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1 INTRODUCTION

Base isolation systems partially uncouple a structure from the seismic ground mo-
tion by means of specially designed, replaceable, devices inserted between the struc-
ture and its foundation. These devices are capable of absorbing part of the energy
induced by earthquakes [1-4] and drastically reduce the seismic action transmitted to
the structure. A numerical simulation of their effect on the seismic response of struc-
tures requires algorithms capable of analyzing structures with both elastomeric (hys-
teretic) bearings and sliding (frictional) bearings [5,6]. Different numerical schemes for
solving the equations of motion have been proposed. The most often used numerical
procedures are monolithic step-by-step integration schemes, that is, schemes that lead
to algebraic systems of equations involving both the degrees of freedom corresponding
to the structure and the foundation. On the other hand, there is the possibility of cou-
pling these two sets of unknowns interatively, rather than by solving the full algebraic
system. These iterative methods, when combined with the proper linearization of the
nonlinear terms, yield block iterative schemes as those considered in this paper. Their
capability for solving other problems, such as the dam-fluid interaction or the motion
of thermally driven flows, is described in reference [7]. In this paper, the application
of schemes of this type in computing the seismic response of building structures with
base isolation is considered, being this a problem of two systems coupled across their
boundary conditions. The corresponding equations of motion are first written and
details concerning the possibilities of numerical computation of the seismic response
are given. Different manners of formulating block iterative schemes are described in
a generic form and are then applied to the studied case. Their effectiveness is then
explored on the basis of a complete numerical example.



2 EQUATIONS OF MOTION

2.1 Formulation

In the following developments it is assumed that the isolated structure has a linear
behaviour due to the effect of the base isolator. Also the bearings will be considered to
be hysteretic, frictional, or a combination of both. Moreover, the base isolation system
is assumed to have only one degree of freedom, the displacement d, in the direction
of the earthquake. Under these conditions the corresponding system of equations of
motion for the building structure of Figure 1 is

MD+CD+KD=-M1J[d,+at) (1)

where D is the displacement vector relative to the base of the structure. The mass
matrix M, the damping matrix C, the stiffness matrix K and the vector J which
express the rigid body motion according to the degrees of freedom of the model, are
dependent on the procedure used in the spatial discretization. In the particular case
where the structure is modelled as a shear building, the matrix M is diagonal, K
is tri-diagonal and J is a unit vector. The damping matrix C is considered to be
of Rayleigh type and is computed using a direct modal evaluation method [8]. Jb
is the acceleration of the base relative to the ground, according to its single degree
of freedom and a(t) is the ground acceleration. System (1) does not contain the
equation corresponding to the degree of freedom of the base. The equation describing
its motion can be written as

J" M[D+3(d,+a)] +my(d, +a)+c,d, + k,dy + =0 2)

where f is the sum of the restoring force f, due to the hysteretic elements of the
bearing and f, the force due to the frictional elements. An adequate mathematical
description of these forces is required to solve the problem. m, is the mass of the
isolation system, k, the stiffness of its complementary elastic device and ¢, its damping
coefficient.

2.2 Computer simulation of the base isolators

The constitutive models which describe the behaviour of the seismic base isolation
system have to be able to consider [9]:

— The shear stiffness in hysteretic bearings before and after yielding.

— The loss of shear stiffness in hysteretic bearings as a function of the increment
of the axial force.

— The variation of the friction coefficient as a function of the velocity and the
pressure in frictional bearings.



The hysteretic isolation devices will be formulated using Wen’s constitutive model
[10-12], which expresses the force f, as

fi=1F= (3)

where f is the yield force and z an auxiliary variable expressed as a function of
the displacement d, of the base relative to the ground and of its derivative d This
variable is the solutlon of the differential equation

. . n . n—1
z=Ad, —v|z| d, —7|z| z|d,| (4)

The parameters A, v, v and n allow a description of the hysteretic cycles for a wide
range of materials from elastic to elasto-plastic ones.

For the frictional isolation devices, the calculation of the pure frictional force f, is
made by using the equation (10)

f, = pQsignd, (5)

where Q is the force perpendicular to the friction surface. The coefficient p is calcu-
lated from the equation

= gy — AP (6)

where £ is a constant, p,_, the frictional coefficient for high sliding velocities and Ap
the difference between p_ . and the frictional coefficient for slow sliding velocities,
which is also considered to be a constant [10]. Whenever the base sticks to the
foundation, the non-sliding condition

d, =0, d,=0, d=0 (7)
has to be applied. If this condition is applied to equation (2) then [12]

pQ—|myatd MD+J MJa|>0 (8)

Slip will occur if stick condition (8) fails and then equation (2) has to be used.



