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Abstract. A highly efficient matrix-free Helmholtz operator with single-instruction multiple-
data (SIMD) vectorisation is implemented in Nektar++ [1] and applied to the simulation of
anisotropic heat transport in tokamak edge plasma. A tokamak is currently the leading candi-
date for a practical fusion reactor using the magnetic confinement approach to produce electricity
through controlled thermonuclear fusion. Predicting the transport of heat in magnetized plasma
is important to designing a safe tokamak design. Due to the ionized nature of plasma, the heat
conduction of the magnetized plasma is highly anisotropic along the magnetic field lines. In this
study, a variational form is proposed to simulate the anisotropic heat transport in magnetized
plasma and the details of its mathematical derivation and implementation are presented. To
accurately approximate the thermal load of plasma deposition on the wall of tokamak chamber,
highly scalable and efficient algorithms are crucial. To achieve this, a matrix-free Helmholtz
operator is implemented in the Nektar++ framework, utilising sum-factorisation to reduce the
operation count and increase arithmetic intensity, and leveraging SIMD vectorisation to acceler-
ate the computation on modern hardware. The performance of the implementation is assessed by
measuring throughput and speed-up of the operators using deformed and regular quadrilateral
and triangular elements.

1 INTRODUCTION

Plasma is hot, ionized gas with its constituent atoms split up into electrons and ions, which
can move independently. Due to their charged nature, the movement of plasma is strongly
influenced by electrostatic and electromagnetic forces, lead to complex behaviour. The primary
motivation for this work relates to the prospect of controlled nuclear fusion, which has been
under development for over 60 years [2]. A tokamak is currently the leading candidate for
a practical fusion reactor based on the magnetic confinement approach to produce controlled
thermonuclear fusion. The tokamak must be carefully designed to safely control edge plasma and
avoid an excessive thermal load on the plasma-facing components (PFC). The contamination
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of core plasma and the deterioration of PFC in the vacuum chamber can significantly shorten
the global confinement time. In these systems, characteristic rates of heat conduction parallel
and perpendicular to the local direction of magnetic field can differ by as many as ten orders of
magnitude. Understanding the transport of heat in magnetized plasmas is therefore imperative
to furthering efforts towards controlled thermonuclear fusion.

The hot and high pressure core plasma in tokamak is D-shaped and confined by the poloidal
and toroidal magnetic fields in the vacuum chamber. Due to the plasma turbulence, particles
can escape from the core plasma in this configuration. To regulate the flow of the ionized plasma
flux, a magnetic field is employed in a tokamak to create an internal divertor that filters the
heavier elements out of the fuel, typically towards the bottom of the reactor. The magnetic
field drives the plasma at the lower edge and forms the outer edge of the plasma, the ”Scrape-
Off-Layer” (SOL), that hits the lithium metal pool. A tokamak featuring a divertor is known
as a divertor tokamak. In this configuration, the particles escape through a magnetic ”gap”
(determined by the separatrix), which allows the energy absorbing part of the divertor to be
placed outside the plasma. On the other hand, the SOL is defined as the outer edge of the
plasma. It is characterised by the open magnetic field lines driving the ionized particles, which
transports the energy from the core plasma into the divertor. In divertor plasmas, the SOL
absorbs most of the plasma exhaust (particles and heat) and transports it along the magnetic
field lines to the divertor plates [13].

Figure 1: Schematic diagram of computational domain

The study of SOL is very important to the estimation of thermal load on the PFC and
the stability of the thermonuclear fusion process, because it is the place where the hot plasma
flux gets very close to the cool PFC of the vacuum chamber. The possible contamination
of the core plasma and the deterioration of PFCs, due to the excessive thermal load around
SOL, can significantly shorten the global confinement time. In order to accurately simulate the
anisotropic nature of plasma in the high fidelity plasma edge simulations in tokamak, a simple
two-dimensional case of anisotropic thermal conduction in plasma is taken as a test-case to
assess the performance of the implemented Helmholtz operator. The schematic diagram of the
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Figure 2: tokamak edge simulation in a unit square

computational domain, Figure 1, represents a small segment of the SOL section in a tokamak, a
square domain of unit characteristic length, L = H = 1.0, as shown in Figure 2. The traction-
free boundary condition is imposed along the top, bottom and right boundaries. A hyperbolic
tangent function, illustrated by the green line in Figure 1, is imposed along the left boundary to
represent the profile of the SOL. The magnetic field direction B is shown as the red solid line,
which has an angle θ with respect to the x-axis.

