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Abstract. A method for probabilistic simulation of a bare printed circuit board fixed with bolted 
joints based on hierarchical Bayesian updating of a numerical model is presented in this paper. 
The objective is the determination of parameter uncertainties in a set of nominally identical 
boards and the propagation of these uncertainties to calculate probability distributions for the 
behavior of the mechanical system. The numerical model of the system is split into models for 
the circuit board, the bolts and a contact model that are updated separately.  
 
1 INTRODUCTION 

Electronic components of electric vehicles are exposed to demanding load conditions 
including the excitation of mechanical vibrations. These vibrations are a major factor limiting 
the lifetime of printed circuit boards (PCBs). Typically, numerical simulations are conducted 
to describe the mechanical behavior of PCBs. Especially the effects of mechanical loads and 
excitations on PCBs during operation need to be estimated to determine critical loads. For this 
purpose, it is crucial that the simulation results match the real response of the investigated 
mechanical system.  

Mismatches between simulation and measurements occur due to different sources of 
uncertainty. Imperfections in the numerical model can arise from uncertainties of the model 
parameters or from model inadequacies [1], such as a linearization of non-linear behavior. 
Measurement errors and uncertainties lead to further discrepancy between simulation and 
experimental results [2]. Model updating is used to calibrate model parameters with the goal of 
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minimizing discrepancies between simulation and measurements [3, 4].  
When a set of nominally identical systems is considered, the term parameter uncertainty does 

not only include deviations between parameter values used for the simulation and true 
parameter values, but also variations of parameter values within the set of investigated systems. 
These parameter variations can stem for example from uncertainties in the material composition 
or uncertainties in the production and assembly process. Hierarchical Bayesian model updating 
is a technique that considers this expanded definition of parameter uncertainties and provides 
probability distributions for the parameter values [5]. This approach is used in this work to 
assess parameter variations in a model of a bare PCB that is fixed to a casing by bolted joints. 
For this purpose, experimental data of multiple, nominally identical, PCBs is acquisitioned and 
used to calculate the most probable distributions of the model parameters with the hierarchical 
Bayesian approach. Potential model inadequacies are not considered in the updating process for 
the time being. The determined parameter uncertainties are propagated through the numerical 
model to obtain probabilistic simulations of the PCB with fixing. The objective is to establish 
an updated Finite Element (FE) model that matches experimental data and is able to predict 
further measurement data not used in the updating process. 

Two sets of measurement data, one for PCBs with free-free boundary conditions and one for 
the system of PCB and bolted joints, are used for model updating. To account for this, the 
numerical model of the overall system is split into different models for the PCB, the bolts and 
the contact between PCB and bolts. The models and their uncertain parameters form a Bayesian 
network. This modular structure of the system model allows for a flexible use of the updated 
parameter distributions. For example, the determined parameter distributions of the PCB can 
later be used to simulate the PCB’s behavior with different fixings.  

2 BAYESIAN MODEL 

Bayesian model updating is a probabilistic method for the inference of model parameters 𝜃 
based on measured data 𝐷 of the model output. The relation between the parameters and the 
measurement data is given by Bayes’ theorem 

𝑝(𝜃|𝐷) ∝ 𝑝(𝐷|𝜃)𝑝(𝜃)  . 
Here, 𝑝(𝜃) denotes the prior probability distribution of the model parameters that contains 

initial assumptions on the parameter values before considering the measured data. The posterior 
distribution 𝑝(𝜃|𝐷) indicates the probability of the parameter values 𝜃 given the measured data 
𝐷 and is proportional to the product of the prior distribution and the likelihood function 𝑝(𝐷|𝜃) 
which relates the experimental data to the outputs of a model with input parameters 𝜃. This 
formulation assumes that the parameters 𝜃 have a, a priori unknown, fix value. To account for 
parameter variations, for example due to uncertainties in the production process or the material 
composition, a hierarchical Bayesian formulation is advantageous [5]. For this approach, it is 
assumed that the parameters 𝜃 follow a stochastic distribution e.g., a normal distribution 

