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Abstract. The transport of logarithmic potentials provides a dynamical equilibrium that allows 

obtaining the lasting time estimation of a dynamical process. Bayesian rules are applied as a 

bridge between logarithmic potentials and the transport equation to obtain the potential 

associated with the interaction between systems. In this work, a data set from a chemical 

process is considered to test the method. Then, to enrich the analysis, an actual prediction by 

dynamical components is perform that illustrates how long every process and the global 

common process last.  

 

 

1 INTRODUCTION  

 

Transport phenomena was considered in the context of social, physical, biological, chemical 

and engineering processes and was included on the Scopus of several meetings and papers 

related to problems and methods for modeling complex dynamical systems, [1-10].  In this 

sense, specific dynamical tools were developed the last decade [1,5]. The goal of this paper is 

to combine already published scientific results [6,7] together with analytical models [8,9,10] 

and elementary transport phenomena to validate a Bayesian transport model for obtaining times 

associated with processes. This Bayesian transport model is developed in this paper and it is 

applied here to predict the duration of a typical dynamical process. To this end, experimental 

measurements extracted from a catalyzed chemical reduction [7] together with theoretical tools 

for modeling complex dynamical systems [9] are considered here to facilitate testing the 

formulation of how long a biochemical process last. This choice obeys that the experimental 

measurements provided in [7] register both the global dynamical process between the system 

and the neighborhood and the influence of every external agent over the system given the fact 
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every agent has its own dynamical equilibrium [9]. Furthermore, a nonclassical treatment for 

local dynamics from the catalyzed biochemical reduction was developed and analyzed in [9]. 

Beyond that work in the recent past, it remains a complementary time estimation carried out 

today in this paper. For the coming years, it is worth to suspect that a more detailed time 

estimation of local processes from a special type of social measurements globally obtained such 

as the lasting time of learning processes, will be available very soon.  In fact, the systematic 

treatment of learning measurements in the context of analytical models based on physical laws, 

was developed in [10], but not its time estimation which, surely as observed before, it will be a 

part of the near future after being estimated from a similar theory.  

In this paper, the fast access to the measurements of the high efficiency of a strain of 

Galactomyces candidus GZ1 to transform acetophenone (AP) into (R)-phenylethanol ((R)-1-

PE) provided enough material to validate the formulation for obtaining the time the process 

last. In consequence, here times related to biochemical processes are predicted component by 

component and globally for the full process.   

 

2 THE BAYESIAN TRANSPORT MODEL  

 

A basal one-dimensional transport equation takes the form 

 

𝜕∅

𝜕𝑡
+
𝜕𝑞

𝜕𝑥
= 0 

(1) 

 

, where ∅   and  𝑞   are quantities to be physically specified and 𝑡  and 𝑥  are time and 

displacement as usually they are. By choosing 𝑞 = −𝑣∅ and 𝑥 an arbitrary quantity, then, mass, 

momentum and energy conservation.  

From another perspective, a decreasing 𝑥 and 𝜃 satisfy the following identities along the 

time, at each time, during the process  

  

 

 

Here 𝑥 means displacement and 𝜃 means angular displacement. Then, to go on with the steps 

in order to connect the transport equation (1) with the chain of equalities (2), we have the next 

equation  

 

If choosing ∅ = 𝜔 and 𝑞 = −𝜔2, we rewrite the transport equation (1), now in the integral form 

 

𝑑𝑡 =
𝑑𝑥

−𝑣
=
𝑟𝑑𝜃

−𝜔𝑟
=
𝑑𝜃

−𝜔
 

(2) 

𝑑𝑡 =
𝑑𝜃

−𝜔
=

𝑑𝜃

−√𝜔2
=

𝑑𝜃

−√𝜔2
=

𝑑𝜃

−√∫ [
𝜕(𝜔2)
𝜕𝜃

] 𝑑𝜃
𝜃

𝜃0

=
𝑑𝜃

−√∫ − [
𝜕(−𝜔2)
𝜕𝜃

] 𝑑𝜃
𝜃

𝜃0

 

(3) 
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, where 𝜔(𝑡 = 0) = 0,  𝜔(𝑡 = 𝑡) = 𝜔,  𝜃(𝑡 = 0) = 𝜃0, and   𝜃(𝑡 = 𝑡) = 𝜃. Since, our goal is to be 

able to estimate how long a generic process last, at this point we should introduce the type of 

dynamical equilibrium associated with the flux 𝑞 = −𝜔2.  By applying equation (1), now we 

continue with the fact that we are transporting angular momentum per unit of the inertial 

moment, 𝜔 =
𝐼𝜔

𝐼
. So, we have equation (5), where symbol I represents the inertial moment and 

𝑈0  is the highest level of energy of the system. Beyond these observations, the main fact is we 

have just introduced the hypothesis of logarithmic potential after adopting the expression   

𝑈(𝜃) = (
𝑈0

𝐼
) 𝑙𝑛(𝜃) in the equilibrium (5). 

