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Abstract. Constitutive models have been utilized to study the mechanical behaviors of solid material.
The formulation of constitutive relations is difficult and could be associated with limiting hypothesis.
This work proposes neural network-based approaches to reproduce the complex nonlinear constitutive
relations of solid materials including elastic behavior and plastic deformation.
It is shown that the proposed history-based and internal variable-based strategies can represent exactly
the von Mises elasto-plastic material model in uni-axial stress state. Furthermore, close investigation
suggests that the internal variable-based approach is most suitable.

1 INTRODUCTION

New and innovative materials with wide engineering and industrial applications continue to be one
of the main topics of interest in Materials Science research. Historically, constitutive models have been
utilized to describe the mechanical behavior of materials. The formulation of these constitutive relations
is difficult and is associated with limiting hypothesis. The source of complexity is attributed to the com-
position and geometrical structure of the materials which causes isotropic, kinematic and distortional
hardening. Artificial Neural Networks (ANNs) have shown promising capabilities that can be used as an
alternative solution for modelling complex nonlinear constitutive relations [1]. Research shows that neu-
ral networks can be trained using experimental data to learn the relationships between stresses and strains
without explicit mathematical formulation. Moreover, improvements in computer hardware processing
power and architecture like GPUs, as well as software frameworks like Tensorflow [2] and PyTorch [3]
allows building and deploying machine learning models easily.

The use of neural networks in modelling material behavior such as plastic deformation was pioneered
by Ghaboussi et al. [4]. The learning was afterwards utilized in various research to model complex
nonlinear mechanical behaviors including continuum damage [5], hyper-elasticity [6], visco-plasticity
[7] and cyclic plasticity [8].

This paper contributes to this active research area by proposing and comparing two neural network-
based approaches for constitutive modelling of solid material. The first model uses a history-based
strategy while the second model uses an internal variable-based strategy.
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2 ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) mimic the activity of the human brain, allowing computer models
to discover patterns and solve common challenges in many disciplines such as life sciences, engineering
and economics. ANNs are made up of nodes, also referred to as neurons, which are arranged into layers.
An ANN includes an input layer, one or more hidden layers, and an output layer. When the network
includes many hidden layers it is called a deep neural network. In feed-forward neural networks the
data flows from the input layer to the output layer passing through the layers sequentially. In Recurrent
Neural Networks (RNNs) the output of the network becomes the input in the next network evaluation.
RNNs are used to process sequential data [9].
Each neuron in this system processes data with a linear operation in the form Wx+ b. In this case, x
represents the input vector, which can be either the initial input data in the first layer or the processed
data in the downstream layers. During model training, the neural network learns the best values for
biases b and weights W by passing the entire training data set through the network and comparing the
generated output with the desired output then adjusting their values. This process is done many times and
the biases and weights are adjusted using an optimizer with every pass of the data. In general, the model
prediction accuracy improves with longer training. However, when the model is trained excessively on
the given inputs then a problem of data generalisation and over-fitting could emerge. The model training
process can be summarised in the following steps:

1) Input data is sent to the neuron which uses the biases and weights to compute Wx+b.

2) The result is then routed through an activation function, such as the Rectified Linear Unit (ReLU),
the logistic (Sigmoid), or the hyperbolic tangent (Tanh). The activation function selection depends
on the type of problem [10].

3) The output of the activation function is either passed to the next layer of neurons or returned as the
model output.
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Figure 1: Commonly used activation functions.

3 EXACT REPRESENTATION OF 1D ELASTO-PLASTICITY

This section provides a brief overview of the von Mises algorithm for 3D elasto-plasticity. In small
strains, deformation of elasto-plastic solids is determined by adding elastic strain εεεe and plastic strain εεεp

components. The stress σσσ can be expressed by the elastic constitutive equation as:

εεε = εεε
e +εεε

p (1)

σσσ = C[εεεe] = C[εεε−εεε
p] (2)
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The yield criterion with no hardening can be expressed by:

f (σσσ) = s−
√

2
3
(σy)≤ 0 (3)

where s is the deviatoric stress tensor and σy > 0 is the yield stress. The flow rule equation reads:

ε̇̇ε̇ε
p = λ̇n (4)

where n= s
||s|| is the unit normal on the yield surface and λ̇ is the amount of plastic strain rate. The

standard Kuhn-Tucker loading/unloading conditions are given as follows:

λ̇ ≥ 0, f (σσσ)≤ 0, λ̇ f (σσσ) = 0 (5)

The standard elastic predictor - plastic corrector backward Euler method is used for the numerical
integration of elasto-plastic model due to its accurate approximation for small plasticity deformation.