𝜃~𝑁(𝜇ఏ, 𝜎ఏ) 
with mean value 𝜇ఏ and standard deviation 𝜎ఏ. The posterior distribution can then be 

expressed as 
𝑝(𝜽, 𝜇ఏ, 𝜎ఏ|𝑫) ∝ ∏ 𝑝(𝐷௧|𝜃௧)𝑝(𝜃௧|𝜇ఏ, 𝜎ఏ)𝑝(𝜇ఏ, 𝜎ఏ) ௧  , 

where 𝑝(𝜇ఏ, 𝜎ఏ) denotes the hyper-prior distribution for the means and standard deviations 
[5]. The set of parameters 𝜽 is composed of the parameter values 𝜃௧ of every of the nominally 



Hendrik Schmidt, Markus Käß, Moritz Hülsebrock and Roland Lichtinger 

 3

identical components that are updated. The same applies to the measurement data 𝑫 that is 
composed of the experimental data 𝐷௧ of every component 𝑡. 

2.1 Division of structure into components 

Sankararaman et al. proposed a framework for uncertainty quantification in engineering 
systems for multi-level models [6]. These multi-level models can consist for instance of 
multiple models with each model describing different parts or physics of the overall system. 
The dependencies between the different models and their uncertain model inputs, parameters 
and outputs can be described by a Bayesian network [6]. In this work, we use this framework 
to quantify uncertainty in a mechanical system that consists of multiple components. The 
mechanical system is defined by the FE models of the components and the contacts between 
the components. Each of the models depends on uncertain parameters: mass and stiffness 
parameters for the components and additional contact parameters. A hierarchical approach is 
used for the definition of the uncertain parameters to account for parameter variations in a set 
of multiple nominally identical systems. The parameters 𝜃 are supposed to follow a normal 
distribution with mean values 𝜇ఏ and standard deviations 𝜎ఏ. Figure 1 shows the resulting 
Bayesian network for a system consisting of two components. Hierarchical Bayesian model 
updating is used to determine probability density functions for the model parameters 𝜃 given 
measurement data of the two components and the overall system. 

 

Figure 1: Bayesian network of a 2-component system with a set of uncertain parameters 𝜽, model outputs 𝒀, 
measurement data 𝑫 for every model 𝑴 

The division of the overall system into components allows to incorporate different types of 
measurement data to the inference of model parameters. Assuming that the model error of the 
overall system is bigger than the errors of the less complex models of the individual 
components, the use of component measurement data might lead to more precise results for the 
model parameter distributions. Moreover, the modular structure makes it possible to change 
one of the components while keeping the measurement data and inference results of the 
components not affected by these changes. 
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3 APPLICATION ON PRINTED CIRCUIT BOARDS 

The presented approach for a hierarchical Bayesian model for mechanical systems with 
multiple components is applied to a bare printed circuit board that is fixed with bolted joints. 
The goal is to quantify parameter uncertainties due to variations in the material properties and 
to use the determined parameter distributions to conduct probabilistic simulations of the PCB. 
The parameter uncertainties are determined by hierarchical Bayesian model updating of the 
PCB’s numerical model using experimental data of several nominally equal PCB.  

The examined PCB is pictured in Figure 2. It is an 80mm x 50mm rectangular plate with a 
thickness of approximately 1.5mm, weighing approximately 13 grams. The PCB mainly 
consists of FR-4 material, which is a glass-reinforced epoxy laminate with orthotropic 
mechanical properties. Thin layers of copper are laminated to the bottom and the top side of the 
PCB. The FR-4 material of the PCB is modeled using finite element theory in ANSYS. The 
copper structures are integrated into the numerical model by importing the ECAD file of the 
PCB. The material properties of each element are then calculated with a homogenization 
method [7]. 

 
 

(a) (b) 

Figure 2: (a) Plan of copper layers of the PCB, (b) FE model of the PCB with bolted joints 

The PCB is fixed with four bolted joints of size M2.5 at the four corners. The bolts are made 
of steel and modeled as solid objects. To enable a linear solution, bonded contacts between the 
bolts and the PCB are assumed. The contact stiffness is defined by a constant value.  

In the following, we will first present the measurement data used for model updating, then 
select the model parameters that we consider to be uncertain and define the Bayesian network 
with the uncertain parameters of the PCB.  