 

𝜕𝜔

𝜕𝑡
+

𝜕 ((
𝑈0
𝐼
) 𝑙𝑛(𝜃))

𝜕𝜃
= 0 

(5) 

By considering 𝜔(𝑡 = 0) = 0,  𝜔(𝑡 = 𝑡) = 𝜔,  𝜃(𝑡 = 0) = 𝜃0, and   𝜃(𝑡 = 𝑡) = 𝜃 and solving (5) for 

𝜔, we obtain 

 

𝜔 = −√
2𝑈0
𝐼
𝑙𝑛
1
2 (
𝜃0
𝜃
) 

(6) 

 

In consequence, we recognize 𝜔2 = 𝑊2𝑙𝑛(
𝜃0

𝜃
),  where  𝑊 = √

2𝑈0

𝐼
 is a parameter of the problem 

to be determined from experimental measurements. It is worth to note that the form 𝜔2 =

𝑊2𝑙𝑛(
𝜃0

𝜃
) is because we have assumed logarithmic potentials and then we deal with forces that 

are derived from these potentials. This fact implies we can rewrite equation (4) as the form (5). 

By choosing 𝑡 = 𝑙𝑛 (
𝜃0

𝜃
) , we derive from (7) the following expression 

Recalling the definition of the Gamma function and taking 𝜃 → 0, , we obtain 

𝑡 = ∫ 𝑑𝑡
𝑡

0

= ∫
𝑑𝜃

−√∫ − [
𝜕(𝑞 = −𝜔2)

𝜕𝜃
] 𝑑𝜃

𝜃

𝜃0

𝜃

𝜃0

 
(4) 

𝑡 = ∫ 𝑑𝑡
𝑡

0

= ∫
𝑑𝜃

−𝑊𝑙𝑛
1
2(
𝜃0
𝜃
),

𝜃

𝜃0

 

(7) 

𝑡 = ∫ 𝑑𝑡
𝑡

0

=
𝜃0
𝑊
∫ 𝑡−

1
2𝑒−𝑡𝑑𝑡

𝜃

𝜃0

 

(8) 

 
 

𝑇 = ∫ 𝑑𝑡
𝑇

0

=
𝜃0
𝑊
∫ 𝑡

1
2
−1𝑒−𝑡𝑑𝑡 =

𝜃0
𝑊

∞

0

𝐺𝑎𝑚𝑚𝑎 (
1

2
) =

𝜃0
𝑊
√𝜋 

(9) 
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Although until this point, we realized we have just provided deterministic paths and 

meanings for deriving a classical well know result, a clearly defined analytical structure from 

the transport equation and logarithmic potential becomes powerful after the dimensionless 

function 𝑙𝑛(
𝜃0

𝜃
) is able to interact in the context of the Bayesian theories and after 𝑊 is found 

and recognized meaningful and decoupled from the rest of the formulation. Note that the 

frequency 𝑊 = √
2𝑈0

𝐼
 is related to the highest energy the system has and note that 𝑙𝑛(

𝜃0

𝜃
) is bigger 

than one since 𝜃0 ≥ 𝜃 ≥ 0 . Then, what follows is a complementary energetic-probabilistic 

model, which is based on the Bayes theorem. In particular, the neighborhood interacts with the 

system throughout 𝑊 ,but also the system itself interacts with external agents throughout the 

Bayesian theory. We call 𝑠 the number of external agents inside the neighborhood the system 

is living.  Given the case, we may need to avoid such type of external influences and then we 

adopt 𝑠 = 0. In other words, 𝑠  will be the number of external agents to the system that are 

interacting with the system during the process and simultaneously sharing a common 

neighborhood. It should be noted that, if the external agents and neighborhood help the system 

to end its process, then the conditional probability grows up and the end of the process will 

come soon. Otherwise, if the system fights against all odds including external agents in order 

to end its process, then the conditional probability of the system decreases and, consequently, 

the end of the process will take place latter. Therefore, the Bayesian complementary model 

consists of assuming that  

 

1) the amount of time (in the appropriate units) that any interacting system needs for lasting 

the process is one over the probability of the system for being able to finish the same 

process. This fact is independent of the helpful (or not helpful) interactions the system 

can have with external agents inside the neighborhood.  

