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- 5.4.1 Introduction

" Industrial pieces produced in series are characterized by imperfect geometry,
. as.is well known. In some situations, such imperfections can have a serious

effect on the overall mechanical hehaviour of the piece. One of such situa-
tions is the impact of metallic bodies (Onate, 1993) which has an increasing

" industrial interest. To analyze this problem there are several FE codes in
"the market. One of them is the SIMPACT code (CIMNE, 1997), which is
used in the present example as a deterministic solver in a stochastic context. .

The problem at hand Is to analyze the effect of geometrical imperfections,
modelted as a random field (Hurtado and Barbat, 1998), on the behaviour of
two cylinders of the same material under mutual impact. The purpose is to
select the material that guarantees the best performance from a stochastic
point of view. ' : ’

Before entering into details, it should be pointed out. that for this type

of evaluation numerical methods exhibit a particular advantage over ex-

perimental ones, This is due to the fact that probabilistic assessments of
any kind require large amounts of information, which can be very costly to
obtain by an experimental way. Instead, the computation of several dster-

ministic cases using rasidom model parameters (i.e. the well known Monte -
" Clarlo method) allows the synthetic generation of the relevant response fea-

tures without difficulty. This method of meta-computing (Marezyk, 1997) is
extensivelv. annlied in the present case study, as explained in the following.
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Tigure 5.23: Tmpacting cylinders

' 5.4.2 Problem description .

The case study deals with the stochastic analysis of the collision of two

" cylindrical tubes occuiring at a right angle. One of them is idealized.as

a perfect cylinder with no geometrical imperfections and the other as the
opposite case. Figure 5.23 depicts the geometry of the cylinders, where the

- geometrical imperfections are amplified for clarity reasons. The puwrpose
‘of the study is to examine the effect of such imperfections on the overall
‘behaviour of the tubes when varying the constifuent material. The output

" yariables of interest are the z and y components of the top displacement

- and the z component of the displacement at {he middle of the tubes, Le.

the radial displacements of the external nodes diametrically opposite to the
contact point in both cyfinders. s ‘ E '

.. Finite eloment model

Gleometry : . )
' 'The main variables defining the geometry are the (nominal) radius Ry = -
. 0.1 m, the height H = 0.46 m and the thickness ¢ == 3 mm for both cylin-
ders. The random field used to model the initial radial imperfection in the -
~ geometry of one of the cylinders is given by Stam (Stam, 1996)
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krw '
H + tfz sin ;;a. cos—Ry— : {5.18)
. where W is the geometrl_cal 1mperfection field, ¢ is an integer describing
- the number of akial half waves, & is-an integer describing the numbes.of
axial half waves in the asymmetric mode and ! an integer characterizing the

" number of circumferential full ‘waves. In the present example ¢ = 3, k = 2

W= tfl cos

and [ = 4. The parameters £, €, are the amplitudes of the axisymrtnetric

~‘and the asymmetric mode respectively. Thus the actual radius is

_R;I:'Ro—l-ﬁf_ R - (5.19)

. where Ry is the nominal radius. Figure 5.24 shows the final stage of de-

formation of the two cyhndew at 8 nuihseconds after nnpact for one of the .

-cases ana]yzed

Meah :
Fach cylinder was modelled with 150 three-node triangle elements BST
{Cendoya, 1996; Z4rate, 1996; Jovicevic, 1998) (a total of 300 triangles and

330 nodes). These elements account for plastlc deformation by four mteg1 a-

tion layers thlough the tluckness

Materials .
. The materials cons;deled in the simulation are steel and aluminium. The
" nominal properties of the steel are: Young's modulus E = 210 GPa, Pois-

- son’s ratio ¥ = 0.3, initial yield stress C = 200 MPa. For the aluminium .

“material, the nominal properties are: Young's modulus F = 69 GPa, Pois-

_ son’s ratio v = 0.33 and the initial yield stress C' = 507 MPa. Both materials -

are equiped with hardening properties. The mass density has been set equal
0 p = 7840 kg/m® with the aim of preserving the same kmetxc eneigy No
bouncialy condltlons are used in Ehe study, -

‘Loading :

e A velocity of 30 m/s was initially aseribed to aﬂ the nodes of both
“ cylinders simultaneously, but oriented towards the other cylinder. .