The process of heat transport can be modelled as anisotropic thermal diffusion. In numerical
approximations of the heat transport, any spurious leakage of parallel heat flow into the perpen-
dicular direction would destroy the simulations’ predictive capabilities [3]. Modelling anisotropic
behaviour in simulation benefits from high-order numerical methods, due to the need to spatially
resolve the strong gradient jumps and the lower numerical diffusion of these methods. High-
order spectral element methods also have advantageous computational properties due to their
high arithmetic intensity, better cache usage and their ability to exploit performance improve-
ments on modern processors. Vectorisation is one such enhancement. Traditional processor
registers and math units only hold and operate on one value. However, modern CPUs are able
to process multiple values simultaneously by leveraging instruction set extensions. These types
of operations are known as single-instruction multiple-data (SIMD) operations, which leads to a
fine-grained type of parallelism. As modern hardware now relies on the wide SIMD instructions
to boost the computational power, attaining peak performance relies on making efficient use
of such instructions. This may be done either through compiler auto-vectorisation, by adjust-
ing the data layout to align more closely with the vectorised nature of SIMD instructions, or
explicitly using the intrinsic instructions for the processor.

Algorithmic approaches can be used to further speed up the computation. The construction
of spectral/hp element bases using a tensor-product of 1D polynomials, enables the use of sum-
factorisation [10] to reduce operation count and, importantly, the amount of data movement.
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The volume of data required to be brought from main memory can be reduced further by avoiding
the construction of matrices explicitly and calculating the elements of the matrix on-the-fly when
needed. This matrix-free approach increases the arithmetic intensity of the algorithm, reducing
memory bottlenecks and improving overall performance. Such optimisations are essential for
computational tools to effectively and efficiently leverage exascale platforms.

In this article, a CPU-based Helmholtz matrix-free operator together with sum-factorisation
technique and single-instruction, multiple-data (SIMD) vectorisation is proposed and imple-
mented in Nektar++ [1] in order to optimize the computational cost of modelling anisotropic
heat diffusion. The derivation of the governing equations, its variational form and the construc-
tion of matrix-free operators are described in Section 2. The performance of the implemented
CPU-based Helmholtz matrix-free operator together with SIMD vectorisation is evaluated, using
a test case for anisotropic thermal conduction in plasma, in Section 3. Finally, conclusions are
drawn in Section 4.

2 ANISOTROPIC THERMAL CONDUCTION

2.1 Governing equation

The general form for the heat conduction in plasma is

3

2
n
dT

dt
= ∇ · (κs∇T ) +Q (1)

Due to the ionized nature of plasma and the presence of a strong magnetic field, the dynamics
of particles of plasma and the associated energy dissipation is highly anisotropic. The charged
particles move rapidly in tight spiral orbits, known as gyro-orbits, along the magnetic field
lines, but tremendously slow along the normal direction, e.g., κ∥ ≫ κ⊥, typically ten orders of
magnitude difference. The thermal conduction tensor therefore becomes a non-diagonal matrix.
The temperature gradient is decomposed into three components/auxiliary vectors [5], ∇∥T , ∇⊥T
and ∇∧T , defined as

∇∥T = b(b · ∇T ), ∇⊥T = (b×∇T )× b, ∇∧T = b×∇T, (2)

with respect to the unit direction of magnetic field b = B/|B|, where ∇T = ∇∥T +∇⊥T . ∇∥T
and ∇⊥T are the auxiliary vectors along, and normal, to the magnetic field on the b−∇T plane,
respectively. The auxiliary vector ∇∧T accounts for the direction of electromagnetic induction
and is normal to the b−∇T plane.

It is shown by Goedbloed & Poedts [5] that if a second rank tensor κs representing the
anisotropic transport coefficients is symmetric with respect to rotations about the magnetic
field b, it implies that κs can only have three independent elements, e.g., κ∥, κ⊥ and κ∧, similar
to the rotational tensor and have the form below

κs =

κ⊥ −κ∧ 0
κ∧ κ⊥ 0
0 0 κ∥

 (3)
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Assuming the magnetic field is parallel to the 3rd axis of ∇T and the temperature gradient can
be expressed as ∇T = (∂1T )ê1 + (∂2T )ê2 + (∂∥T )ê∥ and

∇∥T = (∂∥T )ê∥; ∇∧T = −(∂2T )ê1 + (∂1T )ê2;

∇⊥T = (∂1T )ê1 + (∂2T )ê2 (4)

Subsequently the tensor and vector product can be written as

κs · ∇T =

κ⊥ −κ∧ 0
κ∧ κ⊥ 0
0 0 κ∥

 ·
∂1T∂2T
∂∥T


=

(
(κ⊥∂1T )− (κ∧∂2T )

)
ê1 +

(
(κ∧∂1T ) + (κ⊥∂2T )