3.1 Experimental data 

Experimental modal data is used for the updating of the PCB model. Measurements are 
performed on a total of seven different, but nominally equal, PCB. First, modal data of the PCBs 
with free-free boundary conditions is collected. This is done by placing the PCB on foam 
material and exciting it with an automatic modal hammer. The acquisitioned data includes the 
eigenfrequencies in the range up to 4500 Hz (first eight eigenfrequencies) and the 
corresponding mode shapes measured with a scanning laser vibrometer. Five measurements per 
PCB are conducted to decrease the impact of aleatory measurement uncertainty on the model 
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updating. Some of the eigenmodes are not recognized in every measurement. To ensure that 
similar data is used for all seven PCB, only modes that are measured in every measurement are 
considered for model updating. This condition applies to four eigenmodes: the first torsional 
mode, the first bending mode in transverse direction and the first two bending modes in 
longitudinal direction. The remaining data is used for validation of the updating results. 

Further measurements are performed on PCBs fixed with bolted joints. For this purpose, the 
PCB is mounted on a shaker using the bolts and is excited up to a frequency of 4000 Hz. The 
first seven eigenmodes lie within this frequency range and are measured with a scanning laser 
vibrometer. A total of eighteen measurements are performed on two of the seven PCBs with 
different bolts and are used for model updating. Additionally, twelve measurements are 
performed on four other PCB for validation purpose.  

Since modal data is not sufficient to determine mass and stiffness properties at the same 
time, the weights of the seven PCBs are determined using an electric scale. These measurements 
are also included into model updating.  

3.2 Choice of parameters for model updating 

The numerical model of the PCB depends on many different parameters. However, not all 
these parameters can be used for model updating since every open parameter increases the 
complexity and thus the computation time. Furthermore, it may not be possible to determine 
some combinations of parameters with the present data if several sets of parameter values yield 
identical modal properties. Therefore, the number of updating parameters must be reduced to a 
small number. 

The parameters that determine the PCB behavior include geometric quantities (length, width, 
and height of the PCB) and material properties of both FR-4 and copper. Measurements at the 
seven PCBs indicate that there is no significant variation in length, width, and height of the 
plates and that these three quantities are represented accurately in the initial model. Therefore, 
the geometric quantities are not considered for model updating. Variations in the geometry of 
the copper structures may also cause uncertainty in the PCB behavior. However, an analysis of 
uncertainty in these structures would be very complex and only be possible by the introduction 
of many parameters. Therefore, uncertainty in the copper structure is also neglected. 

The material properties of the PCB model consist of mass and stiffness variables. The mass 
matrix depends on the specific masses of FR-4 material 𝜌ிோସ and copper 𝜌஼௨. FR-4 is modeled 
as an orthotropic material. Hence, nine independent parameters determine the material stiffness. 
This number is reduced to four due to the plate characteristics of the PCB. These four 
parameters are the Young’s moduli 𝐸௫ and 𝐸௬, the shear modulus 𝐺௫௬ and the Poisson 
coefficient 𝜈௫௬. Copper is modeled as an isotropic material, resulting in two additional stiffness 
parameters 𝐸஼௨ and 𝜈஼௨. A sensitivity analysis based on an analytic calculation of gradients [8] 
is conducted to determine the influence of these parameters on the four eigenfrequencies used 
for updating of the PCB in free-free boundary conditions (see Table 1). 

The sensitivity analysis shows that the influence of the Poisson coefficient  
𝜈௫௬ on the eigenfrequencies is limited. Thus, this parameter will be neglected for model 
updating. The same applies to 𝜈஼௨. A change of the copper stiffness 𝐸஼௨ has a nearly equal effect 
on all frequencies, as well as a change of the specific masses  
𝜌ிோ  and 𝜌஼௨. Therefore, an inference of these three parameters will be difficult to obtain with 
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the available modal data. However, with the additional mass data, the inference of one mass 
parameter becomes possible. We choose to update the total PCB mass 𝑚 instead of one of the 
specific masses for simplicity reasons, assuming that the proportion between the mass of FR-4 
and the copper mass is constant over all seven examined PCBs.  

