ®nite differences.

This ambitious goal has proven elusive because the
direct algebraic construction of the stiffness matrix of
most multidimensional elements becomes effectively a
problem in constrained optimization. In the symbolic form
necessitated by element design, such problem is much
harder to tackle than the conventional element construc-
tion method based on shape functions. Only with the ad-
vent and general availability of powerful computer algebra
systems can the dream become a reality.

Appendix A
Formulation of KPT-1-36 template
This Appendix collects the formulas that fully de®ne the
KPT-1-36 element template.

A1
Element relations
The triangle geometry is de®ned by the corner coordinates
in its �x; y� local system, which are �xi; yi�, i � 1; 2; 3.

Table 6. Brief description of new elements listed in Table 5

Name Description

BTE13 Instance of the BTE(a) family for a � 1=3. This is a subset of ARIENO which exhibits beam morphing
and twib morphing exactness in the sense discussed in Section 7.1.

DBE00, DBE13, DBE12 Instances of the DBE(a) family for a � 0, a � 1=3 and a � 1=2, respectively. This family is a subset of
ARIENO which exhibits double-beam morphing exactness. The DBE family exists (in the sense of
having real solutions) for a � 1=

���
2
p

.
DBEN00, DBEN13, DBEN12 Instances of the DBEN(a) family for a � 0, a � 1=3 and a � 1=2, respectively. This family exhibits

double-beam morphing exactness but is not ENO. It exists for a � 1=
���
2
p

.
DBTE13 An ARIENO instance with a � 1=3 which exhibits double-beam morphing and twib morphing ex-

actness. It was found by minimizing a residual function. Only numerical values for the coef®cients are
known. Such elements appear to exist only for a small a range.

HCTS An element derived from the HCT, which is a too-stiff poor performer, by smoothing its curvature
®eld. It displays very high performance if beam or twib exactness is not an issue. Member of ARI but
not ARIENO.

MDIT1 Instance of the MDIT(a) family for a � 1. MDI stands for Mesh-Direction Insensitive. Such elements
display stiffness isotropy when assembled in a square mesh unit. Primarily of interest in high fre-
quency dynamics. Static performance good but not outstanding.

Table 7. Genealogy of speci®c KPT elements

Name Source Family

ALR ARI (0;ÿ3=2; 0; 0; 0;ÿ2; 0)
AQR1 ARIENO (1;ÿ3=2; 0; 0)
AQR0 ARIENO (0;ÿ3=2; 0; 0)
AQRBE ARIENO (1=

���
2
p

;ÿ3=2; 0; 0)
AVG ENO (0;ÿ3=2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0)
BCIZ0 (and clones),

BCIZ1, HCT
Not ARI or ENO

BTE13 ARIENO (1=3;ÿ3=2; 1=3;ÿ1=6)
DBE00, DBE13,

DBE12
See Table 5

DBEN00 ARI (0;ÿ3=2; 0; 0; 0; 2; 0)
DBEN13 ARI (0;ÿ3=2;ÿ1=18;ÿ1=18; 0; 2

�����
61
p

=9; 0)
DBEN12 ARI (0;ÿ3=2;ÿ1=8;ÿ1=8; 0;

��������
3=2

p
; 0)

DKT ARIENO (1;ÿ3=2; 1=4; 1=4)
FF0 (and clones) ENO (0;ÿ3=2; 1=6; 1=6; 0; 0; 0; 0; 0; 0; 0; 0)
FF1 ENO (1;ÿ3=2; 1=6; 1=6; 0; 0; 0; 0; 0; 0; 0; 0)
HCTS ARI (1;ÿ3=2; 5=12; 5=12; 3=4; 1;ÿ1=6)
MDIT1 ARIENO (1;ÿ3=2; 1=5;ÿ1=5)
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Coordinate differences are abbreviated as xij � xi ÿ xj and
yij � yi ÿ yj. The signed triangle area A is given by
2A � x21y31 ÿ x31y21 � x32y12 ÿ x12y32 � x13y23 ÿ x23y13

and we require that A > 0. The visible degrees of freedom
of the element collected in u and the associated node
forces collected in f are

uT � uz1 hx1 hy1 uz2 hx2 hy2 uz3 hx3 hy3

� �
:

�10�
fT � fz1 Mx1 My1 fz2 Mx2 My2 fz3 Mx3 My3

� �
:

�11�
The Cartesian components of the plate curvatures are jxx,
jyy and 2jxy � jxy � jyx, which are gathered in a 3-vector
j. In the Kirchhoff model, curvatures and displacements
are linked by

jxx � o2w

ox2
; jyy � o2w

oy2
; 2jxy � 2

o2w

oxoy
: �12�

where w � w�x; y� � uz is the plate transverse displace-
ment. In the KPT elements considered here, however, the
compatibility equations (12) must be understood in a weak
sense because the assumed curvature ®eld is not usually
integrable. The internal moment ®eld is de®ned by the
Cartesian components mxx, myy and mxy, which are placed
in a 3-vector m. Curvatures and moments are linked by the
constitutive relation

m �
mxx

myy

mxy

24 35 � D11 D12 D13

D12 D22 D23

D13 D23 D33

24 35 jxx

jyy

2jxy

24 35 � Dj :

