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Abstract. In this work, we present a non-intrusive method using the Reduced Basis framework in or-
der to diminish the cost of numerical simulation arising from the computation of parameters-dependent
Partial Differential Equations (PDE). This method involves the computation of less expensive (but less
accurate) solutions of the PDE during the online stage, and a RB-based rectification step. It represents a
good substitute for standard Reduced Basis methods when it is applied to urban flows modelling. This
approach speeds up the CFD simulation while remaining non-intrusive in relation to the high fidelity
model, which can allow to avoid practical problems (e.g. non-affine parametric dependence) associated
to model reduction for complex air flows involved in many sophisticated methods of urban air quality
modeling. Our focus here is on the validation of the non-intrusive method applied to the backward-facing
step 2D benchmark.

1 INTRODUCTION

As the population increases, cities must constantly reassess their urban planning. However, this must
be done in such a way to preserve the quality of life of its inhabitants. In this context, the study of
the different urban flows (pollution, heat) is very important and the effectiveness of simulation tools is
essential. Advanced physically based models (such as CFD models) could provide spatially rich small-
scale solution, however the use of such models is challenging due to explosive computational times in
real-world applications.

Reduced Order Models methods can remedy this problem by decreasing drastically the full-scale model
complexity without important loss of information. We are interested in particular in Reduced Basis (RB)
methods [1, 2, 3], which allow for a parametrized PDE to construct approximation spaces generated by
a few particular solutions of the PDE. Works on reduced basis methods applied to CFD models can be
found in [4, 5, 6], but many improvements can still happen in this specific field. One reason is that CFD
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models, or urban flow models in general, are often very complex (geometry, non-linearity, non-affine
parametric dependance), which makes it difficult to efficiently implement RB methods in these cases.
Besides, the intrusive nature of RB methods can be problematic when one does not have access to the
simulation code that solves the physical model (industrial codes for example).
For these two main reasons, the Non-Intrusive Reduced Basis (NIRB) method [7, 8, 9] is a good alterna-
tive to RB methods in urban CFD applications. We propose in this work to apply the NIRB method to
a 2D CFD simulation of the airflow along a backward-facing step, which represents the air recirculation
that occurs behind a building. This will validate notably the extension of the NIRB method to this kind
of full-scale urban CFD applications.
The paper is organized as follows. In section 2, first we introduce the main ideas of RB methods and the
motivations for a non-intrusive procedure; then we explain the NIRB method. Section 3 presents the 2D
backward step benchmark chosen, namely the parametric study, the CFD model and a mesh convergence
analysis. Finally, in section 4, numerical results and perspectives are given.

2 NON-INTRUSIVE REDUCED BASIS METHOD

2.1 Context and motivations

To represent the physical phenomena that we are interested in, we consider a parametrized PDE under
its following variational formulation : for a given s ∈D ⊂ RNs , find w(s) ∈ X such that

a(w(s),v;s) = f (v;s), ∀v ∈ X (1)

D is the parameter space and s is a set of Ns parameters. X = X(Ω) is an appropriate functional space,
where Ω ⊂ Rd is the computational domain (d = 2 or 3). a(., .;s) and f (.) are respectively continuous
and bounded bilinear and linear forms, and a(., .;s) is assumed to satisfy the inf-sup condition [1, 2].
We denote by wtrue(s) the truth solution of (1). Let Xh be a discretization space of finite dimension (e.g.
a finite element space) in which we seek for a solution of (1), noted wh(s). We suppose that Xh is a
high-fidelity approximation of X , which means that the dimension Nh of Xh is quite large so that wh(s)
is close enough to wtrue(s). The high-fidelity problem is formulated as follows : for a given s ∈ D , find
wh(s) ∈ Xh such that

a(wh(s),vh;s) = f (vh;s), ∀vh ∈ Xh (2)

If the dimension Nh is high (and it generally is), solving problem (2) for several values of s may imply
a great computational cost. This is where RB methods come in. RB methods can give a real-time and
reliable prediction of the solution wh(s) using a low-dimensional approximation space. More generally,
they allow to reduce a wide range of physical problems in a significant way and without an important
loss of information. The idea is that, when the manifold of solutions of (2) Mh = {wh(s) | s ∈ D} can
be approximated by a subspace of dimension N� Nh, we can look for an approximation of wh(s) in this
new subspace and therefore drastically reduce the computational cost.
We suppose that the manifold Mh is regular enough and of low dimension N. Let first introduce a sample
of the parameter space SN = {s1, ...,sN} ⊂ D . The reduced basis approximation space is then XN =
span