)
ê2

(κ∥∂∥T )ê∥

= κ∥∇∥T + κ∧∇∧T + κ⊥∇⊥T

= κ∥b(b · ∇T ) + κ⊥
(
∇T − b(b · ∇T )

)
+ κ∧b×∇T (5)

Therefore the general form of anisotropic thermal conduction of magnetized plasma in Equa-
tion (1) can be recast into the form below

3

2
n
dT

dt
= ∇ ·

[
κ∥b(b · ∇T ) + κ⊥

(
∇T − b(b · ∇T )

)
+ κ∧b×∇T

]
+Q

= ∇ ·
[
κ∥(b⊗ b) · ∇T + κ⊥(I − b⊗ b) · ∇T + κ∧b×∇T

]
+Q

= ∇ ·
[(
(κ∥ − κ⊥)(b⊗ b) + κ⊥I

)
· ∇T

]
+∇ · [κ∧b×∇T ] +Q

= ∇ ·
(
κc · ∇T

)
+∇ · [κ∧b×∇T ] +Q (6)

where I is an identity matrix. κc is defined as the thermal conductivity tensor

κc = (κ∥ − κ⊥)(b⊗ b) + κ⊥I

= (κ∥ − κ⊥)
[
b2x bxby
bxby b2y

]
+

[
κ⊥ 0
0 κ⊥

]
=

[
(κ∥ − κ⊥)b2x + κ⊥ (κ∥ − κ⊥)bxby
(κ∥ − κ⊥)bxby (κ∥ − κ⊥)b2y + κ⊥

]
(7)

If there is an angle θ defining the direction of the 2D magnetic field, b can be defined as b =
[bx, by]

′ = [cos(θ), sin(θ)]′ = [cs, ss]′, where the superscript (′) denotes the transpose operator.
Consequently, b2x = cs2, bxby = cs ss and b2y = ss2.

In this study, since it is assumed that the anisotropic thermal conduction in magnetized
plasma is two-dimensional, the induction direction κ∧ in the 3rd dimension (the term ∇· [κ∧b×
∇T ] in Equation (6)) is neglected. Therefore, the implemented strong form of two-dimensional
anisotropic thermal conduction becomes

3

2
n
dT

dt
= ∇ ·

[(
(κ∥ − κ⊥)cs2 + κ⊥

)
∂xT +

(
(κ∥ − κ⊥)cs ss

)
∂yT(

(κ∥ − κ⊥)cs ss
)
∂xT +

(
(κ∥ − κ⊥)ss2 + κ⊥)∂yT

]
+Q (8)
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2.2 Key parameters

Braginskii’s transport coefficients are widely used in tokamak edge modelling. The Braginskii
transport coefficients [6, 7, 8] for ions (i) and electrons (e) are defined in Equation (9).

κe∥ = 3.2
nkBTeτe
me

; κe⊥ = 4.7
nkBTe
meω2

ceτe
; κe∧ =

5

2

nkBTe
meωce

(9a)

κi∥ = 3.9
nkBTiτi
mi

; κi⊥ = 2.0
nkBTi
miω2

ciτi
; κi∧ =

5

2

nkBTi
miωci

(9b)

where Tα, ωcα, τα and mα respectively are the temperature, the cyclotron frequency (or gyro-
frequency), the collision time and the mass of electrons (α = e) and ions (α = i). kBT [K] =
|e|T [eV], where kB is the Boltzmann’s constant and |e| is the absolute value of the charge on
the electron. 1.0 [eV] ≈ 1.6×10−19 [J] ≈ 1.16×104 [K]. The cyclotron frequency of the electron
and the ion are defined as

ωce =
eB

me
; ωci =

eBZ

mi
=
eBZ

mpA
(10)

where e, mp and B are the positive elementary charge, the mass of proton and the magnitude
of magnetic field. A = mi/mp. Z is the ion charge state. The above definitions of cyclotron
frequency is in SI unit. In Gaussian units, the Lorentz force in Equation (10) differs by a factor
of 1/c, where c is the speed of light. The collision time of the electrons and ions are defined as

τe =
3
√
me(kBTe)

3/2

4n
√
2πλe4

= 6
√
2π3

ϵ20
√
me

e4
(kBTe)

3/2

Z2nλ
(11a)

τi =
3
√
mi(kBTi)

3/2

4n
√
πλe4

= 12
√
π3
ϵ20
√
mp

e4
(kBTi)

3/2
√
A

Z4nλ
(11b)

where λ = ln(Λ) is the Coulomb logarithm. Noted that λ depends on the type of collisions, and
is typically between 10 and 20 in a fusion plasma [11]. ϵ0 is the permittivity of free space.