�13�

where D results from integration through the thickness in
the usual way. Three dimensionless side direction coor-

dinates p21, p32 are p13 are de®ned as going from 0 to 1 by
marching along sides 12, 23 and 31, respectively. The side
coordinate pji of a point not on a side is that of its pro-
jection on side ij. The second derivatives of w � uz with
respect to the dimensionless side directions will be called
the natural curvatures and are denoted by vji � o2w=op2

ji.
These curvatures have dimensions of displacement. They
are related to the Cartesian plate curvatures by the matrix
relation

v �
v21

v32

v13

26664
37775 �

o2w
op2

21

o2w
op2

32

o2w
op2

13

2666664

3777775 �
x2

21 y2
21 x21y21

x2
32 y2

32 x32y32

x2
13 y2

13 x13y13

26664
37775

o2w
ox2

o2w
oy2

2 o2w
oxoy

266664
377775

� Tÿ1j ; �14�
the inverse of which is

The transformation equations (14) and (15) are assumed
to hold even if w�x; y� is only known in a weak sense.

A2
The basic stiffness template
Following Militello and Felippa (1991) the a-parametrized
basic stiffness is de®ned as the linear combination

Kb � Aÿ1LDLT; L � �1ÿ a�Ll � aLq �16�
where L is a force-lumping matrix that maps an internal
constant moment ®eld to node forces. Ll and Lq are called
the linear and quadratic versions, respectively, of L:

LT
l �

0 0 y32 0 0 y13 0 0 y21

0 x32 0 0 x13 0 0 x21 0
0 y23 x23 0 y31 x31 0 y12 x12

24 35
�17�

j �

o2w
ox2

o2w
oy2

2 o2w
oxoy

26664
37775 � 1

4A2

y23y13 y31y21 y12y32

x23x13 x31x21 x12x32

y23x31 � x32y13 y31x12 � x13y21 y12x23 � x21y32

264
375

o2w
op2

21

o2w
op2

32

o2w
op2

13

26664
37775 � Tv : �15�

Lq �

cn21sn21 ÿ cn13sn13 ÿcn21sn21 � cn13sn13 ÿ�c2
n21 ÿ s2

n21� � �c2
n13 ÿ s2

n13�
1
2 �c2

n21x12 � c2
n13x31� 1

2 �s2
n21x12 � s2

n13x31� s2
n21y21 � s2

n13y13

ÿ 1
2 �c2

n21y21 � c2
n13y13� ÿ 1

2 �s2
n21y21 � s2

n13y13� ÿc2
n21x12 ÿ s2

n13x31

cn32sn32 ÿ cn21sn21 ÿcn32sn32 � cn21sn21 ÿ�c2
n32 ÿ s2

n32� � �c2
n21 ÿ s2

n21�
1
2 �c2

n32x23 � c2
n21x12� 1

2 �s2
n32x23 � s2

n21x12� s2
n32y32 � s2

n21y21

ÿ 1
2 �c2

n32y32 � c2
n21y21� ÿ 1

2 �s2
n32y32 � s2

n21y21� ÿc2
n32x23 ÿ s2

n21x12

cn13sn13 � cn32sn32 ÿcn13sn13 ÿ cn32sn32 ÿ�c2
n13 ÿ s2

n13� � �c2
n32 ÿ s2

n32�
1
2 �c2

n13x31 � c2
n32x23� 1

2 �s2
n13x31 � s2

n32x23� s2
n13y13 � s2

n32y32

ÿ 1
2 �c2

n13y13 � c2
n32y32� ÿ 1

2 �s2
n13y13 � s2

n32y32� ÿc2
n13x31 ÿ s2

n32x23

26666666666664

37777777777775
�18�
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Here cnji and snji denote the cosine and sine, respectively,
of the angle formed by x and the exterior normal to side
i! j.

Matrix Ll was introduced by Bergan and NygaÊrd (1984)
and Lq by Militello and Felippa (1991).

A3
The higher order stiffness template
For an element of constant D, the higher order stiffness
template is de®ned by

Kh � A

3
�BT

4 DvB4 � BT
5 DvB5 � BT

6 DvB6� �19�
where Dv � TTDT is the plate constitutive relation ex-
pressed in terms of natural curvatures and moments, and
Bvm are the natural curvature-displacement matrices

evaluated at the midpoints m � 4; 5; 6 opposing corners 3,
1, 2, respectively.