(
wh(sk), 1≤ k ≤ N

)
, and the high-fidelity solution wh(s) can be replaced by a linear combination

of the snapshots wh(sk),1≤ k≤ N. One apply a Galerkin projection to get the reduced problem of (2) in
its variational form : for a given s ∈D , find wN(s) ∈ XN such that

a(wN(s),vN ;s) = f (vN ;s), ∀ vN ∈ XN (3)
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For reason of stability of problem (3), it is important to orthonomalize the snapshots in order to generate
another basis of XN , called reduced basis and noted {ζ1, ...,ζN}. One immediate question is the way
to construct the RB space. Optimal or standard RB methods are based on a greedy algorithm : after
initialization, the reduced basis is completed at every step n ≤ N with the solution wh(s) which is the
least well represented in the space Xn. Other non-optimal methods to generate the snapshots exist, in
particular the ”Proper Orthogonal Decomposition” method [1, 10], but it requires the pre-calculation of
a full training set Ah = {wh(s1), ...,wh(sntrain)}.
RB methods are separated into two stages : the offline and the online stage. In the offline stage, one
compute and save the reduced basis functions and all the parameter-independent elements (matrices,
vectors). This stage is expensive but performed only once. The online stage is performed for each
new value of s. One compute the remaining parameters-dependent quantities that are necessary to the
implementation of the reduced problem (3), and the latter is solved to find the approximation wN(s).
The key of the online stage is that all the computations have to be independent of the high dimension
Nh. Otherwise, the reduced basis method is not used to its full extent. If the forms a(., .;s) and f (.)
satisfy the property of affine parameter dependance (apd) [1, 3, 11], it is possible to separate all the
parameter-dependent quantities from the dimension Nh, and thus the online stage is optimal. If the
property of apd is not verified, one can use the Empirical Interpolation Method (EIM) [12, 13, 14] and
still be able to implement the method in an optimal way. However, both apd and EIM are very intrusive
techniques, because they require to modify the simulation code that computes the high-fidelity solutions.
It can be problematic when one does not have access to the code, which can often happen with industrial
collaborations.
This is why we are interested in a less intrusive process, namely the NIRB method. The latter offers an
alternative to standard RB method. We explain how it works in the following section.

2.2 Explication of the NIRB method

The NIRB method is based first on the generation of a reduced basis VN composed of N particular high-
fidelity solutions (as the previous section describes), and secondly on the computation of high-fidelity
solutions wh(s) and low-fidelity solutions wH(s), with s in a pre-chosen subspace Ξtrain = {s1, ...,sntrain}⊂
D . The low-fidelity solutions live in a space XH with a low dimension NH , which is significantly inferior
to Nh. We get two training sets of size ntrain : a high-fidelity set Ah = {wh(s1), ...,wh(sntrain)} and a low-
fidelity one AH = {wH(s1), ...,wH(sntrain)}.
The idea behind the NIRB method, in order to get a reduced approximation of wh(s) for any s ∈ D , is
to rectify the associated coarse solution wH(s). As standard reduced basis methods, the NIRB method
is divided into an offline stage and an online stage. In the offline stage, after obtaining the reduced basis
VN , one compute and save the coefficients of the projection on the RB space of both the high-fidelity
and low-fidelity solutions of the training sets Ah and AH . The collection of these coefficients allows to
implement a rectification process, in the form of a Nh-independent rectification matrix. In the online
stage, for each new value of s, one compute the coefficients of the projection on XN of the low-fidelity
solution wH(s) and correct them with the rectification matrix. Then the linear combination of the reduced
basis functions with the rectified coefficients gives a reduced approximation of wh(s). One can observe
that the online stage does not depend on Nh, only the low dimension NH interferes in the calculations.
In practice, the solutions wh(s) (resp. wH(s)) for s ∈ Ξtrain are computed on a fine (resp. coarse) mesh
Th (resp. TH). Besides, the training set Ah being already computed during the offline stage, the reduced
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basis can be calculated using a POD method.
Let us detail precisely the explication of the NIRB method. Let Bh

N(s) ∈ RN be the optimal high-fidelity
coefficient vector of wh(s) in the reduced basis VN . Bh

N(s) is optimal in the sense of the L2-norm projection
on the reduced space (in standard reduced basis methods, one also compute a coefficient vector but it is
an approximation of the optimal coefficients of the solution). We define as well BH