Due to the anisotropic nature of the magnetized plasma, the magnitudes of diffusion coeffi-
cients for ions and electrons are very disparate, so one or other might be neglected [9]. Assuming
B is of order unity (in Tesla) and Te ≈ Ti, so κ∥ ≫ κ⊥. Hence the thermal conductivity coeffi-
cients in Equation (8) are chosen as κ∥ ≈ κe∥ and κ⊥ ≈ κ

i
⊥. Since the two-dimensional anisotropic

thermal conduction is considered in this study, κe∧ = κi∧ = 0. By substituting Equation (10)
and Equation (11) into κe∥ and κi⊥ in Equation (9), the κ∥ and κ⊥ can be written as

κ∥ = 19.2
√
2π3

1
√
me

ϵ20
e4

(kBTe)
5/2

Z2λ
κ⊥ =

1

6
√
π3

1

mi

(nZe
Bϵ0

)2 (mpA)
3/2λ√

kBTi
(12)

2.3 Variational formulation

The anisotropic steady diffusion equation can be formulated as the inhomogeneous Helmholtz
equation with the scalar constant λ = 0, given by

∇ · (κc · ∇T )− λT = Q (13)
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where κc, λ and Q are the anisotropic diffusion tensor, reaction coefficient and a forcing term
in the field, respectively. Applying the Galerkin method of weighted residuals to Equation (13)
and the divergence theorem on the Laplacian operator, its variational form satisfies∫

Ω
[∇vh(κc · ∇T h)]dΩ+ λ

∫
Ω
[vhT h]dΩ = −

∫
Ω
[vhQ]dΩ

+

∫
Γ
[vh(κc · ∇T h) · n]dΓ (14)

for all test functions vh. Now dropping the h superscript for clarify, we can expand T h and vh

in terms of the basis functions on each element,

T e =
∑
i

T̂ eψe
i ,

where the superscript (”e”) refers to elemental quantities. Expressing as a matrix system, we
arrive at

LeT̂ e + λM eT̂ e = −BW eQe + Γ (15)

=⇒ He = Le + λM e

where the matrices Le, M e and Be respectively are the discrete representations of Laplacian,
mass and basis evaluation operators. W e is a diagonal matrix of quadrature weights and T̂ e

is the matrix of elemental basis functions ϕi evaluated at the quadrature points, ξj . For the
non-zero surface flux, the vector Γ is introduced to represent the boundary integral term in
equation (14). Therefore, the Helmholtz operator for each element can be defined as He in
equation (15). The detailed formulation of Le and M e can be written as

Le = (DeB)ge(DeB)TW e (16a)

M e = BW e(B)T (16b)

where D, B and W respectively are the one-dimensional derivative matrix, basis matrix and
diagonal weight of numerical integration in the standard region element Ξ ⊂ [−1, 1]d (uniquely
defined for each element type). The metric, ge, incorporates the diffusion tensor κc and the
inverse of Jacobian matrix J , as

ge = (Je)−1κc(J
e)−T =

[
g00 g01
g10 g11

]
(17)

κc =

[
κ00 κ01
κ10 κ11

]
; (Je)−1 =

[
j00 j01
j10 j11

]
g00 = κ00j

2
00 + 2κ01j00j01 + κ11j

2
01

g01 = g10 = κ00j00j10 + κ01(j01j10 + j00j11) + κ11j01j11

g11 = κ00j
2
10 + 2κ01j10j11 + κ11j

2
11
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2.4 Sum-factorisation and matrix-free approach

Recalling that the basis expansions are tensor products of one-dimensional functions for
the quadrilateral elements in spectral element method, operators constructed from the tensor
product of basis expansions can be decomposed into smaller matrices to perform the matrix-
vector operation as a sequence of matrix-matrix operations, thereby reducing the number of total
floating-point operations required. This is the sum-factorisation technique. For example, consid-
ering the backward transformation that maps basis coefficients to their physical representation,
which in two dimensions is expressed as

T e(ξi, ξj) =

pq∑
i,j

T̂ e
ijψ

e
ij(ξi, ξj) =

p∑
i

q∑
j

T̂ e
ijϕ

e
i (ξi)ϕ

e
j(ξj), (18)

where T̂ represents the coefficients of basis expansion and i and j index rows and columns re-
spectively. Therefore, this matrix-vector operation can be performed by recasting Equation (18)
as

T e(ξi, ξj) =

p∑
i

ϕei (ξi)
[ q∑

j

T̂ e
ijϕ

e
j(ξj)

]
(19)

where the T̂ e
ij column-vector is rearranged row-by-row into a matrix form. The summation

term in the square bracket is evaluated in the form of a matrix-matrix multiplication, with
the 1D basis matrix in the first coordinate direction acting on T̂ e

ij . Subsequently, the result
is transposed and the outer summation is evaluated using the 1D basis matrix in the second
coordinate direction.

