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ABSTRACT

This paper presents an overview of different computational procedures for finite ele-
ment analysis of metal forming problems. Both the displacement and flow aproaches are
discussed together with other aspects like the treatment of temperature coupling, the tech-
niques for geometry updating, the treatment of contact and friction, the use of quasi-static
versus explicit dynamic methods and other topics of interest. Examples of applications of
some of the methods proposed to extrusion, rolling, mould filling and sheet metal forming
problems are presented

1. INTRODUCTION

The detailed study of metal deformation during forming processes is of great interest
for many industrial applications. Examples of these kind of problems are found in the
compaction of metal powers, in the filling of moulds and solidification in casting, in rolling,
extrusion and forming processes and in sheet metal forming, amongst many others.

Despite of its practical interest, the development of reliable numerical procedures to
predict the behaviour of metal deformation processes has encountered many serious ob-
stacles. Together with the non linearity of the material, other important effects like the
unsteady nature of the process, the large magnitude of the strains involved, the coupling
with thermal effects and the importance of contact and friction at the metal-sheet interface
make the study of metal forming processes so complex that its analysis justifies the use of
sophisticated finite element numerical algorithms and usually leads to large scale computer
requirements.

In most metal forming problems the material is subjected to a continuous deformation
which induces a rapid plastification of the material. The equations of motion of this tran-
sient problem can be written in terms of the displacements of the metal points measured
from an appropiate reference configuration (displacement approach) or in terms of their
velocities at each deforming configuration (flow approach).

Both displacement and flow approaches can make use of elasto-plastic/viscoplastic or
rigid-plastic/visco-plastic constitutive models. Also, the equations of motion can be of
“quasi-static” type or else incorporate dynamic effects.



This paper presents an overview of the some of most popular alternatives for the
finite element solution of metal forming problems. Both the displacement and the flow
approaches are briefly presented and compared.

Other topics discussed are the treatment of incompressibility effects, the inclusion of
thermal-coupling, the techniques for geometry updating, the treatment of contact and
friction and the use of quasistatic versus explicit dynamic methods. Some examples of
application of the methods presented to extrusion, rolling, mould filling and sheet forming
problems are also included.

2. DISPLACEMENT APPROACH

This approach uses a total or updated description of the motion. The basic variables
are the displacements, u, of the deforming metal and these are related to the strains, &,
by standard non linear kinematic expressions (ref. 1). On the other hand, the constitutive
equations relating the appropiate stress measures, o, and the strains are usually written in a
rate (incremental) objective form to allow for large strain computations. Here both elasto-
plastic and elasto-viscoplastic constitutive models have been used with success for different
sheet forming situations (refs. 2-5). Finally, the equilibrium equations can be written point
wise through the adequate differential equations to be satisfied in the reference geometrical
configuration, or (what is more usual) in a global sense through the principle of virtual
work (PVW). Table 1 presents in a schematic form the basic equations of the displacement
approach.

Note that in Table 1 & and € represent adequate conjugate stress and strain measures.
The form of the PVW as written in Table 1 corresponds to the use of 2d Piola-Kirchhoff
stresses and Green-Lagrange strains for o and ¢, respectively. The expression of the PVW
for other stress and strains definitions (i.e. Cauchy stresses and Almansi strains, etc.) can
be found in many text books. (ref. 30).

3. FLOW APPROACH

This approach is typical of fluid mechanics problems where a fixed Eulerian reference
frame defining a control volume through which the material flows is generally used. This
method appears to be more natural for bulk forming problems like extrusion, rolling,
forging, mould filling, etc. (refs. 2-7). However, it can be also applied to sheet forming
problems in a straight forward manner, simply by identifying the control volume with the
sheet geometry at each deforming step (refs. 8-10).

Table 1 shows also the basic equations of the flow approach. The main variables are
now the velocities of the deforming body , 0, and these are linearly related to the rates
of deformation, €, in a standard linear manner. The equilibrium and PVW equations are
written in terms of the Cauchy stresses, o, showing a clear analogy with the corresponding
equations for the solid approach. Note, however that V and I'; denote now the body
volume and the traction prescribed surface in the current deforming configuration.