2) The Bayes theorem is valid. The external agents to the system that affect the lasting time 

of the process change the probability of the system to reach the end of the same process. 

Such probability reduction or amplification obeys the Bayes theorem, which then 

implies that the external agents can reduce or enlarge the lasting time of the process. 

3) All agents together with the system have the same intensity, size or importance during 

the process. 

 

What was explained in 1), 2) and 3) can be formulated as follows 

Since we know who is 𝑤, we solve from equations (4) and (10) 

 

From (11) and considering 𝜃 → 0 

𝑤 = 𝑊
𝑙𝑛 (

𝜃0
𝜃
)

𝑙𝑛 (
𝜃1
𝜃
)… 𝑙𝑛 (

𝜃𝑠
𝜃
)
= 𝑊

𝑃(𝜃1)…𝑃(𝜃𝑠)

𝑃(𝜃0)
= 𝑊 [𝑙𝑛 (

𝜃0
𝜃
)]
1−𝑠

 

(10) 

𝑡 = ∫ 𝑑𝑡
𝑡

0

= ∫
𝑑𝜃

−𝑊√[𝑙𝑛 (
𝜃0
𝜃
)]
1−𝑠

= ∫
𝑑𝜃

−𝑊 [𝑙𝑛 (
𝜃0
𝜃
)]
1−
(𝑠+1)
2

𝜃

𝜃0

𝜃

𝜃0

 
(11) 
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Finally, by applying the definition of the gamma function, we have 

 

The model of interactions between the system, the neighborhood and external agents obeys 

the Bayes theorem. The applicability of (13) is guaranteed after detailed measurements are 

obtained trustily and systematically along the time. This fact allows somebody to better know 

how much do helpers, or friends, or enemies, or partners, or problems, or economic issues or 

just political tendencies, inside the global structure given by the set system-neighborhood-

external agents affect the lasting time of the process. Expression (13) helps in understanding 

the mechanism that increases the waiting time while a dynamical system is developing a process 

in the context of physical interactions. 

 

 

3 THE VALIDATION TEST FOR THE PREDICTIONS  

 

In this section, both the treatment and interpretation of experimental measurements and the 

application of recently developed dynamical models are combined for testing predictions 

related to times of involved process and sub-process. Then, we choose a three-component 

chemical process provided by [7]. For simplicity, let us rename every interactive component of 

the process, by using capital letters AP, (R)-1-PE and GZ1 according to Table 1. A typical design 

of the analysis of the experimental data can be as follows: the system (one of the components), 

the external agents (the other two or more components) and the neighborhood (the medium, 

which is the support having for instance aerobic conditions). 

 

Table 2: Components of the dynamical process 

AP : acetophenone 

(R)-1-PE : phenylethanol 
GZ1 : Galactomyces candidus 

 

In order to compute and verify how long this biochemical process last and to examine the 

dynamics of AP (acetophenone) reduction to (R)-1-PE (phenylethanol) by the biocatalyst 

Galactomyces candidus GZ1, let us also consider Table 2, where quantities associated with strong 

dynamical interactions between components are detailed over time. 

 

𝑇 ==
𝜃0
𝑊
∫ 𝑡

(𝑠+1)
2

−1𝑒−𝑡𝑑𝑡
∞

0

 
(12) 

𝑇 =
𝜃0.
𝜔
  𝐺𝑎𝑚𝑚𝑎 (

𝑠 + 1

2
) 

(13) 
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Table 2: Conversion percentages of the AP, (R)-1-PE and (S)-1-PE over time 

Time (Hs) [AP] [(R)-1-PE] [(S)-1-PE] 

1 79,53 1,11 19,36 

2 73,6 2,75 23,62 

4 68,81 6,21 29,61 

5 64,33 8,50 27,17 

7 63,8 12,41 23,79 

8 63,88 14,97 21,15 

9 71,21 17,03 11,8 

10 73,27 19,51 7,20 

11 72,61 23,21 4,14 

12 69,71 27,54 2,74 

15 37,11 62,79 0,10 

18 17,62 82,38 0,10 

21 3,80 96,10 0,10 

24 0,10 99,90 0,10 

31 0,01 99,99 0,01 

39 0,01 99,99 0,01 

 

 

The experimental results are shown in Table 2 and visualized in Figure 1  

 

Figure 2: Experimental results: Evolution of the reduction reaction of AP = o to (R)-1-PE = o catalyzed by (S)-
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1-PE = o along the time. The vertical axis is conversion, while the horizontal one is time measured in hours.  