N (s) as the optimal
low-fidelity coefficient vector. To summarize, one has :

β
h
j(s) =

(
Bh

N(s)
)

j
= 〈uh(s),ζ j〉L2 , β

H
j (s) =

(
BH

N (s)
)

j = 〈uH(s),ζ j〉L2 , 1≤ j ≤ N (4)

In practice, one has to choose an appropriate maximal number for the dimension of the approximation
space, noted Nmax. Then, one can generate the reduced basis VN ,1 ≤ N ≤ Nmax. In the online stage, for
each value of interest of s, one compute rapidly wH(s) and the coefficient vector BH(s). Then one apply
a rectification on BH(s) to obtain an approximation of Bh(s). This means that the reduced solution is an
approximation of the L2-norm projection of wh(s) on the reduced basis VN .
We still have to explain the rectification process. The low-fidelity vector BH(s) is corrected using a
rectification matrix R ∈ RNmax×Nmax , which is computed in the offline stage as follows : after producing
the vectors Bh

Nmax
(si) and BH

Nmax
(si) for all 1≤ i≤ ntrain, one try to identify the matrix that links BH

Nmax
(si)

to Bh
Nmax

(si) for all set of parameter si. In other words, find R ∈ RNmax×Nmax such that

RBH
Nmax

(si) = Bh
Nmax

(si), ∀1≤ i≤ ntrain (5)

It can be written also as

Nmax

∑
k=1

R jkβ
H
k (s

i) = β
h
j(s

i), ∀1≤ j ≤ Nmax, ∀1≤ i≤ ntrain (6)

In the online stage, for each new value of s, one replace the optimal high-fidelity coefficients βh
j(s), 1≤

j ≤ Nmax by the following approximations

β
H,h
j,Nmax

(s) =
Nmax

∑
k=1

R jkβ
H
k (s) (7)

or equivalently, under matrix form, by writing BH,h
Nmax

(s) ∈ RNmax the approximation vector of the high-

fidelity coefficients, i.e.
(

BH,h
Nmax

(s)
)

j
= β

H,h
j,,Nmax

(s)

BH,h
Nmax

(s) = RBH
Nmax

(s) (8)

Finally, with all this, one can construct a reduced less- intrusive approximation of the solution wh(s)

wH,h
Nmax

(s) =
Nmax

∑
j=1

β
H,h
j,Nmax

(s)ζ j (9)

Of course, one can want to generate an approximation with only N reduced basis functions, with 1 ≤
N ≤ Nmax. In that case, the offline stage is the same, but in the online stage one use a square submatrix
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of R of dimension N. Therefore, one compute, for 1≤ j ≤ N

.

β
H,h

j,N (s) =
N

∑
k=1

R jkβ
H
k (s) (10)

The reduced less intrusive approximation is noted
.
wH,h

N (s) and is equal to

.
wH,h

N (s) =
N

∑
j=1

.

β
H,h

j,N (s)ζ j (11)

In practice, how can we construct the rectification matrix R ? The construction process, described in [8],
starts with the computation of the following matrix

H =

 BH
Nmax

(s1)
...

BH
Nmax

(sntrain)

=

 βH
1 (s

1) · · · βH
Nmax

(s1)
...

. . .
...

βH
1 (s

ntrain) · · · βH
Nmax

(sntrain)

 (12)

Moreover, we note LR1 , ...,LRNmax
the lines of the rectification matrix R and we define, for 1≤ j ≤ Nmax,

the vector S h
j ∈ Rntrain par

(
S h

j

)
k
= βh

j(s
k). Then one can see from (6) that construct the matrix R is

equivalent to find the vectors R j ∈ RN which minimizes the following functionals

C j = ‖H R j−S h
j ‖2

2, ∀1≤ j ≤ Nmax (13)

where ‖.‖2 is the Euclidean norm of Rntrain . It is equivalent to solve the linear systems H R j = S h
j . Finally,

R is assembled by taking LRN
j
=
(

R N
j

)T
, for all 1≤ j ≤ Nmax. To implement the NIRB method, we used

the open-source PDE solver Freefem++ [15].