5.4.3 Analysis considerations

- The total response time was arrived at by an a,utbm&tic titne stepping pro-

cedure, Material nonlincarities were considered to be rate independent and
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Figure 5.24: F;nal stage of defo1 matlon o:f the perfect VErsus Jmperfect cylin-
ders o :

the Updated Lagrangian Formulation was used to describe geometrical non-

" linearities. A non-symmetric contact treatment is used, which means that

.. the penetration is only checked at the nodes of the slave surface lying against
the master ones. The frictional parameters of the contact surface are a static .
and g kinetic friction coefficient equal to 0.14 and 0.10, respectively. -

5.4.4 Stoph_a__stié modeliing

. A critical step in designing a stochastic numerical experiment is the selection
‘of the random variables {both mmput and output) out of the manifold thal

characterize a specific problem. Moreover, special care must be devoted

to characterizing adequately the probability density function of the input

random variables, as they govern completely the results. Tn case this infor-
mation is absent, if is customary to use the normal {or Gaussian) &enswy

“function in the spirit of the well known Central Limit Theorem.
. In the present case, the random variable selected as dominant is the -
-elasticity modulus, which was given a coefficient of variation of 0.1 for both
‘materials. Besides, in modelling the imperfect contact surfaces, the imper-
:fectmll amplitudes € and & were also considered as input random variables,

where 51 ig the axlsymmetlm amphtude and {2 is the asymmetm, amphtude
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-, The normal density function was employed for both variables, with mean

u = 0.1 and standard deviation o = §.1. The output variables are the

- radial displacement of the external nodes diametrically opposite to the con-
. tact point in both cylinders {amed in Figure 5.23) and the radial and axial
‘displacements of a point ab the cylinder top (zestr and yextr, respectively),

The PROMENVIR meta-computing environment (PROMENVIR, 1997}

" has been used as the Monte Carlo analyzer, using the Finite Element code

“SIMPACT as a “workhorse” for performing the deterministic calculations.

. The Monte Carlo analysis comprised 430 sampling units for the steel tubes

_and 200 sampling units for the aluminium ones. The analysis was performed

at CIMNE in Barcelona, using an SGI-Origin 2000 computer with four pro-

., “cessors, The above synthetic sampling was carried out in two hours and 12

.. minutes iu the case of the steel tubes and in one h0u1 a,ud thlee mmutes in
: the case of (:he aiummium tubes S :

. 5.4.5 Results and dlscussmn

_ .'Once a PROMENVIR ana,iybis has been run, the requned 111f01ma,t1011 can be
-rapidly visualized by simply examining the ant-hill plots which are produced

on-line as the calculation progresses. The amount of obtained engineering
information is very impressive and it is described as follows. =

" Mean .

The mean of the ra.dlai displacements of the nodes Dpp031te to the con-

. “tact point in both cyl,mdels has been computed in order to be sure of the
- convergence of the sa,mpling procedure. Notice that the mean corresponds
-"to the most likely response in terms of radial displacements, so that it is of

~ - great engineering relevance. PROMENVYIR provides two. additional curves .-
_defining the width of the confidence interval of the mean. A typical exam-

- ple.of such curves is shown in Figure 5.25, where it can be notzced tha.t :

: eonveigence has been achlevcd _with neasly 250 shots :

- Probalilistic mte:pretatwn

“The eriterion selected for a eompanson of different cases is the Maha.—

. ldﬂObIS distance (see Cha.pter 2 Renche1 1995) Is is defined within a single
'.Sampleaq - e

D}y = [y — yal'S™y1 — ] ' (520)

' ‘and n‘ieabures the distance between two observations y; and y» in the ran-
dom vectol Yy of the output vauables The sample covariance matrix S is
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" Figure 5.25: Mean of the radlal dLSpiacement of the steel cylmdex thh
) Imperfect geometly . ; . .

b piesuined non-singular. The distance [y; — y] of obselvatlons yi from the E
. .sa.mple mean vector ¥ is equally determined. : :

* Definition {5.20) can be extended to a measure of the dzstance between

the mean _}vectms_yl and ¥, of _t.wo samples,

Dl%{ = [y~ Yz] Sa (7 .YQ] o b _ (5.21)

©in whlch case Sp is the pooled cova,nance matnx wexghtmg the covauanee_
_matrices Sy and 8 of the two samples. i : :

Tor a probabilistic analysis of the system of the Jrnpactmg cyhndeis at

" hand, several case studies are feasible. If we are interested in the distance . :

bebween the steel -and the aluminium models of the perfect-imperfect im-
pact under consideration, the indices “1* and “2” in eqn (5.21) are to be.