 

The conversions percentages of AP to (R)-1-PE catalyzed by (S)-1-phenylethanol ((S)-1-PE) 

over time are illustrated in Figure 3 by distributed dots. The Law of Mass conservation is held 

during the process, which is a common assumption in chemical processes.  

As mentioned earlier, a kinetic study of AP reduction to (R)-1-PE promoted by a strain of 

Galactomyces candidus GZ1 was reported in [7] and a mechanistic interpretation was proposed 

through a qualitative interpretation of reaction profiles. So, with permission, it follows the next 

paragraph extracted from [7] related to the precise description of the reduction process. 

‘It can be observed in Figure 4, the AP ( o blue ) concentration percentage decreased to 

64% (representing approximately a 36% conversion to the products) after 5–7 hours of reaction. 

From this moment, the percentage of AP began to increase again until reaching a maximum of 

73% (27% conversion) approximately 10 hours from the start of the reaction, before falling 

again until it reached practically zero concentration (24 hours of reaction). The appearance of 

the products was directly related to the variation of AP. As shown in Figure 5, the component 

(S)-1-PE  (o orange) formed more rapidly than the component (R)-1-PE (o red), with 19% of the 

component (S)-1-PE being formed during the first hour of reaction, while only 1% of (R)-1-PE 

was observed at this time. The maximum concentration for (S)-1-PE was reached approximately 

after 4–5 hours of reaction, and from this point onwards its conversion percentage began to 

decrease and reached zero approximately 15 hours after starting the reaction. It should be noted 

that when (S)-1-PE reached the conversion percentage maximum, this situation coincided with 

the beginning of the increase in the percentage of AP observed in the reaction medium, which 

may indicate that S enantiomer was oxidized and gave rise to the formation of AP. In parallel, 

this percentage of (R)-1-PE formation continued to increase over time, but at varying speeds. 

At 11 hours of reaction (where there was a marked decrease in the percentage of (S)-1-PE, the 

system seemed to accelerate towards the accumulation of (R)-1-PE, which coincided with the 

beginning of a second decrease in the percentage of AP. In fact, as can be observed from the 

first 15 hours of reaction, the formation of (R)-1- PE was essentially due to a reduction in AP, 

with the formation percentage of (R)-1-PE reaching a maximum, at approximately 24 hours of 

reaction, when both AP and (S)-1-PE had disappeared completely’. 

Also, as mentioned previously, a nonclassical dynamical study was carried out in [9] for 

obtaining the local dynamic of the components (products) of a complex system during a 

biochemical process (namely a catalyzed reduction process). So, it follows the next dynamical 

formulation extracted from [9], which is related to the precise description of kinetical velocities 

of the catalyzed reduction process. 

After a physical analysis from measurements it had found in [9] three dynamical equations, 

which can be summarized in the form of a first order differential system, where  𝑋𝑅, 𝑋𝐴𝑃 and 𝑋𝑆 

are the concentration of the involved products. 

 

The companion system (14) has its matrix, which has components defined in (15). These 

(

�̇�𝑅
�̇�𝐴𝑃
�̇�𝑆

) = (

−𝛼𝑅 0 0
0 −𝛼𝐴𝑃 −𝛼𝑆
0 0 −𝛼𝑆

)(

𝑋𝑅
𝑋𝐴𝑃
𝑋𝑆

) 

(14) 
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components are variable coefficients (kinetic velocities) for  𝑡 < 14 . It should be noted that 

only 𝛼𝑅 is a constant coefficient inside the matrix under the condition 𝑡 < 14, while the other 

two coefficients are variable. Furthermore, the variable coefficients  𝛼𝐴𝑃  and 𝛼𝑆  under the 

restriction 𝑡 < 14 are the derivatives of two functions 𝑔 and 𝑓, respectively.  