The backward transformation of a quadrilateral element using 2nd order polynomial as basis
expansion in each dimension is taken as an example and shown in Figure 3. There are 3 modes
in each dimension (a total 9 modes in 2 dimensions) and 9 Gauss quadrature points for exact
numerical integration, as shown by the matrix (9 × 9)-vector (9 × 1) product in the top-left
corner in Figure 3. Applying the sum-factorisation technique, this 9× 9 tensor product can be
decomposed into two smaller 3×3 matrices and the 9×1 vector is rearranged as a 3×3 matrix.
Therefore, the original matrix-vector product is now recast into two matrix-matrix products,
as shown in the top-right corner in Figure 3. Consequently, the efficiency of linear algebra
operations is significantly improved since the original O(P 4) operation has been replaced with
two O(P 3) operations.

In the matrix-free approach, only the core finite element operators – the evaluation of the
basis functions at the quadrature points, the Gaussian weights and the derivative of the basis
functions on the standard reference region – are explicitly computed. More complex operators,
such as the Helmholtz operator, and the incorporation of elemental geometric factors are not
explicitly constructed, but are computed during evaluation of the operation itself. For the further
details on matrix-free operators, please refer to Moxey (2020) [16].

2.5 SIMD vectorisation

In SIMD vectorisation, the same operation can be applied to multiple values during the
same clock cycle. For example, Figure 4 shows the comparison of a basic arithmetic operation
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Figure 3: Illustration diagram of sum-factorisation technique using a quadrilateral element
with 2nd order polynomial basis functions and 9 Gauss quadrature points

(addition) between the traditional scalar mode (without SIMD) and SIMD vectorisation. The
AVX2 (Advanced Vector Extensions 2) instruction set was introduced in 2013 and includes a
256 bit vector register, thereby holding four double-precision floating-point numbers. AVX2
instructions can therefore be used to perform operations on these four values simultaneously.
Furthermore, the AVX2 instruction set also support the fused multiply-add (FMA) operations
of the form a × b + c, in which the addition and multiplication operation is completed in one
cycle. The usage of FMA in the matrix-free operator significantly improves the efficiency of
the arithmetic operations involving accumulation of products, e.g., dot products and matrix
multiplication.

In Nektar++, to explicitly exploit the SIMD vectorisation, groups of elemental data are
interleaved in memory according to the vector width of the architecture. It is assumed that all
elements are contiguous in memory. For AVX2, this results in groups of four elements being
interleaved, as shown in Figure 5 for second-order quadrilateral elements, where nElmt and
nq refer to the total number of elements and the number of Gauss quadrature points in each
element, respectively. If the total number of elements is not divisible by the vector width,
additional padding of the array is needed.

2.6 Implementation in Nektar++

Nektar++ is a cross-platform spectral/hp element framework, which aims to improve access
to high-order finite element methods for the broader community while being able to solve a
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Figure 4: Comparison of basic arithmetic operation between traditional scalar mode and SIMD
vectorisation

Figure 5: Contiguous and interleaved memory layouts for a cluster of 4 elements. The arrows
indicate the memory storage direction

range of problems in high-fidelity scientific computations [1]. It consists of a tiered collection of
libraries, each of which implements a different aspect of the formulation, as shown in Figure 6
and described below.

• LibUtilities is the most fundamental level in Nektar++ framework. It provides the
necessary functions and variables to prepare the element data for spectral element meth-

10
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Figure 6: Illustration diagram of libraries and matrix-free operators in Nektar++

ods, which includes the definitions of basis functions, default constants scalars, low-level
typedefs, enumerations, mesh partitioning, distributed memory communication, output
formats and so on.

• StdRegions contains the definitions of reference elements in 1D, 2D and 3D domains.
The core finite element operators for each of these elements are also defined, for instance
the backward transform, inner product and derivative operators.

• SpatialDomains library holds the elemental geometric information, e.g., vertex informa-
tion and curve information, the mapping between the reference to physical domains and
facility reading in and writing out geometry-related information. These geometric infor-
mation can then be used to extend the finite element operators that were defined for the
standard reference regions in StdRegions to the physical elements.

• LocalRegions includes the elements occupying the physical domain, which is mapped
from the elements in the reference region. In Nektar++, each local region is a standard
region and has a spatial domain data structure. The local region inherits common expan-
sion methods from its standard region parent, and it uses its spatial domain information
to specialize its operators to its local coordinate system.

