Traffic congestion analysis using travel time ratio and degree of saturation on road sections in Palembang, Bandung, Yogyakarta, and Surakarta

Budi Hartanto Susilo^{1,*}, and Ivan Imanuel¹

¹ Maranatha Christian University, Depart. of Civil Engineering, Bandung, Indonesia

Abstract. Traffic performance have been measured based on degree of saturation, velocity, travel time, and delays. However, they weren't enough to measure the traffic fluctuation that happen on normal days. This study aims to develop some modified analysis about traffic congestion based on the degree of saturation (DS) and travel time ratio (TTR). The travel time ratio is defined as a ratio between the travel time at peak hour and the travel time at off-peak hour in a certain road section. Traffic congestion conditions are classified into 4 categories: Peak-hour Congestion, Lengthy Congestion, Momentary Congestion, and Smooth Traffic. Based on survey results on road sections in Palembang, Bandung, Yogyakarta, and Surakarta, it can be concluded that peak-hour congestion occurs when TTR > 1,40 and DS > 0,75, lengthy congestion occurs when TTR > 1,40 and DS < 0,75, and smooth traffic when TTR < 1,40 and DS < 0,75.

1 Introduction

Traffic and road transport as mandated by Indonesian Government [1] must have criteria for a secure, safe, orderly, smooth, and integrated with other transport modes. Muhtadi [2] said that at the moment, traffic congestions often arise in large cities in Indonesia because of the increasing number of vehicles that pass by affecting the capacity of the road that had been planned earlier. One of the treatments for the congestion problems the periodical evaluation of performance of urban road traffic to ensure the optimal performance of the road.

Speed, travel time, and delays are measures commonly used as indicators of the performance of traffic [3]. In addition, traffic performance is also measured by the degree of saturation. The relationship between the flow and travel time can be expressed as a function where if the flow increases then the travel time will also increase [4]. However, the degree of saturation still can't explain more about the fluctuations of flows that occur on each day. As a result, it often occurs a smooth traffic flow on a road which has a degree of saturation above one or vice versa. This study aims to provide further understanding

^{*} Corresponding author: <u>budiharsus@yahoo.com</u>

[©] The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

regarding the performance of traffic, especially congestion conditions that may occur on a road.

2 Desk study

The Traffic flow is affected by drivers and vehicles interacting with other vehicles, infrastructure, and surrounding environment. The volume that occurs is not always fixed but fluctuating due to several factors such as: time, composition, split portion, lane configuration, the kind of area use, road classification, road feature, the number and types of access control, shape and geometry of the streets [5]. The existence of unbalanced daily variation pattern between peak and off-peak time becomes a major concern for transportation planners experts because of congestion problems encountered in the big city usually happens at peak hours [4]. Generally the flow of traffic is divided between peak hour and off-peak hour.

Travel time is the time it takes to travel the full length of observed path. This study gives information about the running speed, the travel speed, the speed fluctuations, delays between two stations. There are two kinds of delay, namely fixed delay and operational delay. Fixed delay is a delay due to a temporary traffic signal while operational delay is a delay due to the traffic movements such as as turning vehicles, in and out activities, pedestrian crossing, parking, heavy traffic volume, insufficient capacity, and traffic accidents. [6].

According to Indonesian Highway Capacity Manual [7], Degree of saturation (DS), is defined as the ratio of the traffic flow/volume (V) and the road capacity (C) of a certain road section. The volume and capacity are both in passenger car units per hour (PCU/hour). The degree of saturation, also called V/C ratio or volume capacity ratio, is the major indicator in suggesting the traffic performance. The higher the degree of saturation value the lower the traffic performance.

$$DS = \frac{V}{C} \tag{1}$$

where, DS = degree of saturation V = traffic volume (PCU/hour)C = road capacity (PCU/hour)

The congestion increases when the flow is so high resulting vehicles get very close to each other. Total congestion occurs when vehicles have to stop or move very slowly [4]. Conditions of traffic congestion are often expressed with the level of service from A through F [8].

3 Study method

This study aims to provide a modified classification on traffic congestions in order to ease us solving the congestion problems. Two parameters, travel time ratio and the degree of saturation, are used in this study as indicators of traffic congestion. Figure 1 shows basic framework of this study.