The constitutive equation for the flow approach can be written in rate form on the
basis of elasto-plastic and elasto-viscoplastic constitutives models (ref. 11). However, the



DISPLACEMENT APPROACH | FLOW APPROACH
Displacements u | Velocities u
Kinematic Equations
€= (L +L(u))u | e=Lu
Equilibrium Equations

LTo +b=0 in volume V
MTo =t in boundary I

b : body forces, t: surface loads
M contains components of the unit normal to I';

Virtual Work
Jy 6€fedV = | Jy 6€TedV =
= [y 6ubdV + [ éuTtdl | = [y 6u"bdV + [ suTtdl
Constitutive Equations

¥ = Dre | o = Dé

Table 1. Basic equations of displacement and flow approaches.

numerical solution of the flow problem can be substantially simplified if a direct relationship
between Cauchy stresses and strain rates can be obtained in the form

c=D¢ (1)

Eq.(1) is typical of fluid mechanic problems where D in an appropiate constitutive
matrix depending on the flow viscosity only (ref. 1).

It can be shown that eq.(1) is readily obtained for rigid-plastic and rigid-viscoplastic
materials in which elastic effects have been neglected (ref. 12). In the isotropic case matrix

D is a function of a single flow viscosity parameter, p, given for a rigid-plastic Von-Mises
material by (refs. 6,12)

p=z (2)



, 1/2
where oy is the Von-Mises yield stress and € = (%éijéij> .

REMARK 1

Eq.(2) defines a non linear viscosity thus implying a non-Newtonian type of flow. The
expression of p for viscoplastic materials including the effect of microscopic voids can be
found in (refs. 12,13). Also note that rigid zones are characterized by & = 0 which leads to
g = oo. Therefore, a cut off value of p should be used in these zones to prevent singularity.

REMARK 2

The form of the constitutive equation (2) for Von-Mises metals defines an incompress-
ible flow problem (i.e. é; = 0). This introduces serious difficulties problems if the finite
element solution is based on “solid” elements and appropiate penalty or mixed type for-
mulations must be used as described in next section.

REMARK 3

It is interesting to note that the overall equations of the flow approach as written in
Table 1, are analogous to those of standard infinitesimal (incompressible) elasticity (refs.
1.6.7). This analogy can be exploited to simplify further the computational procedure by
directly using standard finite element codes written for the elasticity case simply replacing
displacements and strain by velocities and strain rates, respectively, and the shear modulus
by the (non linear) flow viscosity (refs. 1, 6-9).

4. TREATMENT OF INCOMPRESIBILITY EFFECTS

Several techniques have been used to deal with incompressibility effects induced by
plastic deformation in metal forming processes.

In the flow approach techniques based on penalty methods, Lagrange multipliers, and
augmented Lagrangian methods have been used with different degree of success to impose
the incompressibility constraint in the metal flow (ref. 1). Perphaps the most popular
approach in last 15 years is the penalty method since it allows to formulate the discretized
problem in terms of velocity variables only. However, this approach must be used in
conjuntion with a reduced integration of the volumetric stiffness terms to avoid numerical
locking of the solution. The current tendency is to avoid the use of reduced integration
based techniques since they can lead to rank-deficiency in the element matrices. This can
be achieved by using mixed velocity-pressure interpolations satisfying the so called div-
stability (or LBB) conditions (refs. 31-33). However, the use of a discontinuous pressure
interpolation allows to eliminate the pressure variables at element level, yielding the so
called B-bar method in which velocities remain as nodal variables only (refs. 1,16). Special
reference should be made to the analysis of sheet metal forming problems using a flow
formulations and “shell type” elements. Here the incompressibility constraint can be simply
imposed by setting the Poisson’s ratio equal to 0.5 in the analogous elastic problem and
then updating the element thickness making use of the plane stress condition (refs. 8,9,13)

In the displacement approach the same techniques as mentioned for the flow case can
be used. The main difficulty here lays in the co-existence of an incompressible (plastic)
part of the deformation with the remaining elastic part, in presence of large strains. The



more promising techniques nowdays are perhaps those based on mixed methods (ref. 14)
and on an extension of the B-bar method to large strain computations (refs. 15,16)

5. TREATMENT OF THERMAL COUPLING EFFECTS

It is clear that temperature plays an important role in bulk metal forming problems.
Most of these processes take place at high temperatures, also the internal heat generated
during the deformation process can not be neglected in many cases, and in turn, temper-
ature affects strongly the material properties of the metal. The process is, therefore, fully
coupled and the equations describing the deformation of the metal must be solved jointly
with the heat balance equation which can be written as

pe % + WTV¢ | = VIDV4+Q (3)

In (3) ¢ is the temperature, p and c the density and the specific heat, respectively, D
is a diagonal matrix of thermal conductivities, V is the gradient operator and @ is the
internal heat generated in the metal deformation process computed as a fraction (~ 90%)
of the plastic work developed. Eq.(3) is completed with the adequate boundary conditions
of temperature and heat flux along the domain boundaries, and also with the known
temperature values at the initial time.