• MultiRegions the various data structures and methods associated with standard regions,
spatial domains and local regions are not specifically dictated by any particular numerical
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methods. It is at the level ofMultiRegions that we now combine two fundamental concepts:
the idea of a collection of elements together to form a ”global” expansion and the idea of
how these (local) elements communicate (it is the first place at which we can connect to a
specific numerical PDF approximation methods of choice, e.g., continuous/discontinuous
Galerkin finite element methods). It prepares the assembly operators and form the global
linear system based on a particular numerical method.

• Collections library groups similar elements together and performs elemental operations
collectively. Various element-level operators are defined in Collections library, including
the matrix-free operators.

• MatrixFreeOps implements the matrix-free version of operators, including backward
transform (BwdTrans), physical derivatives (PhysDeriv), inner product (IProduct) and
Helmholtz operator.

To leverage the vectorisation in the matrix-free operator in the anisotropic thermal conduction
formulation, the Helmholtz operator in Nektar++ is re-formulated as shown in Algorithm 1.

Algorithm 1 Overview of matrix-free evaluation of Helmholtz operator

1: Helmholtz(T̂ , ω,B,∇B,J ,κc)
2: for each element group do
3: T h ← BwdTrans(T̂ ,B)
4: out← λ· IProduct(T̂ ,B, ω, |J |)
5: DT h ← PhysDeriv(T h,D, (J)−1)
6: if element is deformed then
7: for each quadrature point η do
8: g ← (J(η))−1κc(η)(J(η))

−T

9: DT h(η)← gDT h(η)
10: end for
11: else
12: g ← (J)−1κc(J)

−T

13: for each quadrature point η do
14: DT h(η)← gDT h(η)
15: end for
16: end if
17: end for
18: for each dimension d do
19: out← out + IProduct(DT h, ∂dB, ω, |J |)
20: end for
21: return out

In Algorithm 1, deformed refers to a non-linear reference-to-world mapping, for which we
require the calculation of the metric g for each quadrature point. BwdTrans, PhysDeriv and
IProduct are the backward transformation, partial derivative of the physical solution and inner
product operations, respectively. The functionality of these operations are,
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• BwdTrans, B: evaluate the solution from the spectral/hp element coefficient space to the
physical space based on the given elemental coefficients û and the standard basis functions
evaluated at the quadrature points ϕi(ξj).

• PhysDeriv, D: compute the partial derivative of the basis functions ϕi at the quadrature
points ξj in physical space.

• IProduct, W : compute the inner product of a function with respect to the basis functions
with given quadrature weights ωj .

Therefore, the Helmholtz operator can be re-written as,

He =
qp∑
n=0

[
∇ψh(ξn)(Je(ξn))−1

[
κc(ξ

n) · (Je(ξn))−T∇ψh(ξn)
]

+ λψh(ξn)ψh(ξn)
]
|Je(ξn)|ωh(ξn) (20)

Here, the symbol ξ refers to the location of Gauss points in the quadrature rule and qp is the total
number of Gauss quadrature points. Line 9 and 14 in Algorithm 1 refer to the sum-factorisation
operation in the matrix-free operator, similar to the term in the square bracket in Equation (19).

3 PERFORMANCE EVALUATION

In this section, the performance of the implemented Helmholtz matrix-free operator with
SIMD vectorisation is evaluated using the anisotropic thermal conduction problem. The com-
putational domain is a two-dimensional unit square. Two types of elements (regular/deformed
quadrilateral and triangular elements) of different polynomial orders (2 to 8) are used. GCC
version 10.2.1 was used to compile Nektar++ v5.1.0 and simulations were run using OpenMPI
4.1.0. To access the performance of implemented SIMD instruction, the following CMake options
are turned on during configuration:

• -DCMAKE CXX FLAGS=”-mavx2 -mfma”

• -DNEKTAR ENABLE SIMD AVX2=ON

The specifications of the CPU used for the study are listed in Table 1.
The following simulation configuration is used to execute the testing cases in parallel using

24 processors.

<NEKTAR>
<COLLECTIONS DEFAULT=”MatrixFree ”/>
<CONDITIONS>
<PARAMETERS>
<P> m e = 9.1096 e−31 </P>
<P> m p = 1.6726 e−27 </P>
<P> A = 1.0 </P>
<P> Z = 1.0 </P>
<P> m i = A∗m p </P>
<P> T e = 116050 </P>
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Table 1: Specifications of intel CPU used for performance evaluation

Model Xeon(R) CPU E5-2670 v3

Architecture Haswell
SIMD width 256 bit
AVX2 clock speed 2.3 GHz
L3 cache size 30720 KB
Cores per socket 12
Sockets per node 2
Max node GFLOPS/s (AVX2) 883.2
Peak memory bandwidth 136 GB/s