3 APPLICATION TO THE 2D BENCHMARK OF THE BACKWARD STEP

3.1 Parametrical study

In what follows, we apply the NIRB method to the well-known 2D benchmark of the backward step. We
study a turbulent airflow motion along a backward step. We choose to vary only one parameter of the
physical model. This parameter is linked to the Reynolds number and is equal to the inlet velocity of the
flow into the computational domain. The true flow velocity is designed by v(s) and the inlet velocity by
vin, so that one has s = vin ∈D ⊂ R, where D is the parameter set.
Here, the turbulence is defined by the turbulent properties of the inlet flow. It means that, before the
step, the flow corresponds to a turbulent channel flow. For such a flow, one can make the approximation
vav ≈ vin, where vav is the averaged velocity (we verified this numerically). Thus, the following definition
for the Reynolds number is used : Re = vinh

ν
, where h is the step high and ν the kinematic viscosity

(ν = 1.56× 10−5 m2/s for the air). It is consistent with the Reynolds number definition used in [16],
where turbulent flows along a backward step are studied. An other definition of the step-based Reynolds
number is proposed in [17] and [18], but it deals principally with laminar flows. For more information, a
review of bacward-facing step flow studies is given in [19].
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We take D = [0.0156,1.56] (m/s) so that the Reynolds number lives between 103 and 105 (h = 1m, see
the following subsection for details on the computational domain geometry). Let Ξtrain be a discretised
subspace of D of dimension ntrain = 181. Those ntrain parameters are associated with a Reynolds number
value. It gives us 91 Reynolds number values for 103 ≤ Re ≤ 104 (every Re = 100) and 90 values for
104 < Re≤ 105 (every Re = 1000). We discretize more finely for Re less than 104 than after because the
transition between laminar and turbulent flows happens in the interval [103;104] (see [17]). Therefore,
the flows along the backward step are quite different when Re is less than 104, whereas beyond this value
the flow behaviours are very similar, only the velocities change.

3.2 CFD modelling

The figure (1) illustrates the geometry considered for the CFD simulations. The step height is h =1m and
the expansion rate ER = 2. The channel length before the step is L1 = 12m and the channel length after
the step is L2 = 29m. The total length is L = L1 +L2 = 41m. The choice of this geometry was inspired
by the approch of [16].

Figure 1: Geometry of the backward-facing step

We followed the recommendations and guidelines found in [20] for the selection of a turbulence model
and the choice of a high-fidelity mesh. We suppose that the airflow is Newtonian and incompressible. The
governing equations are the 2D Reynolds Averaged Navier-Stokes (RANS) equations with the k-omega
SST model turbulence closure model. For reasons of numerical stability, pseudo-stationary equations
are solved instead of stationary ones. The k-omega SST turbulence model [21], [22], gives accurate pre-
diction near the walls, it deals with reattachment better than the standard k−ω model and it is also less
sensitive to boundaries conditions. Besides, it is well-suited for low-Reynolds turbulent flow simulations,
which corresponds to a wide part of our simulations (for 103 ≤ Re ≤ 104). Thus, this turbulence model
seems to be the more robust for this study.
Let Ω be the computational domain, Γ the boundary of Ω, Γin the inlet boundary, Γout the outlet boundary
and Γwall = Γ\{Γin∪Γout} the wall boundaries. We enforce a non-homogeneous Dirichlet conditions on
Γin (v = vin), a homogenous Neumann condition on Γout and a no-slip condition on Γwall.
Concerning the computational settings, we used as explained previously a k-omega SST turbulence
model to simulate the 2D steady flow. The equations are discretized according to the Finite Volume
method using the CFD software CODE SATURNE [23]. We chose The SIMPLE algorithm to deal with
the pressure-velocity coupling and a Least Squares method based on a partial extended neighborhood for
the gradient calculation. The time-schemes are all of first-order accuracy with a constant time step. The
stopping criterion is the number of time step niter, which gives us a fixed simulation time. Two different
values of niter are considered : one for 104 ≤ Re≤ 105, and one higher for 103 ≤ Re≤ 104 (because the
velocities are smaller, and the flow needs more time to leave the domain). We ensured ourselves that
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these values are both large enough so that the simulated flow is steady. Finally, the solutions considered
in the following are averaged over the last 20 time steps, in order to smooth them a little more (this op-
eration seems to be useful only for low Reynolds number close to 103). The averaged velocity solutions
are designated by u(s).

3.3 Mesh convergence analysis

In this part, we performed a mesh convergence analysis to select a high-fidelity mesh. This analysis is
specific to separation flows like backward-facing step flows because it is based on the reattachment length
Xr of the flow, which is the average distance from the step where the flow leaves the circulation zone,
see [19] for more details. Therefore, we generated five meshes of the backward step geometry using the
open-source software SALOME [24]. The meshes characterisitics are presented in table 1. T5 is the finest
mesh and T1 the coarsest one. The maximum mesh element size, given in table 1 for each mesh, is a
mesh generator parameter that represents the maximum linear dimensions for mesh cells. Besides, for
each mesh, we allowed local size to vary on the walls around the step. Those variations are proportionate
to the maximum mesh size.