3.1 History-based strategy

The behavior of materials depends on the historical values of stresses and strains. Because of the time-
series nature of stress and strain, RNN architectures can be utilised to predict material behavior. However,
gradient-based training of RNNs typically suffers from vanishing and exploding gradients [11]. In order
to overcome the gradient problems a simplified architecture similar to the Nonlinear Autoregressive
Network with Exogenous Inputs (NARX), which can be trained as a simple static feed-forward network,
can be adopted. The NARX open-loop form is used for training and known as series-parallel architecture
as it enables estimating the time-series for the next time-step. It includes a defined sequence of past
values of inputs u(t) and past measured values of outputs y(t), and can be defined as:

ŷ(t +1) = f (y(t),y(t −1), ...,y(t −ny),u(t +1),u(t),u(t −1)...,u(t −nu)) (6)

Once the training process is completed, the NARX-based neural model utilizes the close-loop form
known as parallel architecture. In close loop the previous values of the output (y(t),y(t−1), ...,y(t−ny))
are redirected back to the input layer. The values of an independent (exogenous) input u(t) are also
introduced into the network as a history input vector that corresponds with each output y(t). The lengths
ny and nu need to be defined, which depend on the data and the problem restrictions. It is recommended
to use less historical values to minimize the network size and consequently reduce computational cost.
When higher accuracy is needed additional historical values could be considered. The sequence of the
history inputs in this case can be defined as:

ŷ(t +1) = f (ŷ(t), ŷ(t −1), ..., ŷ(t −ny),u(t +1),u(t),u(t −1)...,u(t −nu)) (7)
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Figure 2: History-based strategy in terms of stresses and strains.

The modelling performance of a neural network is influenced by the neural architecture. Therefore, a
case study on neural architectures was undertaken and the best architecture in terms of modeling accu-
racy, while requiring minimum number of hidden layers and nodes per layer was determined. Moreover,
this study demonstrates how the complex elastic-plastic behavior could be reproduced using a model that
involves only linear algebra operations and evaluation of a neural network model.

1D Ideal elasto-plasticity without hardening: For the history-based strategy, with no hardening,
the proposed neural network suggest that a history of 1 is required to reproduce the elasto-plastic con-
stitutive model output. The optimal network architecture achieved with an identical constitutive model
representation is presented in Figure 3 and characterized with the following:

- An input layer that consists of 3 inputs of εn+1, εn and σn.
- Following that, the node connectivity is adjusted by assigning the right combination of weight Wi j

and bias bi parameters. The weighted sum is then delivered to the proceeding layer namely the
first hidden layer which includes 4 neurons. The Rectified Linear Unit is selected as an activation
function for the hidden layer.

- Finally, a linear activation function is used for the output layer and the defined weights for the
output layer are used to modify and compute the next step σn+1
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Figure 3: 1D ideal linear elasto-plasticity model in a network form.

The material properties of steel A36 were used in all the examples. The Young’s modulus is chosen as
E= 200 GPa, isotropic hardening modulus H= 10 GPa and yield stress σy= 250MPa.

0 50 100 150 200
-300

-200

-100

0

100

200

300Exact data

Proposed network

-4 -3 -2 -1 0 1 2 3 4

10 -3

-300

-200

-100

0

100

200

300

Figure 4: The performance of proposed history based strategy without hardening presenting stress over
time on the left and the stress and strain relationship on the right.

1D elasto-plasticity with hardening: The complexity level increases when isotropic hardening is
introduced. This is because of the internal hardening variable α which should be defined in terms of
historical strains and the corresponding stresses. The study indicated that history of 2 is needed to
get acceptable estimation of the elasto-plastic behavior when considering hardening. The derivation
procedure to determine the equivalent term of α is briefly outlined:

- First, the total stresses during plasticity can be calculated by:

σn+1 = σ
trial
n+1 −

E
E +H

sign(σtrial
n+1)

(
σ

trial
n+1 − (σy +Hαn)

)
σn = σ

trial
n − E

E +H
sign(σtrial

n )
(

σ
trial
n − (σy +Hαn−1)

) (8)

- Then, solving for αn yields:

αn =
σtrial

n −σy + sign(σtrial
n )(σn −σtrial

n )

H
(9)
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- Finally, σn+1 can be expressed in terms of historical strains and it corresponding stresses as:

σn+1 = σ
trial
n+1 −

E
E +H

sign(σtrial
n+1)

(
σ

trial
n+1 −

(
σy +H

(
σtrial

n −σy + sign(σtrial
n )(σn −σtrial

n )

H

)))
(10)

The proposed neural network for 1D elasto-plasticity when hardening introduced in Figure 5 could be
summarised as:

1) The input layer which consists of 5 inputs including 2 historical stress and strain values of:

xxx =
[
εn+1 εn εn−1 σn σn−1

]T (11)

2) As mentioned previously the complexity level increases when introducing isotropic hardening to the
problem due to the hardening parameter α non-linearity. In this case, the defined total combination of
weights is 40, while the total number of assigned biases is 8. The proposed neural network performance
is not exact but with relatively acceptable level of accuracy to the 1D elasto-plasticity material behavior.
In addition, the ReLU activation function is chosen for the hidden layer as explained below:

H = ReLU
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(12)

3) Finally, the output of the neural network is computed with the following mentioned weights W (O)
i j

and linear activation function is given for the output layer

W (O)
i j =

[
1 −1 1 −1 −1 1 1 −1

]T (13)
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Figure 5: 1D proposed elasto-plasticity with hardening model in a network form.
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Figure 6: The response of the suggested architecture for history based strategy with hardening presented
in stress over time (left) and stress and strain relationship (right).