<P> T i = T e </P>
<P> e p s i l o n 0 = 8.8542 e−12 </P>
<P> e = 1.6022 e−19 </P>
<P> k B = 1.3807 e−23 </P>
<P> lambda = 13 .0 </P>
<P> theta = 0 .0 </P>
<P> n = 1e18 </P>
<P> B = 1.0 </P>
<P> k par = 19 .2 ∗ s q r t ( 2 . 0 ∗ PI ˆ3 . 0 ) ∗ ( 1 . 0/ sq r t (m e

) ) ∗ ( e p s i l o n 0 ˆ2 .0 / e ˆ4 . 0 ) ∗ ( ( ( k B ∗ T e ) ˆ ( 5 . 0 / 2 . 0 ) ) / ( (Zˆ2 . 0 ) ∗
lambda ) ) </P>

<P> k perp = 0 .0 </P>
<P> a = 500 .0 </P>
<P> Nonl in I t e rTo lRe la t iveL2 = 1e−3 </P>
<P> NekNonl inSysMaxIterations = 10 </P>
<P> LinSysRe lat iveTol InNonl in = 5 .0 e−2</P>
<P> NekLinSysMaxIterations = 5000 </P>
<P> LinSysMaxStorage = 30 </P>
<P> PreconMatFreezNumb = 200 </P>
<P> PreconItsStep = 7 </P>

</PARAMETERS>

<SOLVERINFO>
<I PROPERTY=”EQTYPE” VALUE=” SteadyDi f fu s i on ”/>
<I PROPERTY=”Pro j e c t i on ” VALUE=”Continuous” />

</SOLVERINFO>

<GLOBALSYSSOLNINFO>
<V VAR=”u”>
<I PROPERTY=”GlobalSysSoln ” VALUE=” I t e r a t i v e Fu l l ”/>
<I PROPERTY=” L inSy s I t e rSo l v e r ” VALUE=”GMRES” />
<I PROPERTY=”Precond i t i one r ” VALUE=”Diagonal ” />
<I PROPERTY=”MaxIterat ions ” VALUE=”5000” />
<I PROPERTY=” I t e r a t i v eSo l v e rTo l e r an c e ” VALUE=”1e−9” />
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</V>
</GLOBALSYSSOLNINFO>

</CONDITIONS>
</NEKTAR>

where the first 16 parameters, from m e to k perp, are defined for the anisotropic thermal con-
duction formulation. The last 7 parameters, from NonlinIterTolRelativeL2 to PreconItsStep, are
defined to control the convergence and accuracy of the chosen iterative solver in this study, GM-
RES. For detailed description of these parameters, please refer to the user guide of Nektar++-
v5.1.0 [14].

3.1 Throughput analysis

(a) (b)

Figure 7: Throughput comparison of the matrix-free Helmholtz operator: (a) matrix-free
operator with SIMD vectorisation and (b) matrix-free operator without SIMD vectorisation

In this section, we consider the performance of the matrix-free Helmholtz operator from the
perspective of throughout, e.g., the number of degrees of freedom processed by the operator
per second of execution. It is an indication of the overhead in the implemented matrix-free
operators. In this study, both regular and deformed quadrilateral and triangular elements are
considered.

In other words, the increase in polynomial order is matched by a corresponding increase in
computational work and thus a decrease in throughput. On the other hand, the deformed curvi-
linear elements are more complex computations, e.g., the computation of deformation gradient
tensor J and curvilinear mapping X .
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The throughput analyses for the matrix-free operators with/without SIMD vectorisation are
shown in Figure 7. For the regular elements, they have the least memory requirement and a
clear hierarchy of performance between dimensions and element types. It can be seen that the
throughput (Degree-of-freedoms per second) of both quadrilateral and triangular elements pro-
portionally decrease, as the polynomial order of the basis function increases. This means that
the operators are performant mostly in a FLOPS-bound regime. Overall, the throughput of the
quadrilateral element is almost twice of the triangular element. With the help of SIMD vectori-
sation, it is found that the throughputs of all types of elements in Figure 7a are about 3 to 3.5
times higher than their counterparts without SIMD vectorisation using the same polynomial or-
der in Figure 7b. The larger value of throughput means that the matrix-free operator with SIMD
vectorisation can work more efficiently. This improvement of performance is expected, since the
AVX2 (256 bits vector width) can complete four floating point operations simultaneously with
one instruction.