REMARK

The underlined convective term in (3) would be equal to zero if a Lagrangian description
of the movement is adopted as is the case in the displacement formulation.

The temperature field is discretized in a finite element form using generally the same
interpolation as for the velocities. Following standard weighted residual procedures the
following system of equations is obtained (refs, 1,7)

Cé+H(u)p =T (4)

In (4) C is the standard heat capacity matrix, f is the force vector due to the heat
sources and matrix H contains contributions from the heat conduction and convection
terms. Note that the convective terms must be carefully treated using Petrov-Galerkin or
similar techniques to avoid numerical in instabilities (ref. 1). These problems disappear if
a displacement formulation is used.

Eq.(4) must be solved together with the equations resulting from the finite element
discretization of the metal deformation problem. This process is briefly sketched in next
section



6. FINITE ELEMENT DISCRETIZATION. COMPUTATIONAL ASPECTS

For both solid and flow approaches the resulting non linear equilibrium equations can
be written after finite element discretization in the form (see Table 2)

r(a,x,t) = p(a,x) — f(¢,x) =0 (5)

where r, p and fstand for the vectors of residual forces, internal forces and external forces,
respectively, a are displacements and velocities in the displacement and flow approaches
respectively, x is the cartesian coordinate vector and, ¢ represents the time in the flow
approach and the load increment in the solid approach.

Eq. (5) can be iteratively solved for the values of vector a. For the kth iteration we
have

AaF = — [t+At Sk}‘l t+AL Lk (6)

where S in an adequate iteration matrix. Vector a is subsequently updated as

AL kA1 _ tHAL R Ak (7)

The next step is to compute the new stress field. In the rigid/plastic-viscoplastic flow
approach the stresses are directly obtained from the updated velocity field (see Table 2).
In the displacement approach (or in the elasto-plastic/viscoplastic flow case (ref. 11)) the
computation of stresses implies the integration of the rate constitutive equations.

The final step is to update the metal geometry. This can be simply done from the
displacement and velocity fields as shown in Table 2. However other techiques are possible
as explained in next section. At this stage the mechanical properties are also updated and
the contact and friction conditions are checked (see Section 7).

The updated geometrical and mechanical properties of the metal are used to compute
the new increments Aa’ of the next iteration from (6). The process is continued until
convergence is achieved. This is usually measured by the satisfaction of (5) using a mean
quadratic norm for the residual forces.

If temperature coupling effects are present the discretized heat balance equations (4)
must be solved jointly with the set (5). The simplest approach is to use a “staggered”
scheme in which the computed velocity (or displacement) values at each iteration are used
as inputs in eq.(4) to solve for the nodal temperatures. Thus for the quasi-static case we
have

t+At¢k+l — [t+AtHk+l]—1 t+Atf-k+1 (8)

where 1TAtHA+! and tHAUFE+] contain the contributions from the solution of the me-
chanical problem at the kth iteration. The temperatures provided by (8) are then used
as data for the evaluation of the material properties in the next iteration of eq.(6). This
process is repeated until convergence of both velocities (or displacements) and tempera-
ture fields is attained. The overall solution process for both the displacement and flow
approaches is sketched in Table 2.



The detailed discussion of the computational aspects of the finite element solution falls

outside the scope of this paper. Details of the different matrices and vectors appearing in

Table 2 can be found in (ref. 1).

a)

Nevertheless the following remarks should be noted at this point.
The iteration matrix S in the solid approach is usually taken as the tangent stiffness

matrix computed as S = %E. The solution algorithm coincides in this case with the
standard Newton-Raphson iteration scheme.

The selection of matrix S in the flow approach can be made on the basis of secant or
tangent iteration procedures. The expression of S for the secant case coincides with
that of the finite element stiffness matrix K for standard infinitesimal elasticity (ref.
6-10).

The form of the exact tangent matrix is complex and generally non-symmetric and
approximate simpler forms are used (refs. 10,17).