Table 1: Gradients of eigenfrequencies for PCB with free-free boundary conditions (values 
𝜟𝑬𝑭

𝜟𝜽
 in 

%

%
) 

 Eigenfrequency 1 
(Torsion) 

Eigenfrequency 2 
(Bending X) 

Eigenfrequency 4 
(Bending Y) 

Eigenfrequency 5 
(Bending X) 

𝐸௫ 0.03 0.77 0.00 0.64 
𝐸௬ 0.01 0.01 0.77 0.08 
𝐺௫௬ 0.67 0.00 0.00 0.04 
𝜈௫௬ 0.002 -0.005 0.007 -0.022 
𝐸஼௨ 0.27 0.21 0.23 0.22 
𝜌ிோସ -0.88 -0.89 -0.88 -0.88 
𝜌஼௨ -0.11 -0.10 -0.10 -0.10 
 
Similarly, a gradient calculation for the eigenfrequencies of the PCB fixed with bolts is 

performed to determine the updating parameters of the bolts and the contact model. Since the 
bolts are much stiffer than the PCB, the variation of mass and stiffness parameters of the bolts 
only has a minor impact on the measured modal data. Therefore, the bolts are modeled with an 
invariable numerical model. However, the contact stiffnesses between the PCB and the bolts 
are considered for model updating. We choose to have one contact stiffness parameter 𝐾஼௢௡. 
This stiffness is applied to all four bolted joints for the contact between the PCB and the bolt 
head and for the contact between the PCB and the nut. 

3.3 Network of uncertain parameters 

All parameters that were chosen to be modeled as uncertain parameters are represented in a 
Bayesian network (Figure 3). The model of the PCB 𝑴௉஼஻ is governed by the three stiffness 
parameters 𝐸௫, 𝐸௬ and 𝐺௫௬ of FR-4 material, as well as the PCB mass 𝑚. The PCB model 
calculates the modal properties 𝑌௉஼஻ of the PCB with free-free boundary conditions which 
correspond to the measured eigenmodes 𝐷௉஼஻. No uncertain parameter for the numerical model 
of the four bolts 𝑴஻was selected. The model of the overall system  𝑴௦௬௦ is then composed by 
the individual models of the PCB and the bolts. The contact between the PCB and the bolts is 
defined by the contact stiffness 𝐾஼௢௡. 

The model parameters are all supposed to follow normal distributions. Since measurement 
data of seven different PCBs are used, seven PCB parameter sets are determined during model 
updating. The measurement data used for updating of the overall system 𝐷௦௬௦ consists of 18 
different measurements on two PCBs. It is assumed that the contact stiffness 𝐾஼௢௡ varies from 
measurement to measurement e.g., due to possible variations of the tightening torques.  

Model updating is done in two steps. First, the parameters of the PCBs are determined with 
the experimental data in free-free boundary conditions 𝐷௉஼஻ and the measured masses 𝐷௠. In a 
second step, the probability distributions of the contact stiffness are inferred from the modal 
data of the PCBs fixed with bolted joints 𝐷௦௬௦ using the previously updated parameter values 
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of the PCBs. The resulting normal distributions of all model parameters and their covariances 
are used for a probabilistic simulation of the PCB with bolted joints. For this purpose, the model 
parameter distributions are first determined by sampling from the individual distributions of 
parameter means and standard deviations. It is supposed that the contact stiffness 𝐾஼௢௡ is 
independent from the mass and stiffness parameters of the PCB while covariances between the 
PCB parameters are considered. Based on these parameter distributions, Monte Carlo 
distributions of the system model 𝑴௦௬௦ are then conducted to obtain probability distributions 
of the model outputs, for example the system’s eigenfrequencies. 

 

Figure 3: Bayesian network regrouping all uncertain parameters of the system of PCB and bolts 

3.4 Model updating 

The Bayesian inference of the model parameters is performed using the sequential Monte 
Carlo algorithm of PyMC3 [9]. This algorithm is based on the Transitional Markov Chain 
Monte Carlo [10] and the CATMIP algorithm [11]. Since these methods require a multitude of 
model evaluations, the computation time may be important when using complex numerical 
models. Therefore, a parametrically reduced model of the PCB is generated with a modal 
reduction technique [12]. The reduced models provide precise results for parameter changes of 
up to 20 % around the initial parameter values. Since the rough location of the parameter values 
is initially known and the main goal of the model updating is the determination of parameter 
uncertainties, the reduced models are sufficient for this application. 