Referring to Figure 6 the material behavior during both elastic and plastic phases can be reproduced
with a good level of accuracy. However, the predicted behavior for the transition from elastic to plastic
phase is relatively poor. In order to enhance the network response performance additional historical
stresses and strains would be essential.

3.2 Internal variable-based strategy

Two types of state variables can be identified in any physical system which are:
- Observable (measurable): can be determined directly by physical measurements such as strains

and temperature.
- Internal non-observable (not directly measurable): an integration process that works with other

observable magnitudes and are dependant on the system specific structure. For example, internal
stresses, plastic strains and damage depend on the system historical values, and record the internal
changes in the micro-structure.

The significance of the proposed methodology is that only observable values are needed to train the
network, and the internal state equations may be derived as a result of the training procedures. For this
case, a two network formulation is used to model the elastic predictor and plastic corrector return map-
ping algorithm. The first network takes in the input strain and current state hidden variables. The number
of hidden variables depends on the problem and degree of accuracy. Network 1 estimates the increment
in the hidden variable which is used to update the current state internal variables before passing that
information to Network 2. Finally, stress response can be obtained by performing a linear operation.

1D Ideal elasto-plasticity without hardening: The return mapping algorithm is used to develop
the proposed neural network constitutive model. The study concluded that only one internal variable is
needed to reproduce 1D elastoplasticity without hardening. The following is an explanation of the steps
used by the proposed two network formulation model presented in Figure 7:
1) The first neural network computes the plastic corrector in the return mapping procedure. The network
consists of an input layer with 2 neurons then 1 hidden layer with 2 neurons and finally an output layer
with 1 neuron. The neurons in the hidden layers have ReLU activation functions while the neuron in the
output layer has a linear activation function. The total strain εn+1 and plastic strain ε

p
n are fed into the

input layer and the network computes an incremental plastic strain ∆εp.
2) Then the next step plastic strain ε

p
n+1 is updated by adding the plastic strain ε

p
n and output of incre-

mental plastic strain ∆εp from the first network.
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3) Following that, the updated internal variable of ε
p
n+1 is given to the second neural network to perform

the elastic predictor step in the return mapping algorithm. The second neural network consist of two
inputs of εn+1 and ε

p
n+1 connected with a linear activation function to an output layer holding the desired

updated stress σn+1.
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Figure 7: Two neural network formulation of 1D ideal linear elasto-plasticity model.
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Figure 8: The two network formulation performance for 1D linear elasto-plasticity presented in stress
over time on the left and stress and strain relationship on the right.

1D elastoplasticity with isotropic hardening: When introducing isotropic hardening to the problem
the network would need two internal variables to reproduce the constitutive relationship. Similar proce-
dure is followed to formulate the proposed neural network in Figure 9 and could be summarised as:
1) The first neural network takes three inputs namely the total strain εn+1, plastic strain ε

p
n and harden-

ing parameter αn. The input layer is linked to one hidden layer that include two neurons with ReLU
activation function. The computed results are then passed to the output layer which includes two output
neurons of ∆εp and ∆αn.
2) Following that, the two internal variables of plastic strain ε

p
n and αn are then updated by adding them

to the incremental output computed in the first network as following:

ε
P
n+1 = ε

P
n +∆ε

p (14)

αn+1 = αn +∆αn (15)

3) Next, the updated internal variables are directed to the second neural network which perform a linear
operation to represent the elastic predictor in the return mapping algorithm. The network consists of 3
inputs of εn+1, ε

p
n+1 and αn+1 linked linearly with the updated stress σn+1 in the output layer.
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Figure 9: 1D elasto-plasticity with hardening model in a network form.

With the given architecture and defined combination of weights and biases in Figure 9 an identical
stress response could be achieved as illustrated in Figure 10 below.
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Figure 10: The proposed network response with internal variables strategy for 1D elasto-plasticity with
hardening shown in terms of stress over time (left) and stress and strain relationship (right).

It is essential to mention that all the results shown in this work are not produced with neural network
training but with the theoretically defined weights and biases in the proposed ideal minimum architec-
tures for history-based and internal variable-based strategies. In addition, similar network performance
could be achieved with alternative combination of weights and biases due to different scaling.

4 CONCLUSIONS

Two neural network-based strategies have been proposed and compared to reproduce the complex
non-linear constitutive relations of solid materials with high computational efficiency which are history
based and internal variable strategies. The data used for evaluating the proposed network performance
were generated using the von Mises model, and implemented by the return mapping algorithm for elastic
behavior and plastic deformation. The networks were designed to reproduce exactly the behavior of
the established constitutive model. For history-based with isotropic hardening an acceptable level of
accuracy is obtained but inaccuracies are observed when the direction of the strain loading is changed.
Furthermore, it is clear that the history-based strategy would fail if the strain loading was kept constant
over a number of time-steps. The recent history would not contain sufficient information to reconstruct
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the internal state of the material. This indicates that the performance of internal variable-based strategy
is better suited to capture the elasto-plastic type material behavior.
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