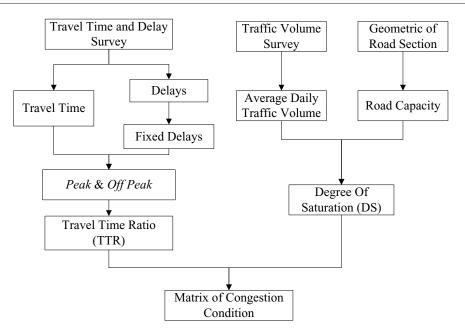


Fig. 1. Study framework

While the travel time ratio has been well known as ratio of travel time between various transportation modes [9], the proposed Travel time ratio (TTR) is a comparison between travel time on a road section during peak hours and off-peak hours. During rush hour, a large traffic volume tends to produce a lengthy travel time. It is influenced by the low speed due to the high density of traffic and the large amount of operation delays due to high level of transportation activities during rush hour. As the travel time during peak hours and off-peak hours have been recognized, TTR is proposed to be calculated as follows:

$$TTR = \frac{TT_P}{TT_0} \tag{2}$$

where,

TTR = travel time ratio $TT_P = \text{travel time during peak hour (s)}$ $TT_0 = \text{travel time during off-peak hour (s)}$

If the number of surveys on each peak hour and off-peak hour is limited, then the travel time needs to be corrected against fixed delays such as signal controls and railway crossing. Corrections are intended to anticipate the significant influence of fixed delays on both time of the survey. For example, if there aren't any fixed delays occurred during the peak hour survey because of the green lights at all intersections while there are some during off-peak hours survey, then this may result in travel time during peak hours becoming shorter than travel time during off-peak hours.

$$TT = TS - FD \tag{3}$$

where,

TT = corrected travel time (s)

TS = real travel time (s)

FD = fixed delay time (s)

T By knowing its degree of saturation and travel time ratio, the condition of congestion that occurred on a road section can be assessed. Conditions of congestion based on the degree of saturation and the travel time ratio are classified into four types as shown in Table 1, namely:

- a) Peak hour congestion: a condition of congestion where there are high traffic flow and activities at peak hours (0,5-2 hours) resulting significant delays and low speed. Both the degree of saturation and the travel time ratio on this road section are high. This condition expectedly happens on road sections with number of lane > 4 and high side frictions.
- b) Lengthy congestion: a condition of congestion where high traffic flow and activities occur for several hours in a day (> 2 hours). The degree of saturation is high but the travel time ratio is low. This condition expectedly happens on road sections in downtown of major cities.
- c) Momentary congestion: a condition of congestion where the traffic flow is considerably low all day but sometimes it becomes high for a short period of time. This condition expectedly happens on road sections with low capacity that a minor change in traffic flow can cause significant effects.
- d) Smooth traffic: a condition where there is no congestion on a road sections all day. The traffic flows and side activities are both low and do not reduce traffic speed significantly nor cause any great operational delay.

Parameter	High TTR	Low TTR
High DS	Peak-hour congestion	Lengthy congestion
Low DS	Momentary congestion	Smooth traffic

Table 1. Matrix of congestion condition

The data were obtained from surveying on road sections in four cities in Indonesia, namely Palembang, Bandung, Yogyakarta and Surakarta. The road network includes national road network as well as urban road network. Three types of surveys had been conducted, namely travel time and delay survey, traffic volume survey, and road geometry survey. Travel time and delays survey was done to get travel time experienced by a normal moving vehicle on the road sections. This survey produced travel times and delays along with the location and cause. Traffic volume survey was done by counting the various passing vehicle on a certain spot location and generally conducted for 16 hours with the types of vehicles include motorcycles, light vehicles, heavy vehicles, and unmotorized vehicles. The geometry survey was conducted to identify the width and number of lanes, the median, the width of road shoulders/curb, and the land use/side friction along the road sections to calculate the road capacity.

4 Data and analysis

4.1 Determination of travel time ratio

Based on the results of calculations shown in Table 2 the lowest TTR on the road network in Palembang is 1.1 (Jend. Sudirman), while the highest TTR is 1.91 (Demang Lebar Daun). As the average value on all surveyed road sections is 1.57, the travel time ratios in Palembang are relatively high. Most of the delays are caused by the high density of traffic flow and oversaturated condition at the intersections.