These matrices are parametrized as follows. De®ne the
geometric invariants

k1 � x12x13 � y12y13

x2
21 � y2

21

ÿ 1

2
; k2 � x23x21 � y23y21

x2
32 � y2

32

ÿ 1

2
;

k3 � x31x32 � y31y32

x2
13 � y2

13

ÿ 1

2
: �20�

These have a simple physical meaning as measures of
triangle distortion (for an equilateral triangle,
k1 � k2 � k3 � 0). In the following expressions, the
b-derived coef®cients ci and ri are selected so that the Bvm

matrices are exactly orthogonal to all rigid body modes
and constant curvature states. This is a requirement of the
fundamental stiffness decomposition.

b1 � b10 � b11k3 � b12k1 � b13k2; b2 � b20 � b21k3 � b22k1 � b23k2; b3 � b30 � b31k3 � b32k1 � b33k2;

b4 � b40 � b41k3 � b42k1 � b43k2; b5 � b50 � b51k3 � b52k1 � b53k2; b6 � b60 � b61k3 � b62k1 � b63k2;

b7 � b70 � b71k3 � b72k1 � b73k2; b8 � b80 � b81k3 � b82k1 � b83k2; b9 � b90 � b91k3 � b92k1 � b93k2;

c1 � b1 � b3; c2 � b3; c3 � b2 � b3; c4 � b4 � b9; c5 � b9; c6 � b6 � b8;

c7 � b6 � b7; c8 � b6; c9 � b5 � b9; r1 � 2c3 ÿ 2c1; r2 � 2c1; r3 � 2c3;

r4 � 2c9 ÿ 2c4; r5 � 2c4; r6 � ÿ2c6; r7 � 2c6 ÿ 2c7; r8 � 2c7; r9 � ÿ2c9

Bv4 �
r5 c4y31 � c5y23 c4x13 � c5x32 r9 b9y31 � c9y23 b9x13 � c9x32

r8 c7y31 � c8y23 c7x13 � c8x32 r6 b6y31 � c6y23 b6x13 � c6x32

r2 c1y31 � c2y23 c1x13 � c2x32 r3 b3y31 � c3y23 b3x13 � c3x32

264
r4 b4y31 � b5y23 b4x13 � b5x32

r7 b7y31 � b8y23 b7x13 � b8x32

r1 b1y31 � b2y23 b1x13 � b2x32

375 �21�

b1 � b10 � b11k1 � b12k2 � b13k3; b2 � b20 � b21k1 � b22k2 � b23k3; b3 � b30 � b31k1 � b32k2 � b33k3;

b4 � b40 � b41k1 � b42k2 � b43k3; b5 � b50 � b51k1 � b52k2 � b53k3; b6 � b60 � b61k1 � b62k2 � b63k3;

b7 � b70 � b71k1 � b72k2 � b73k3; b8 � b80 � b81k1 � b82k2 � b83k3; b9 � b90 � b91k1 � b92k2 � b93k3;

c1 � b1 � b3; c2 � b3; c3 � b2 � b3; c4 � b4 � b9; c5 � b9; c6 � b6 � b8;

c7 � b6 � b7; c8 � b6; c9 � b5 � b9; r1 � 2c3 ÿ 2c1; r2 � 2c1; r3 � ÿ2c3;

r 4 � 2c9 ÿ 2c4; r5 � 2c4; r6 � ÿ2c6; r7 � 2c6 ÿ 2c7; r8 � 2c7; r9 � ÿ2c9

Bv5 �
r1 b1y12 � b2y31 b1x21 � b2x13 r2 c1y12 � c2y31 c1x21 � c2x13

r4 b4y12 � b5y31 b4x21 � b5x13 r5 c4y12 � c5y31 c4x21 � c5x13

r7 b7y12 � b8y31 b7x21 � b8x13 r8 c7y12 � c8y31 c7x21 � c8x13

264
r3 b3y12 � c3y31 b3x21 � c3x13

r9 b9y12 � c9y31 b9x21 � c9x13

r6 b6y12 � c6y31 b6x21 � c6x13

375 �22�

b1 � b10 � b11k2 � b12k3 � b13k1; b2 � b20 � b21k2 � b22k3 � b23k1; b3 � b30 � b31k2 � b32k3 � b33k1;

b4 � b40 � b41k2 � b42k3 � b43k1; b5 � b50 � b51k2 � b52k3 � b53k1; b6 � b60 � b61k2 � b62k3 � b63k1;

b7 � b70 � b71k2 � b72k3 � b73k1; b8 � b80 � b81k2 � b82k3 � b83k1; b9 � b90 � b91k2 � b92k3 � b93k1;

12



Equations (19) through (23) complete the de®nition of the
KPT-1-36 template.
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c7 � b6 � b7; c8 � b6; c9 � b5 � b9; r1 � 2c3 ÿ 2c1; r2 � 2c1; r3 � ÿ2c3

r 4 � 2c9 ÿ 2c4; r5 � 2c4; r6 � ÿ2c6; r7 � 2c6 ÿ 2c7; r8 � 2c7; r9 � ÿ2c9

Bv6 �
r6 b6y23 � c6y12 b6x32 � c6x21 r7 b7y23 � b8y12 b7x32 � b8x21

r3 b3y23 � c3y12 b3x32 � c3x21 r1 b1y23 � b2y12 b1x32 � b2x21

r9 b9y23 � c9y12 b9x32 � c9x21 r4 b4y23 � b5y12 b4x32 � b5x21
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r8 c7y23 � c8y12 c7x32 � c8x21

r2 c1y23 � c2y12 c1x32 � c2x21

r5 c4y23 � c5y12 c4x32 � c5x21
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