Three different likelihood functions are used for the updating of the PCB without bolts 
(eigenfrequencies, eigenvectors and masses) and two for the system of PCB and bolts 
(eigenfrequencies and eigenvectors). The likelihood functions for the modal parameters are 
determined as proposed by Vanik et al. [13]. The formulation of the likelihood function for the 
measured PCB masses is based on a Gaussian error model with zero mean. As described in the 
previous section, all parameters are supposed to follow normal distributions. Correlations 
between the mass and stiffness parameters of the PCB model are assumed. Therefore, the 
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distributions of these parameters are modeled with a multivariate normal distribution. The prior 
distributions for the mean values are chosen to be normal distributions with the initial parameter 
values as prior means, while half-normal distributions are chosen as prior distributions for the 
parameter standard deviations. The correlation matrix of the multivariate normal distribution is 
modeled with a Lewandowski-Kurowicka-Joe (LKJ) prior distribution [14]. 

4 RESULTS OF MODEL UPDATING AND SIMULATION 

In this section, the updating results and the following probabilistic simulation of the PCB 
will be presented. First, the resulting parameter distributions of the PCB in free-free boundary 
conditions are shown and then used for the probabilistic simulation. The simulation results are 
compared to further experimental data for validation purpose. The updating and simulation 
results of the PCB with bolted joints are discussed in the same way. 

4.1 Updating of PCB with free-free boundary conditions 

The results of the Bayesian inference for the PCB with free-free boundary conditions are 
shown in Figure 4. For the resulting probability distributions of the four model parameters, 
standard deviations between 1.5 % and 2 % are observed. It has to be noted that these standard 
deviations are higher than the actual inherent parameter variability since estimation 
uncertainties of parameter means and standard deviations also contribute [15]. However, the 
mean values of the posterior distributions of the variances of the parameters amount to more 
than 90% of the variance of the sampled parameter distributions for all four parameters. Thus, 
the biggest part of the variance of the sampled parameter distributions stems from true 
parameter variability. 

 

Figure 4: Posterior distributions of the PCB parameters (for all seven PCB and their common normal 
distribution) 

By Monte Carlo simulation of the PCB’s numerical model with the determined parameter 
distributions, probability distributions of the eigenfrequencies are obtained. These are 
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compared to the experimental data in Table 2. The simulated distributions match the measured 
eigenfrequencies well in the case of the four eigenmodes used for model updating. Especially 
the mean values of the measured eigenfrequencies are predicted with high precision. The 
simulations of the eigenmodes 1 (torsion) and 4 (y-bending) are closer to the measurements 
than those of the eigenmodes 2 and 5 (x-bending). The latter two eigenmodes both mainly 
depend on 𝐸௫ (see Table 1). However, the measured distributions for the two eigenfrequencies 
cannot be perfectly matched with the same distribution for 𝐸௫. While the mean values of the 
eigenfrequency distributions are close to the measured means, the estimated standard deviations 
differ from the experimental results especially for the second eigenmode. For validation 
purpose, the simulated distributions of the eigenfrequencies are also compared to the 
measurements of the remaining eigenmodes. Here too, a good agreement between the 
experimental data and the simulation is reached. The deviation of the simulated means und 
measured means of the validation data is similar to those of the updating data for three of the 
four validation eigenfrequencies. Only for eigenfrequency 3, a higher deviation of the mean 
value of about 0.5 % is observed. The standard deviations are estimated with a lower precision 
than the means. One possible reason for this is the measurement uncertainty that is different for 
every eigen mode. This variation of the measurement uncertainty is not taken into account 
during model updating. 