Name of Road Section	Direction	Real Travel Time (s)		Fixed Delay Time (s)		Corrected Travel Time (s)		TTR
		TSP	TSθ	FD _P	FDθ	TT_P	TTθ	
Kol. H. Burlian	South	1071	627	113	48	958	579	1.65
Kol. H. Burlian	North	865	637	84	82	781	555	1.41
Jend. Sudirman	South	1599	888	217	147	1382	741	1.87
Jend. Sudirman	North	1083	822	366	175	717	647	1.11
Residen Abdul Rozak	West	216	166	0	0	216	166	1.30
Residen Abdul Rozak	East	177	151	0	0	177	151	1.17
Basuki Rahmat	West	362	290	19	44	343	246	1.39
Basuki Rahmat	East	521	232	16	31	505	201	2.51
Demang Lebar Daun	West	649	757	64	451	585	306	1.91
Demang Lebar Daun	East	753	493	85	61	668	432	1.55

Table 2. Travel time ratio of road sections in Palembang

The lowest TTR on surveyed road sections in Bandung is 1.08 (Ahmad Yani and Jend. Sudirman) whereas the highest TTR is 1.25 (Soekarno-Hatta) as shown in Table 3. With the average value of 1.18, the travel time ratios in Bandung are relatively low. Most of the delays are caused by the high side frictions such as parked vehicles, pedestrian activities, and entering or exiting vehicles.

Name of Road	Direction	Real T Tim	Fravel e (s)		Delay ne (s)		ted Travel me (s)	TTR
Section		TSP	TSθ	FD _P	FDθ	TT_P	ΤΤθ	
Soekarno-Hatta	East	4080	3600	1080	960	3000	2640	1.14
Soekarno-Hatta	West	5400	3720	2100	1080	3300	2640	1.25
Kebon Jati	East	314	240	16	0	298	240	1.24
Ahmad Yani	East	674	704	227	290	447	414	1.08
Ahmad Yani	West	888	652	244	128	644	524	1.23
Jakarta	West	159	129	0	0	159	129	1.23
Sudirman	West	867	795	102	89	765	706	1.08

Table 3. Travel time ratio of road sections in Bandung.

From the results of the calculations in Table 4, the lowest TTR on surveyed road sections in Yogyakarta is 1.06 whereas the highest TTR is 1.73 (Laksda Adi Sucipto). With the average value of 1.16, the travel time ratios in Yogyakarta are relatively low. Most of the delays are caused by the high density of traffic flows.

Name of Road	Direction		Travel ne (s)		Delay e (s)		ted Travel me (s)	TTR
Section		TSP	TS ₀	FDp	FD ₀	TTP	TT ₀	
Janti	North	3180	2700	258	231	2922	2469	1.18
Janti	South	3180	2700	258	231	2922	2469	1.18
Jend. Sudirman	West	4500	4440	241	411	4259	4029	1.06
Jend. Sudirman	East	4500	4440	241	411	4259	4029	1.06
Laksda Adi Sucipto	East	2670	2340	211	269	2459	2071	1.19

Table 4. Travel time ratio of road sections in Yogyakarta.

Name of Road			Real TravelFixed DTime (s)Time		e e e e e e e e e e e e e e e e e e e		TTR	
Section		TSP	TS ₀	FDp	FD ₀	TTP	TT ₀	
Laksda Adi Sucipto	West	2580	1680	106	253	2474	1427	1.73
Kolonel Sugiyono	East	4500	4440	241	411	4259	4029	1.06
Kolonel Sugiyono	West	4500	4440	241	411	4259	4029	1.06
Malioboro	South	4500	4440	241	411	4259	4029	1.06
Ring Road Utara	East	780	780	127	182	653	598	1.09
Ring Road Utara	West	2880	2700	198	308	2682	2392	1.12

Based on the calculation shown at Table 5, the lowest TTR on surveyed road sections in Surakarta is 1.14 (Slamet Riyadi) while the highest TTR is 2.83 (Yosodipuro). With the average value of 1.61, the travel time ratios in Surakarta are relatively high. Most of the operational delays are caused by the public transport vehicles making stops on the narrow streets.

Name of Road	Direction	Real Travel		Fixed Delay Summary (s)		Corrected Travel Time (s)		TTR
Section		TS _P	TS ₀	FDP	FDθ	TT_P	ΤΤο	
Slamet Riyadi	East	485	628	27	227	458	401	1.14
Slamet Riyadi	West	613	382	167	97	446	285	1.56
Kol. Sutarto	East	148	126	46	45	102	81	1.26
Kol. Sutarto	West	374	126	64	5	310	121	2.56
Ir. Sutami	East	269	239	36	60	233	179	1.30
Ir. Sutami	West	278	238	16	72	262	166	1.58
Veteran	East	569	226	202	13	367	213	1.72
Veteran	West	428	250	140	0	288	250	1.15
Yosodipuro	East	240	207	56	74	184	133	1.38
Yosodipuro	West	427	138	62	9	365	129	2.83

Table 5. Travel time ratio of road sections in Surakarta.