-referred to the Monte Carlo samples for the steel and the alumininm mate-
nals, 1espect1vely The random vector y comprises then the 1ep1esentatwe_
: dlspiaeements of hoth the perfect and the imperfect cylinder.

"An estimation of the effect of the imperfect geomeiry, on the other hand,

: would_zequue constderation of four samples: Aimpact of two perfect cylinders,
- and impact of two imperfect cylinders for each material the steel and the

aluminium. Comparison of the “material” distances for the perfect system

“and for the imperfect system reveals the significance of the actually unpeifect

gwmemv for an assessment of the material selection.
The Monte Carlo data that have been obtained here for the peltect—
“imperfect system can be utilized for the determmaﬁxon of “conditional” dis-

tances. For msta.nce, taklng one of the ma,teuale (steei or alumlmum) we
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distinguish two samples: one appertaining to the deformation of the perfect

eylinder, the other appertaining to the 1mpexfcct cylinder. For this consid-
eration, the random vectors ¥,y refer to the representative displacements
of each single cylinder, and so do the covariance matrices 81, 89 of the sam-
ples. Accordingly, eqn (5.21) determines the Mahalanobis distance between
the mean vectors of the perfect and the imperfect geometry for the same
material under the condition of this particular impact pairing,

In the following, we investigate with such a “conditional® distance the
effect of geometry imperfections in assessing the material selection. To this
end, the Mahalanobis distances between materials are listed in Table 5.3 as
obtained for the perfect and for the imperfect cylinders in the impacting
system. It is seen that consideration of the imperfections appearing in the
actual configuration drastically reduces the statistical distance between the
two materials. Although random field modelling makes the individuality of
the materials less relevant, the distance remains large due to the difference
in the properties. Another overall conclusion drawn from the observation of
Figures 5.26 - 5.29 is that the scatter in the aluminium results (marked by
crosses) is much higher than in the results for the steel material {marked
by dots). This indicates a greater difficulty in applying quality control to
the aluminium product, inasmuch as the larger the scatter the. h;ghel the
probability of exceeding a performance threshold,

Table 5.3: Mahalanobis distances

Case 1 Case 2 Dy

Perfect steel Perfect aluminiwn | 31.02
Imperfect steel | Imperfect aluminium | 10.72

Figures 5.26 and 5.27 depict Monte Carlo results for the perfect part

of the system in steel -and in aluminium. For the cylinder with perfect
geometry the scatter is from the contact with its imperfect counterpart, on
the one hand, and from the randomness of the elastic modulus, on the other
hand. Despite the higher elastic modulus, the displacements on the top
of the cylinder (the ends) in Figure 5.26 are larger for the steel material.
This points to a prevelance of plastic deformations, since the yield stress
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for the steel has been taken by the factor 2.5 lower than for the aluminium.
Accordingly, the randomness of the elastic modulus should be less important
for the steel version.

From Figure 5.26, the axial and the radial displacements of the selected
point at the ends are highly correlated for the steel. This indicates that de-
formation of the steel cylinder is by formation of a plastic yield mechanism.
The behaviour of the same displacement components of the aluminium cylin-
der do not support such a relationship, In Figure 5.27, there is no correlation
between the axial displacement on the top and the outer radial displacement
in the middle cross-section for both the steel and the aluminium. The alu-
minium version exhibits a pronounced scatter in the radial direction. Again

"the moderate radial scatter for the steel at this position conforms with the

prevelance of plastic deformations.
Figures 5,28 and 5.29 appertain to the imperfect cylinder in the systemn.

“The results maintain the functional relationships between displacements as

in the perfect cylinder but the scatter is enhanced and leads to an apparent
diminution of the (statistical) distance between the steel and the aluminium '
products.

5.4,6 Conclusions

Practically any structural problem when viewed from a stochastic perspec-

‘tive yields information that a deterministic approach will very rarely deliver..

When scatter enters into the scene, one quickly realizes that much more may
be understood about the system and its behaviour than after a single de-
terministic analysis. The main conclusions of the present study may be
surnmarized as follows:

1. In the presence of geometry random fields, the difference in materials
. ‘becomes less relevant than when modelling them with perfect geome-

try.

‘2. The écahter in the resulis for the aluminium ease is higher than those
of the steel one, thus making it less quality-controllable.
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 Figure 5.29: Clusters of imperfect steel and ahm__linium cylind.e%rs.