The use of an explicit time integrations scheme (§ = 0) in the flow approach results in
an iterative algorithm in which the geometry at ¢ + At is known “a priori” and kept
fixed during the iterations and the velocities at ¢ + At are the only possible unknows.
However, in the implicit case (6 # 0) the sheet coordinates at ¢ + At change during
the iteration process and this would allow to formulate the problem in terms of the
velocities at ¢ + At (as shown in Table 3), or in terms of the displacement increments
between the two configurations at ¢ and ¢ + At¢, by noting that the geometry updating
equation can be written in the form

Au = (‘a + Aab)At (9)
where
Afi = t+Atxk+1 _ tx
(10)
Aa — t+Atak+1 . ta

are the displacement and velocity increment vectors, respectively. This alternative has
not been fully exploited in practice and it opens new possibilities for research.

The terms “explicit” and “implicit” in Table 2 refer to the integration scheme chosen
for updating the geometry in the flow approach. This should not be mixed up with
the so called “explicit dynamic” methods based on the solution of the full second
order dynamic equations with inclusion of inertia terms using an explicit backwards
integration scheme. This possibility is briefly discussed later in Section 9.

Moreover note that in the quasi-static flow approach the “explicit” time integration
scheme still involves necessarily the iterative solution of a system of equations for
the converged velocities at ¢ + At keeping a fixed value of the geometry during the
iterations.



DISPLACEMENT APPROACH FLOW APPROACH

Basic discretization

u = Na ‘ u = Na
€¢=B,a € =DBya
¢ =Dyé=D,B,a o =Dé=DB;a
Equilibrium Equation of Mechanical Problem
r=p—-f=0
p = [, BTedV | p=(f, BTDBsdV)a=Ka
f= fv NTbdV + fa NTtds
Solution Procedure
t+Atg0 _ | t+Atgo _ ty
t+Atxo — tx | t+Atxo =ty R taAt
LOOP k = 1,NITER
Aak — _[t+AtSk]-—1(t+Atrk)
t+Atak+l — t+Atgk | A gk
t+Atgk are computed by ttatghtl — DB t+Ataktl

integrating the constitutive equations
Geometry Updating
t+Atyk+l — t+Atyk 4 A gk I tHAtyxk+l — ty | ta(1 — 9)At+

l _|_t+Atak+1 oAt

| 0 = 0 explicit solution
6 # 0 implicit solution

CHECK CONTACT
Compute tHAtpk+1 t+Atgk+1 t+ALETk+1 pd tHALER+]

Compute temperatures tTAtgh+l — [t+ALEr+1]-1 t+AtFh+1

Atk
Compute error norm E = min (H%A:frT:;}l’ |[tHAtght+t H‘Atqik”)

yes continue iterations

E.GT.TOL.
T k=k+1

l no
INITIATE NEW LOAD INCREMENT OR TIME STEP

Table 2. Quasi-static finite element solution algorithm for solid and flow approaches.




EXPLICIT DYNAMIC SOLUTION

DISPLACEMENT APPROACH | FLOW APPROACH
Mii + p(u) = f | Mii + p(a) =f
Mp = diag M | p(1) = K(i)u

(-)»1: Known values at time n — 1
u® =u 4 Al 4 Athii"_l
Compute x™, f", p™ ] Compute x™, f"
| Iterate for u", i® (i=1, NITER)

i” = Mp![f" — p] W2 = M+ SHKP)H{ — Kp(an! + i)}

et = G )| afyy = o B A )
CHECK CONTACT

NEW SOLUTION AT TIME n + 1

Table 3. Explicit dynamic solution in the displacement and flow approaches.

7. TECHNIQUES FOR GEOMETRY UPDATING

The simplest technique to update the metal geometry during the deformation process
is to use a Lagrangean approach. In this, the computed velocity (or displacement) field at
each time step is used to update the nodal grid points as shown in Table 2. This process
may lead to distorted meshes for highly deforming stages and remeshing is then necessary.

A secong alternative is to use the so called Arbitrary Lagrangean-Eulerian (ALE)
approach. Here the mesh grid nodes are decoupled from the velocity grid nodes, thus
allowing for a relative mouvement between the two grids. This technique is appropiate
for problems where only a small percentage of the total domain (generally the surface
boundary) changes its shape during the deformation. This part of the mesh is then updated
in a Lagrangean manner whereas a fixed Eulerian mesh is kept in the rest of the domain
(ref. 25).