4.2 Degree of saturation analysis

The degree of saturation is calculated by dividing the traffic volume by the road capacity. The used rush hour factor for general urban roads is 0.09 according to IHCM 1997 [7]. From the results of the calculations shown Table 6, the DS on road network in Palembang is relatively high with an average of 0.9. The highest degree of saturation occurs at Demang Lebar Daun, reaching 1.41 while the lowest degrees of saturation occurs at Sudirman direction, about 0.56.

Name of Road Section	Direction	V (PCU/hour)	C (PCU/hour)	DS
Kol. H. Burlian	South	2506	4299	0.58
Kol. H. Burlian	North	2494	4299	0.58
Jend. Sudirman	South	3990	4153	0.96
Jend. Sudirman	North	3892	4153	0.94
Residen Abdul Rozak	West	1963	2884	0.68

Table 6. Degree of saturation of road sections in Palembang.

Name of Road Section	Direction	V (PCU/hour)	C (PCU/hour)	DS
Residen Abdul Rozak	East	1775	2884	0.62
Basuki Rahmat	West	3322	2884	1.15
Basuki Rahmat	East	2930	2884	1.02
Demang Lebar Daun	West	6339	4481	1.41
Demang Lebar Daun	East	5771	4481	1.29

The DS of surveyed road sections in Bandung as shown in Table 7 are relatively normal with an average of 0.71. The highest DS is 1.1 (Ahmad Yani) while the lowest is 0.51 (Soekarno Hatta and Jend. Sudirman).

Name of Road Section	Direction	V (PCU/hour)	C (PCU/hour)	DS
Soekarno-Hatta	East	3865	5860	0.66
Soekarno-Hatta	West	4080	5860	0.70
Kebon Jati	East	2723	4206	0.65
Ahmad Yani	East	1236	2058	0.60
Ahmad Yani	West	1128	1029	1.10
Jakarta	West	4999	5042	0.99
Jend. Sudirman	West	2162	4206	0.51

 Table 7. Degree of saturation of road sections in Bandung.

Generally shown in Table 8, the DS in Yogyakarta are relatively high with an average value of 0.89. The highest DS is 1.35 (Jend. Sudirman) while the lowest is 0.47 (Kolonel Sugiyono).

Name of Road Section	Direction	V (PCU/hour)	C (PCU/hour)	DS
Janti	North	3422	3935	0.87
Janti	South	2549	3935	0.65
Jend. Sudirman	West	3499	2596	1.35
Jend. Sudirman	East	2999	2596	1.16
Laksda Adi Sucipto	East	2601	2650	0.98
Laksda Adi Sucipto	West	2498	2426	1.03
Kolonel Sugiyono	East	1196	2568	0.47
Kolonel Sugiyono	West	2602	2568	1.01
Malioboro	South	2713	2400	1.13
Ring Road Utara	East	2588	4033	0.64
Ring Road Utara	West	2372	4033	0.59

Table 8. Degree of saturation of road sections in Yogyakarta.

As shown in Table 9, the DS in Surakarta are relatively low with an average value of 0,58. The highest DS is 0.71 (Ir. Sutami) while the lowest DS is 0.46 (Slamet Riyadi).

Name of Road Section	Direction	V (PCU/hour)	C (PCU/hour)	DS
Slamet Riyadi	East	1374	2183	0.63
Slamet Riyadi	West	998	2183	0.46
Kol. Sutarto	East	1442	2769	0.52
Kol. Sutarto	West	1789	2769	0.65
Ir. Sutami	East	1588	2411	0.66
Ir. Sutami	West	1703	2411	0.71
Veteran	East	834	1756	0.47
Veteran	West	925	1756	0.53
Yosodipuro	East	841	1529	0.55
Yosodipuro	West	1053	1529	0.69

Table 9. Degree of saturation of road sections in Surakarta.

3.3 Determination of congestion condition

The highest TTR of all surveyed road sections in 4 cities is 2.83 (Yosodipuro, Surakarta) while the lowest TTR is 1.06 (Malioboro, Yogyakarta). The average value of TTR is 1.40. Based on these results, TTR with value above 1.40 is classified "High" while TTR with value between 1.00 and 1.40 is classified "Low". The DS with value above 0.75 is classified "high" according to IHCM 1997 (Directorate General of Bina Marga, 1997) and classified low below 0.75. Therefore, the condtions of cogestion of road networks in 4 cities can be identified, according to Table 1, as given in Table 10.