 

So, there exists three functions defined in (16) that drives the evolution of the companion 

matrix over time 

 

The functions h(t), g(t) and f(t) are derived from the computations carried out in obtaining 

the normalized form of the solution, while its derivatives provide the kinetic velocities for (R)-

1-PE,  AP and (S)-1-PE, respectively. From Table 2, we can read the initial conditions to 

determine the problem. Default values of ℎ(𝑡0) = 𝑔(𝑡0) = 𝑓(𝑡0) = 0 was taken. So, the solution of 

the system (14) for 𝑡 < 14  is  

 

In the first half of the total time interval, the kinetic velocities for the (R)-1-PE product is 

0.22. This value can be seen explicitly in the formulation. Table 3 shows that AP and (S)-1-PE 

have a variable kinetic velocity. It also let us know how  𝑓´(𝑡) can be obtained over time.  

Furthermore, Table 3 allows us to know ℎ´(𝑡) , 𝑔´(𝑡) ,  𝑓´(𝑡) , the kinetic velocities for the 

three products 

 

Table 3: Kinetic velocities over time for the AP, (R)-1-PE and (S)-1-PE over time 

Time (Hs) 

Kinetic Velocities 

𝛼𝐴𝑃  𝛼𝑆 𝛼𝑅 

1 0,056 2,330 0,22 

2 -0,077 0,199 0,22 

4 -0,034 0,113 0,22 

5 -0,067 -0,086 0,22 

7 -0,004 -0,066 0,22 

8 0,001 -0,118 0,22 

9 0,109 -0,583 0,22 

(

𝛼𝑅
𝛼𝐴𝑃
𝛼𝑆
) = (

ℎ´(𝑡) 

𝑔´(𝑡)

𝑓´(𝑡)
) = (

0.22 
𝑔´(𝑡)

𝑓´(𝑡)
) 

(15) 

(

ℎ(𝑡)

𝑔(𝑡)

𝑓(𝑡)
) =

(

 

0.22. 𝑡

−𝑒𝑙𝑛(2) + 𝑒−0.25(𝑡−14) + 𝑒−𝑓
(𝑡)+𝑙𝑛(

8
5
)

𝑙𝑛 (
𝑋𝑆
80
)

)

 + (

ℎ(𝑡0)

𝑔(𝑡0)

𝑓(𝑡0)
) 

(16) 

(

𝑋𝑅
𝑋𝐴𝑃
𝑋𝑆

) = 50(

𝑒0.22(𝑡−14)

𝑒−𝑔(𝑡)

𝑒−𝑓
(𝑡)+𝑙𝑛(

8
5
)

) 

(17) 
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10 0,028 -0,494 0,22 

11 -0,009 -0,553 0,22 

12 -0,041 -0,413 0,22 

15 -0,210 -1,103 0,22 

18 -0,248 0 0,11 

21 -0,511 0 0,03 

24 -1,212 0 0,01 

31 -0,329 -0,329 0,002 

39 0 0 0,0002 

 

As soon as the first half of the period ends, a new stage starts. Then, for the second 

fourteen hours the dynamic becomes simpler than before. The solution, Eq. (8), for  𝑡 > 14 is 

 

 

The theoretical and experimental results are in Figure 2.  

 

 

Figure 2: Non classical analytical results: Evolution of the reduction reaction of AP = o to (R)-1-PE = o catalyzed 

by (S)-1-PE = o along the time. The vertical axis is conversion, while the horizontal one is time measured in hours 
 

 

As it can be seen in Figure 2, there is a good agreement between analytical non classical 

predictions and experimental measurements. Thus, the proposed analytical model predicts the 

full chemical products evolution. So, it fits measurements through analytical predictions 

(

𝑋𝑅
𝑋𝐴𝑃
𝑋𝑆

) = (
100 − 50𝑒−0.33(𝑥−14)

50𝑒−0.33(𝑥−14)

0

) 

(18) 
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obtained from first order differential systems with variable coefficients, straightforwardly. This 

treatment for obtaining kinetic velocities can be considered nonclassical [9].  Beyond these 

results, what follows is the global time estimation that allows us to know how long the process 

last. The golden standard for the global (W) and local (w) frequency analysis is the expression 

derived from (10). Thus, the same occurs between the temporal step between measurements 

and the global time the total process last.  

Also, testing expression (19) guarantee that every derived formulation for time estimation in 

this paper works as it should do it for solving dynamical problems.  

 

To test (19) let us consider first the interval (0 < t < 14), where the system has the AP 

component catalyzed by GZ1. It means 𝑠 = 1.   