A third alternative is worth being mentioned here. This is the so called “pseudo-
concentrations”method (refs. 25-29). The basic idea is to introduce a scalar function
which is advected through a fixed mesh accordingly to the velocity field obtained from the
solution of the flow problem. This function is defined in the whole domain and a certain
isovalue is used to define the front of the deforming metal. The unfilled region is assumed
to be occupied by a fictitious material (usually taken as air) whose physical properties are




such that its motion does not effects the dynamical behaviour of the moving metal. In
practice this implies to solve the following transport equation

W, ul'vy =0 (11)
ot
Where 1 is the scalar pseudo-concentration function defining the presence or absence
of metal. For instance we may assign the value 9 = 9. to the position of the metal front,
such that the metal filled region will be identified by the values ¥ > 1. and the position
of the air by ¥ < 9.

The finite element discretization of eq.(11) yields the following systems of equations
Cy + R(n) = f (12)

where % denotes the nodal values of the pseudo- concentration function.

Eq.(12) is solved once the velocity field has been obtained so that the metal front
can be appropiately updated for each time step. Note that eq.(11) is of hyperbolic type
and therefore techniques to avoid numerical instabilities must be used (refs.). Moreover,
matrix R in (12) is non-symmetric which introduces an aditional (although small) problem.
Despite of these apparent difficulties, the “pseudo-concentration”method has attracted

much attention in recent years for the solution of moving free surfaces in metal forming
problems (refs. 25-29).

8. TREATMENT OF FRICTIONAL CONTACT

Contact and friction appears as a consequence of the interaction between different bod-
ies. Such interaction is typical of metal forming problems. During the forming process the
metal interacts with the tools, adding a new source of complexity to the numerical simu-
lation due to the nonlinear nature of the boundary conditions. The numerical treatment
of frictional contact problems involves two main steps. First, a contact search procedure
must be done in order to detect the penetrations (kinematic incompatibilities) between
the different bodies involved in the analysis. Second, the penetrations detected must be
canceled and the kinematic compatibility constraints must be satisfied.

Different formulations for the numerical analysis of frictional contact problems have
been proposed. In the penalty method a penalized functional is added to the standard
functional of the unconstrained problem. The main drawback of this method is that the
constraints are exactly satisfied for infinite values of the penalty parameter only which
leads to an infinite ill-conditioning of the tangent operator. Otherwise, this is a very
simple way to enforce the constraints and it is quite easy to implement.

Frictional contact models can be described using a plasticity theory framework where
the penalty or regularization parameters may be viewed as constitutive parameters (refs.
18,19).

In the Lagrange multipliers technique a new field (the multipliers) is introduced by
means of a contact functional. This leads to an increase of the number of the unknowns
and of the system of equations to be solved. Furthermore the tangent operator is indefinite



(zero diagonal block associated with the multipliers) and special care must be taken during
the solution process. Its main advantage is that the constraints are satisfied ezactly.

Using the perturbed Lagrange multipliers method one can bypass this drawback as the
tangent operator is definite. With this approach both the penalty and Lagrange multipliers
methods can be formulated in an unified manner (ref. 20).

In the augmented Lagrangian method, traditionally used in conjunction with Uzawa’s
algorithm, the constraints are satisfied exactly at finite values of the penalty parameter.
This overcomes the problems associated to the choice of the penalty parameter and the
ill-conditioning of the tangent operator early mentioned. However, no increase of number
of the equations to be solved is produced and the multipliers are simply updated after each
converged equilibrium step (nested Uzawa’s algorithm) or after each equilibrium iteration
(simultaneous Uzawa’s algorithm) (ref. 21). In the first case an outer loop is needed but
otherwise quadratic rate of convergence must be expected if consistent tangent operators
have been used. In the later, no extra loops are needed but the update of the multipliers
destroys the quadratic rate of asymptotic convergence of the consistent Newton-Raphson
scheme (ref. 21).

Different Augmented Lagrangian formulations for frictional contact problems have been
recently proposed (ref. 21,22).

In the context of frictionless contact problems a formulation based on a three-field Hu-
Washizu type funcional has been proposed recently by Papadopoulus and Taylor (ref. 22).
In such a formulation contact between elements rather than between node and elements are
postulated, introducing an assumed gap function that is taken as an independent variable
in the formulation.

A similar procedure was previously proposed by Wriggers et al. (ref. 23) using a
two-field functional.

9. QUASI-STATIC VERSUS DYNAMIC METHODS

As shown in Table 2 the equations of motion must be integrated in both space and
in time. In most metal forming problems this integrations needs not to include inertia
contributions as they are negligible (ref. 24). The quasi-static approach shown in Table
2 is thus the more “natural” approach. Here the satisfaction of equilibrium conditions at
time ¢t 4+ At requires always the use of an iterative procedure. The use of iterative methods
incorporating conjugate gradient techniques can been employed to eliminate the obstacles
associated with the solution of the large system of equations typical of tridimensional
problems. Unfortunately, the stiffness matrix of thin elements can be ill-conditioned which
makes these iterative methods less effective for sheet metal forming problems.