Furthermore, the results in Figure 7 also show that the throughput of regular quadrilat-
eral/triangular elements are always higher than those of their deformed counterparts for all
polynomial orders. For the deformed curvilinear elements, the significant decrease of through-
put is due to the presence of curvature of the elements, which requires the computations of the
curvilinear mapping X and its deformation gradient tensor J . This conclusion is also drawn in
Kronbichler & Wall (2018) [15] and Moxey et. al. (2020) [16]. However, this difference becomes
less obvious for the triangular elements without the help of SIMD vectorisation, as shown by
the blue lines in Figure 7b.

3.2 Speed-up analysis and roofline model

To assess the efficiency of the implemented matrix-free operator and SIMD vectorisation,
the execution time of Helmholtz matrix-free operator and its corresponding speed-up (the ratio
between the execution time of matrix-based operator and the execution time of matrix-free
operator) are plotted in Figure 8 for the quadrilateral and triangular elements, respectively.
Figure 8a shows that the matrix-free operators with SIMD vectorisation is approximately two
order of magnitude faster than the matrix-based operator for low polynomial orders and one
order of magnitude faster for higher polynomial orders. On the other hand, without SIMD
vectorisation, a relative increase of execution time, more than one order of magnitude with
respect to the matrix approach, can still be observed for polynomial orders above six, shown by
the blue line in Figure 8.

The calculated speed-up of the Helmholtz matrix-free operators with and without vectorisa-
tion is shown in Figure 9. By comparing the performance of matrix-free operators in Figure 9a
and Figure 9b, it is observed that the application of SIMD vectorisation effectively speeds up
the execution of matrix-free operators by approximately 3 to 3.5 times for both quadrilateral
and triangular elements, compared with the non-SIMD case.

To quantify the performance of the implemented matrix-free operators with SIMD instruc-
tion in relation to the theoretical peak performance of the hardware, the roofline performance
model is employed to assess their computational performance. In this analysis, two performance
bottlenecks are considered: floating point operation per second (FLOPS) and memory band-
width, as shown in Figure 10, where arithmetic intensity (α) is defined as α = GFLOPS/memory
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(a) (b)

Figure 8: Execution time comparison of the matrix-free and matrix-based Helmholtz
operators: (a) quadrilateral element and (b) triangular element

bandwidth and the corresponding maximum GFLOPS is defined as

Max GFLOPS = min(peak GFLOPS,peak memory bandwidth× α) (21)

To evaluate the GFLOPS and memory bandwidth of each simulation, the Likwid performance
monitoring and benchmarking suite [17] is employed to determine key performance character-
istics. The tests were done using Likwid version 4.3.0 and the MEM DP performance group
to record memory bandwidth and GFLOPS/s attained using the likwid-mpirun utility for par-
allel execution. On the other hand, the peak memory bandwidth is recorded by Likwid using
likwid-bench with the stream mem avx fma test.

In the results plotted in Figure 10, the arithmetic intensity increases proportionally with
respect to the polynomial orders of the basis function, for each of the different element types
considered. This is a beneficial property of high-order methods, enabling them to more fully
utilize the CPU and being less constrained by the memory bandwith. It is evident that the
regular quadrilateral/triangular elements are FLOPS-bound, whereas the deformed elements are
predominantly memory-bound. This observation agrees well with the discussion presented for
the throughput analyses. In other words, the performance of implemented matrix-free operator
is limited by the memory bandwidth/FLOPS for the deformed/regular elements. Furthermore, it
is also noticed that the cases with SIMD vectorisation and FMA instruction set have a GFLOPS
value which is again approximately four times higher than without SIMD vectorisation and FMA.
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(a) (b)

Figure 9: Speed-up comparison of matrix-free and matrix-based Helmholtz operators: (a)
operator with SIMD vectorisation and (b) operator without SIMD vectorisation

4 CONCLUSIONS AND OUTLOOK

The implementation of a CPU-based Helmholtz matrix-free operator has been described and
its performance with/without SIMD vectorisation was assessed in the context of the anisotropic
thermal conduction problem. Both regular/deformed quadrilateral/triangular elements of dif-
ferent polynomial orders (2 to 8) were considered. It was found that the matrix-free approach
leads to a substantially reduced computation time of between one and two orders of magnitude,
compared with a matrix-based approach, due to a reduced effect of memory-bandwidth. SIMD
vectorisation effectively speed up the execution of the simulations and it was found that the
throughput of the matrix-free operators with SIMD was at least three times higher than their
counterparts without SIMD. Although the speed-up reduced with polynomial order, the maxi-
mum speed-up and the minimum speed-up observed in this study are approximately 500 times
and 10 times, respectively, compared to the matrix-based Helmholtz operator. It was observed
that the implemented matrix-free Helmholtz operator is predominantly FLOPS-bound for the
regular elements, while its performance is mainly memory-bound for the deformed elements due
to the additional data movement.
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