Mesh
Name

Maximum
mesh size [m]

Local mesh size
around step [m]

Number
of cells

Time
step [s]

T1 0.2 0.06 6028 0.2
T2 0.1 0.03 20 315 0.1
T3 0.05 0.015 72 875 0.05
T4 0.033 0.01 144 784 0.0333
T5 0.025 0.075 220 072 0.025

Table 1: Meshes characteristics

We computed, for each mesh and for two Reynolds numbers (the two extremities Re = 103 and Re = 105,
the ratio Xr/h. The results are presented in table 2a. One can see that, for Re = 103, the ratio stabilizes
from the third mesh at a value of 7.1, and for Re = 105, the ratio is almost constant from T1 to T5.
From these results, both meshes T3 and T4 can be selected as the high-fidelity mesh. To choose between
them, let us compute numerical errors relative to a reference solution. Let ui,1≤ i≤ 5, be the averaged
velocities computed on the meshes Ti,1 ≤ i ≤ 5. For the calculation of the finest solution u5, we took a
time step equal to ∆t = 0.025 s and a number of iterations equal to niter = 160000 (resp. niter = 16000)
for low (resp. high) Reynolds number. To select the high-fidelity mesh, the relative errors between u1
and the velocities ui,2≤ i≤ 5, are compared. We compute the following relative error :

ei =

√
(Ii(ux

1)−ux
i )

2 +
(
Ii(u

y
1)−uy

i

)2√
‖ux

i ‖2
L2 +‖uy

i ‖2
L2

(14)

where (ux
i , uy

i ) and respectively (ux
1, uy

1) are the (x, y)-components of the velocity vectors ui and u1. The
operator Ii is an interpolation operator on the mesh Ti, for 2 ≤ i ≤ 5. These relative errors are given
in L2-norm in table 2b for Re = 103 and Re = 105. One can see that, for Re = 103, the errors remains
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Meshes Re = 103 Re = 105

T1 9.1 8.3

T2 7.7 8.3

T3 7.1 8.5

T4 7.0 8.5

T5 7.0 8.3

(a)

Re = 103 Re = 105

e2 0.222 0.043

e3 0.327 0.071

e4 0.333 0.081

e5 0.312 0.087

(b)

Table 2: Left table : value of the ratio Xr/h for the 5 meshes and for two extreme Reynolds number.
Right table : values of the relative errors ei between the solutions computed on meshes Ti,2≤ i≤ 5 and
the coarsest mesh T1 for two extreme Reynolds number

practically stable as of the second mesh. On the other hand, for Re = 105, the errors growth for each
mesh but it seems that it will soon reaches a plateau. Indeed, the difference between e4 and e5 is almost
twice inferior than the difference between e3 and e4. As a consequence, the mesh T4 is considered from
now on as the high-fidelity mesh and is noted Th. The high-fidelity velocity solution is noted uh(s).

4 NUMERICAL RESULTS

We recall that ntrain = 181. Let Ah = {uh(s1), ...,uh(sntrain)} be the training set associated with the ntrain
parameters. From this training set, we generated a reduced basis VN = {ζ1, ...,ζN},1≤ N ≤ Nmax, using
a POD method. We set Nmax = 50. We introduce the following projection errors on the reduced basis
space (projection RB errors) for 1≤ N ≤ Nmax

eN(si) = uh(si)−
N

∑
j=1
〈uh(si),ζ j〉L2ζ j, 1≤ i≤ ntrain. (15)

and the associated relative errors in L2-norm erel
N (si) =

‖eN(si)‖L2

‖uh(si)‖L2
. To verify that the reduced basis is a good

approximation of the full solution space, we computed first the averaged relative error over the training
set errN = 1

ntrain
∑

ntrain
i=1 erel

N (si). One observe on the figure 2 that, with N = Nmax, the averaged relative
error is approximatively equal to 0.2%. Yet, it is not enough to conclude on the quality of the reduced
basis, because the latter was formed with solutions from the training set. Therefore, we performed a
Leave-One-Out Cross Validation (LOOCV) method to test the reduced basis space quality when it is
faced with new data : ntrain new POD methods were applied on the training set Ah lacking each time
with a different velocity solution. The missing solution is projected on the new reduced basis and the
associated projection RB error is computed. The averaged results are represented on figure 2. One can
see that we recover almost entirely the nice projection error of the initial training set. Thus, the reduced
basis space is a good approximation of Xh.
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Figure 2: Relative projection errors averaged over the training set and with the LOOCV method with
respect to the dimension N of the reduced space XN