Ezplicit dynamic methods have recently become very popular for the displacement
approach as they do not require the solution of a system of equations. The basis is the
solution of the dynamic equilibrium equations at time ¢, using an explicit integration
scheme with a diagonal mass matrix The basic algorithm is shown in Table 3 for both
the dispacement and flow aproaches neglecting temperture effects. The advantages of
displacement-based explicit dynamic methods is that the stiffness matrix does not need to
be formed and that contact conditions are accurately modelled because of the requirements



of the small time steps.

Moreover, they can be easily parallelized in SIMD parallel computers. However very
small time steps are required or the solution will become unstable and will grow without
bound. Another drawback of explicit dynamic methods is related to the difficulties of
consistently predicting the onset of local instabilities. Also the computations of spring
back effects in sheet forming problems requires the additions of “ad-hoc” damping terms
which are difficult to quantify in a rigourous manner.

The current debate between displacement based implicit quasi-static versus explicit
dynamic methods will be clarified when improvements in the parallelization of iterative
solvers for implicit codes are implemented and tested. It is envisaged that an “optimized”
implicit code could provide a more suitable procedure for the effective analysis metal
forming problems.

The inclusion of inertia effects in the flow approach has not received much attention
although an attempt was reported by in ref. 17 to treat impact problems in automobile
structures. This is most probably due to the fact that even if an explicit algorithm is
used, non linear system of equations must be solved for each time step (see Table 3),
thus destroying all the advantages of the direct explicit solutions also in the displacement
approach.

10. EXAMPLES

The first example, shown in Figure 1, is the solution of a steady state extrusion prob-
lem. This problem has been solved with the flow approach using Q3/P; quadrilateral
elements with quadratic interpolation for velocities and temperature and a discontinuos
linear interpolations for the pressure (refs. 1,29). Details on the geometrical and material
properties can be found in ref. 7.

Figure la shows the finite element mesh used whereas Figures 1b, 1c and 1d show the
velocity, temperature and pressure fields obtained in the computations.

The second example shown in Figure 2 is the mould filling by gravity of a rectangular
cavity. The problem is solved with a flow approach and the pseudo-concentration technique
described in Section 8. Figure 2a shows the mesh of Q)3/P; elements used in the analysis.
Figures 2b and 2c show the position of the fluid front and the evolutions of pressure
contours. Further information on this example can be found in ref. 29

The third example, shown in Figure 3, is the hot rolling of a rectangular slab. The
solution technique has been the same as for the previous example. The geometrical and
material properties can be found in ref. 7. Figure 3 shows the position of the metal front
and at different times and the temperature contours for the steade state solution.

The final example is the deep drawing of a circular sheet using a cylindrical punch.
The problem has been solved whith 3D membrane elements based on the flow approach.
For details on the geometrical, material and frictional properties see ref. 34. Figure 4
shows the deformation pattern of the sheet at different forming stages.

11. CONCLUDING REMARKS

Its is clear that the intrinsic difficulties of the numerical analysis of metal forming
problems have encouraged the developement of increasingy sophisticated computational



Figure 1. Plane strain extrusion. a) Geometry and mesh of 230 Q; /P; mixed finite elements used. b) velocity field.
c) Pressure contours and d) Evolution of temperature contours from initial to steady state stages.
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Figure 2. Mould filling by gravity. a) Geometry and mesh of 280 Q»/P; mixed finite elements used. b) Evolution of
metal front at different times. c) Pressure contours at different times.
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Figure 3. Hot rolling of a rectangular slab. a) Geometry and mesh of 340 Q;/P; mixed finite elements used. b)
Evolution of slab front with time. ¢) Temperature contours for steady state.
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Figure 4. Deep drawing of a circular sheet with a cylindrical punch. Deformation of the sheet at different drawing
stages.



procedures and a perspective of some of these has been presented in this paper. However,
the solution of real problems demands more efficient numerical procedures which should be
able to predict all parametersinvolved in the forming process in an accurate form. The need
for improvements in this area is clear and topics like the development of new robust and
accurate finite element methods and cost-efficient computational techniques, compatible
with the new parallel machines, will certainly be the object of extensive research in next
years.
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