Them from the physical evaluation it is known the complete evolution of [(R)-1-PE] for the 

interval (14 < t < 32) as it can be seen in Figure 2. In this interval 𝑠 = 0 So, we find  
 

Now, since 𝜃0. is always the same in both intervals, from expressions (21) and (22) it can be 

derived   
 

Now, since 𝑠 = 1  implies 𝐺𝑎𝑚𝑚𝑎 (
1+1

2
) = 1 , and given the first interval  𝑇(𝑠 = 1) = 14 , it 

follows  𝑇(𝑠 = 0) = 14 (
3

2
) (

1

√𝜋
) = 14 (

3

2
) (0.84628) = 17. 772 and then  

 

Given 𝑇[(𝑠 = 1) ∪ (𝑠 = 2)] ≈ 32, since the experimental design is available from the beginning 

of the measurements and knowing the [(R)-1-PE] experimental behavior, the expression (18) 

allows us to recognize W(𝑠 = 0) = 0.33, while expression (17) shows W(𝑠 = 1) = 0.22  So, it is 

estimated 
 

Finally, it follows the global parameter of the whole process 
 

 

𝑤 = 𝑊
𝑙𝑛 (

𝜃0
𝜃
)

𝑙𝑛 (
𝜃1
𝜃
)… 𝑙𝑛 (

𝜃𝑠
𝜃
)
=
2𝜋

𝑡
=
2𝜋

𝑇

𝑙𝑛 (
𝜃0
𝜃
)

𝑙𝑛 (
𝜃1
𝜃
)… 𝑙𝑛 (

𝜃𝑠
𝜃
)
 

(19) 

𝑇(𝑠 = 1) =
𝜃0.

𝑊(𝑠 = 1)
 𝐺𝑎𝑚𝑚𝑎 (

1 + 1

2
) =

𝜃0.
𝑊

 
(20) 

𝑇(𝑠 = 0) =
𝜃0.

𝑊(𝑠 = 0)
 𝐺𝑎𝑚𝑚𝑎 (

0 + 1

2
) =

𝜃0.
𝑊
√𝜋 

(21) 

𝑇(𝑠 = 1)

𝑇(𝑠 = 0)
=  
𝑊(𝑠 = 0)

𝑊(𝑠 = 1)

1

√𝜋
=  
0.33

0.22

1

√𝜋
=
3

2

1

√𝜋
= 0.84628 

(21) 

𝑇[(𝑠 = 0) ∪ (𝑠 = 1)] = 𝑇(𝑠 = 0) + 𝑇(𝑠 = 1) = 14 + 17. 772 = 31.772 ≈ 32 (22) 

𝑊[(𝑠 = 0) ∪ (𝑠 = 1)] = (
18

32
)𝑊(𝑠 = 0) + (

14

32
)𝑊(𝑠 = 1) = 0.28188 ≈ 0.28 

(23) 

𝜃0 = ln (
𝑇[(𝑠 = 0) ∪ (𝑠 = 1)]

𝑊[(𝑠 = 0) ∪ 𝑊(𝑠 = 1)]
) = 𝑙𝑛 (

32

0.28
) ≈ 4.74  

(24) 
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As it can be seen, results are in total agreement between analytical predictions and 

experimental measurements.  

 

4 CONCLUSIONS 

- The transport equation was applied to obtain an integral powerful format of itself 

were the energy related global frequency W was discovered and isolated in term of 

the global parameters of the system. 

- The integral form of the transport equation was applied for transporting angular 

momentum in order to find an operational expression for a cumulative angular 

frequency w which depends on both the global frequency W and the logarithmic 

potentials. 

- Logarithmic potentials were related to probabilities and connected to conditional 

probabilities throughout the Bayes theorem 

- The operational cumulative angular frequency w was adapted from the Bayesian 

theory to include the interactions between the system and some external agents that 

could affect the lasting time of the process the system is carrying on. 

- The interaction between the system, the neighborhood and the external agents are all 

modeled into the cumulative angular frequency w throughout W, ln(to/t) and s, 

respectively 

- Logarithmic potentials, the global frequency, the cumulative angular frequency, the 

integral form of the transport equation and the Bayes theorem allow to find the 

lasting time of a dynamical process. 

- Selective computations for local dynamics provide the lasting time associated with 

every component that is interacting in the common process.  

-  Scientific experimental results from the evolution of the reduction reaction of 

component AP to component (R)-1-PE catalyzed by component GZ1 were considered 

for the validation of the formulation that was developed in this paper. 

- Temporal subintervals with physical insight were found and computed 

- A global parameter for the whole process was found 

- Future developments should include step by step computations for obtaining kinetical 

velocities from this new perspective and to avoid higher computations. 
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