In the following, the NIRB method is tested on the backward step benchmark using low-fidelity solutions
uH(s) from the coarse meshes Ti,1≤ i≤ 2. We want to compare the projection RB errors with a NIRB
projection error, which is the projection error on XN of the rectified low-fidelity solutions.
Let us give more details about these errors. On figure 3, we plotted the relative errors errN introduced
previously and, for the two coarse meshes T1 and T2, the following NIRB projection averaged errors

1
ntrain

ntrain

∑
i=1

‖uh(si)−∑
N
j=1 β

H,h
j,N (s

i)ζ j‖L2

‖uh(si)‖L2
(16)

We also represented on figure 3 the NIRB projection errors without rectification, i.e.

1
ntrain

ntrain

∑
i=1

‖uh(si)−∑
N
j=1〈uH(si),ζ j〉L2 ζ j‖L2

‖uh(si)‖L2
(17)

to see how the rectification improves the reduced approximation quality. One can observe that for coarse
solutions computed on the coarsest mesh T1 (left figure), the NIRB projection error with rectification
reaches 1% for N = 5, 0.7% for N = 10 and approximately 0.65% for N = Nmax. Besides, for the mesh
T2 (right figure), one see that the NIRB error is marginally weaker than the NIRB error for T1. There is no
need to increase the computational cost in the online stage for such a poor improvement concerning the
NIRB error (indeed, a coarse solution calculation on T2 takes about 4 to 5 more time than a calculation
on T1). Thus, the NIRB method is applied with the first mesh, and it is satisfying regarding the averaged
errors over the training set. Finally, it is important to mention that the NIRB projection errors are quite
close to the RB projection errors.
As for the RB approximation, one need to test the quality of the NIRB approximation. This time, we
did not go for the LOOCV method. Instead, we computed ntrial = 10 random trial solutions associated
with ntrial parameters si. The trial set is At,h = {uh(si) | 1 ≤ i ≤ ntrial}. The ntrial parameters, chosen
randomly, gave us these values of Reynolds number : (1122, 3333, 6040, 7237, 9647, 22436, 44532,
63462, 82500, 95449). The maximal RB and NIRB (with rectification) projection errors of the training
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Figure 3: RB and NIRB projection errors (with and without rectification) averaged over the training set
with respect to the dimension N of the approximation space. On left (resp. right) figure, low-fidelity
solutions are computed on the mesh T1 (resp. T2)

solutions is plotted on figure 4 (left figure), as well as the maximal RB and NIRB projection error of
the trial solutions (right figure). First, one observe on right figure that the maximal projection error over
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Figure 4: RB and NIRB maximal projection errors over the training set (left figure) and the trial set (right
figure) with respect to N.

the trial set is as good as the maximal RB projection error over the trial set. It means that we recover
entirely the approximation quality of the RB method and that the NIRB method works in this case. One
can also notice that the maximal NIRB projection error over the training set is superior than with the
trial set. It comes from the fact that the reduced basis space hardly represents low Reynolds high-fidelity
solutions (this is where the projection error is the highest, in particular with Re close to 103). This leads
to a NIRB error maximal for low-Reynolds numbers, because we still use the reduced basis functions to
compute the NIRB error. Since in the trial set, we only have one solution with a Reynolds number close
to 103 (whereas in the training set there are several of them), it is likely that the maximal NIRB error is
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smaller for the trial solutions. In practice, we deal with this by separating the parameter space in 2, one
for Reynolds numbers inferior to 104 and one for Reynolds number superior to 104. Two reduced basis
are then generated and it becomes simpler to capture all the physical phenomena which appears between
laminar, transitory and turbulent flows.

5 CONCLUSION

In this work we present a non-intrusive RB method applied to the 2D backward step benchmark. This
approach, based on a very coarse mesh, allows in this case to win considerable computational time for
a wide range of Reynolds number solutions. The lost of accuracy is very acceptable regarding how the
reduced approximation is close to the high-fidelity solution : for some random trial solutions associated
to a Reynolds number value between 103 and 105, we found a maximal projection error around 0.4%.
Future works will included the extension of the NIRB method to real urban flows modelling at the district
scale.
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