Name of Road Section	Direction	DS	TTR	Congestion Condition
Kol. H. Burlian	South	Low	High	Momentary congestion
Kol. H. Burlian	North	Low	High	Momentary congestion
Sudirman	South	High	High	Peak-hour congestion
Sudirman	North	High	Low	Lengthy congestion
Residen Abdul Rozak	West	Low	Low	Smooth traffic
Residen Abdul Rozak	East	Low	Low	Smooth traffic
Basuki Rahmat	West	High	Low	Lengthy congestion
Basuki Rahmat	East	High	High	Peak-hour congestion
Demang Lebar Daun	West	High	High	Peak-hour congestion
Demang Lebar Daun	East	High	High	Peak-hour congestion
Soekarno-Hatta	East	Low	Low	Smooth traffic
Soekarno-Hatta	West	Low	Low	Smooth traffic
Kebon Jati	East	Low	Low	Smooth traffic
Ahmad Yani	East	Low	Low	Smooth traffic
Ahmad Yani	West	High	Low	Lengthy congestion
Jakarta	West	High	Low	Lengthy congestion
Jend. Sudirman	West	Low	Low	Smooth traffic
Janti	North	High	Low	Lengthy congestion

Table 10. Identification of congestion condition.

Name of Road Section	Direction	DS	TTR	Congestion Condition
Janti	South	Low	Low	Smooth traffic
Jend. Sudirman	West	High	Low	Lengthy congestion
Jend. Sudirman	East	High	Low	Lengthy congestion
Laksda Adi Sucipto	East	High	Low	Lengthy congestion
Laksda Adi Sucipto	West	High	High	Peak-hour congestion
Kolonel Sugiyono	East	Low	Low	Smooth traffic
Kolonel Sugiyono	West	High	Low	Lengthy congestion
Malioboro	South	High	Low	Lengthy congestion
Ring Road Utara	East	Low	Low	Smooth traffic
Ring Road Utara	West	Low	Low	Smooth traffic
Slamet Riyadi	East	Low	Low	Smooth traffic
Slamet Riyadi	West	Low	High	Momentary congestion
Kol. Sutarto	East	Low	Low	Smooth traffic
Kol. Sutarto	West	Low	High	Momentary congestion
Ir. Sutami	East	Low	Low	Smooth traffic
Ir. Sutami	West	Low	High	Momentary congestion
Veteran	East	Low	High	Momentary congestion
Veteran	West	Low	Low	Smooth traffic
Yosodipuro	East	Low	Low	Smooth traffic
Yosodipuro	West	Low	High	Momentary congestion

5 Conclusions

Based on the analysis, travel time ratio (TTR) along with the degree of saturation (DS) can classify the traffic congestion conditions on road sections in Palembang, Bandung, Yogyakarta, and Surakarta. Furthermore, it can be classified into 4 categories, namely:

- 1. Peak-hour congestion, if TTR \ge 1,40 and DS \ge 0,75.
- 2. Lengthy congestion, if TTR < 1,40 and DS \ge 0,75.
- 3. Momentary congestion, if $TTR \ge 1,40$ and DS < 0,75.
- 4. Smooth traffic, if TTR < 1,40 and DS < 0,75.

References

- 1. Indonesian Government, (2009) Indonesian Laws No 22 Year 2009 about Traffics and Road Transports.
- 2. Muhtadi, A., *Analisis Kapasitas, Tingkat Pelayanan, Kinerja dan Pengaruh Pembuatan Median Jalan*, Neutron, 10(1), pp. 43-54, (2010)
- 3. Roess, R.P., Prassas, E.S., & McShane, W.R., *Traffic Engineering*. **4th ed**., Upper Saddle Pearson Education, Inc. (2011)
- 4. Tamin, O.Z., Perencanaan dan Pemodelan Transportasi: Teori, Contoh Soal, dan Aplikasi., Bandung, Penerbit ITB. (2008)
- Oglesby, C.H. & Hicks, R.G., *Highway Engineering*. 4th ed., New York, John Wiley & Sons, Inc. (1982)
- 6. Susilo, B.H., Rekayasa Lalu Lintas, edisi revisi, Jakarta, Penerbit Trisakti, (2012)

- 7. Directorate General of Bina Marga, *Indonesian Highway Capacity Manual*, Jakarta, Penerbit PU, (1997)
- 8. Indonesian Minister of Transportation, *Regulations of Minister of Transportation No. KM 14 Year 2006 about Management and Traffic Engineering on Roads.* (2006)
- 9. Susilo, Y.O. & Dijst, M., Behavioural Decisions of Travel Time Ratios for Work, Maintenance and Leisure Activities in The Netherland, Transport Planning and Technology, 33(1), pp.19-34. (2010)