Table 2: Comparison between experimentally measured eigenfrequencies (EF) and simulated eigenfrequency 
distributions with updated parameter distributions (MU = Model Updating) 

 Eigenmodes used for MU Eigenmodes not used for MU 
EF1 EF2 EF4 EF5 EF3 EF6 EF7 EF8 

Measured mean 
[Hz] 

778.5 954.4 2402 2562 1872 2966 3537 4116 

Simulated mean 
[Hz] 

778.4 953.8 2402 2565 1862 2968 3535 4115 

Error -0.01% -0.07% -0.01% +0.14% -0.56% +0.06% -0.06% -0.02% 
Measured standard 
deviation [Hz] 

5.8 4.5 21.1 14.5 14.3 25.2 21.3 26.5 

Simulated standard 
deviation [Hz] 

5.9 5.9 22.4 15.8 12.6 22.4 22.1 29.9 

Error +1.9% +31.0% +6.3% +8.7% -11.4% -11.1% +3.6% +12.9% 
 

4.2 Updating of the overall system with PCB and bolted joints 

The posterior distributions of the contact stiffness are obtained by model updating using the 
experimental data of the PCB fixed with bolted joints and shown in Figure 5. Compared to the 
results of the PCB parameters, more parameter uncertainty is observed. The standard deviation 
of the resulting probability distribution is 8.5 % of the contact stiffness mean value. Reasons 
for this relatively high parameter uncertainty could be variations in the positioning of the bolts 
or variations of the torque that is applied to the bolts. 

The model updating of the contact model was done using nine measurements of each of the 
first two PCBs. Additionally, three measurements were performed for each of the PCB three to 
six. This experimental data is used for validation of the updating results. Figure 6 shows a 
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comparison of the measurements with the simulation results for each PCB, using the previously 
determined stiffness and mass distributions of each PCB and the contact stiffness uncertainty. 
Since the parameter values of a specific PCB were determined with a relatively low estimation 
uncertainty, the variance in these simulation results mainly stems from uncertainties in the 
contact stiffness.  

 

Figure 5: Posterior distributions of the contact stiffness (for all 18 measurements of PCB with bolted joints and 
the common contact stiffness distribution) 

Even for the first two PCB that were used for the updating of the contact stiffness 
distribution, deviations between the simulated eigenfrequency distributions and the measured 
eigenfrequencies are observed. Especially for the eigenfrequencies 2 and 3, discrepancies 
between simulations and measurements of up to 30 Hz (about 1.5 %) are reached. This implies 
that the numerical model of the PCB with bolted joints is not able to explain all aspects of the 
experimental data due to model inadequacies. Since the validation of the simulation results for 
the PCB in free-free boundary conditions provided a good accordance with experimental data, 
potential model inadequacies most likely stem from the modeling of the bolted joints. 

However, it is observed that the deviations between the simulation results and the 
measurements are not significantly higher for the PCBs used for validation (numbers 3-6) than 
for the PCBs used for model updating. Moreover, in most cases the measured data deviates in 
the same direction from the simulation results for a specific eigenfrequency. These observations 
indicate that the determined contact stiffness uncertainties can be applied to further PCBs.  
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Figure 6: Comparison of measurements used for updating (blue points) and validation measurements (orange 
points) to simulated eigenfrequency distributions (box from lower to upper quartile, whiskers at 5 and 95% 

percentiles, median in orange) for individual PCB 

5 CONCLUSIONS 

Model updating of a mechanical system consisting of a printed circuit board fixed with 
bolted joints was conducted using a hierarchical Bayesian model. The updating was done in 
two steps, first for the model parameters of the PCB and then for the contact parameters. This 
method allowed to identify probability distributions of the parameters and to determine 
parameter variations in a set of multiple PCBs caused by production or assembly uncertainties. 
The determined parameter distributions were then used for probabilistic simulations of the 
mechanical system to assess the system behavior. Validation with experimental data of a PCB 
in free-free boundary conditions shows that the determined probability distributions of the PCB 
parameters explain the variations in the mechanical behavior observed within the 
measurements. However, if the PCB is fixed with bolted joints, the simulation results deviate 
from experimental data. These discrepancies are attributed to model inadequacies of the contact 
model between the PCB and the bolts that were not taken into consideration in this work. To 
achieve a better match with measurement data of the PCB with bolted joints, a more realistic 
model for the bolts and the contacts needs to be found. Alternatively, a quantification of model 
inadequacies could be performed if improvements in the contact model are not sufficient to 
achieve adequate accuracy of the numerical model. 
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