2.3 Criteria for selecting the solution procedure

The type of problem defined by equations (1) and (2) conditions the solution pro-
cedure that can be applied. This is because the force f has both hysteretic and
frictional components. The hysteretic component corresponds to a model which for
certain values of the parameters A, v, v and n produces great energy absorption, so
the problem is very nonlinear. The frictional component is characterized by a coeffi-
cient of friction that depends on the velocity and the additional stick condition given
in equation (8). In addition, all this is complicated by the fact that the isolation
system has stops that limit excessive displacements. From the point of view of the
equations of motion, these stops add a further condition to the treatment of the non-
linearity. During the time period when the base is stick against the stop there is no
interaction. Obviously, in a well designed isolation device these stops are not reached
for a seismic ground motion within the design range. Nevertheless, the structure-base
system is difficult to analyse and any numerical procedure requires the use of very
small time increments [12]. Step-by-step monolithic integration procedures have been
applied in all the consulted references [2-12]. They all have the disadvantage of re-
quiring a large number of iterations as their convergence process is very slow. This
paper considers an alternative method of block iteration to reduce the number of
iterations and improve convergence [7,13]. An efficiency study is made by comparing
the block iteration scheme to the monolithic scheme which treats non-linearity as an
iterative actualization of the force f in equation (2). Both methods are combined
with two discretizations in time: Newmark’s simple step method and the two-step
central difference scheme.

3 BLOCK ITERATIVE SCHEMES

3.1 General theory

This section explains the general method of block iteration to solve equations that
describe the behaviour of coupled systems through their boundary conditions. The
algorithm requires a certain discretization procedure for the equations of motion and
solves them in a single iterative loop that considers their linearization and coupling
[7,13].

The equations that describe a generic coupled problem of the type studied in this
paper may be reduced by the application of a discretization procedure to a non-linear
algebraic system with the form [13]

Ay, A, z q, ©
A, A,y Ly q,

where z and y are the vectors to be determined, ¢, and g, are the force vectors and
A;,i,j=12are matrices with A,, depending on y. The equations of system (9) are
coupled linearly. The matrix A,, is linearized in the following way:



1=1)

@, 6 _ L () (
Ap(y Dy mALy + ¥y ) (10)

L
where A, is a linearized form of A,,. Starting from equation (9) the following mono-
lithic form can be obtained

A11 A12 -’c(i)} |: q, ( )
— 11
i (i-1)
y() ‘12—'»1’(!/ )

Using equation (11) we can write the following coupling equations for block iteration:

Block-Jacob:

L
A21 A22

(i-1)

=4, — A12y (12)

L () (i-1) (i-1)

Ay =q¢, vy )-Aysz (13)

This represents a first approach for implementing the block iteration procedure. Equa-
tion (12) is solved first to give a value for z(z), and this is then used to solve equation

(13) to give the vector y(i). A second way of solving the problem (11) considers the
following way of expressing the equations:

Block-Gauss-Seidel

Az =gq, ALy (14a)
L (3) (i-1) (¥
Ay =gq,— P(y )— A,z (14b)
or

L () (i-1) (i-1)

Ay =g, P(y )—A,z (15a)
(1) (®)

Az =q -4y (15b)

In the case of equations (14), 2" is first calculated from equation (14a) and used to

solve equation (14b). In equations (15), y(z) is calculated from equation (15a) and
then used to solve equation (15b).

The Jacobi-block procedure is now applied to perform the analysis of structures
with base isolation.



3.2 Time discretization

As mentioned earlier, in order to develop a block iteration scheme, there must
be a discretization of time in the equations of motion. Two types of formulation are
considered. One uses the Newmark discretization for the velocity and the acceleration

[14]

. 1 . .
Di+1 = ﬁAtz [Di+l _Di_DiAt] -1~ gB)Di (16)
Di+1:'ﬁ7E(Di+1_Di)+(1_%)Di‘l‘(l— ZB)AtD (17)

and the other is based on a formulation of central differences [14]

Dizé [Di+1_2Di+Di—1] (18)
1
D _E [DH— _Di—l] (19)

In equations (16)—(19), the subscript refers to the time step considered.

3.3 The case of the uncoupled structure

To uncouple the equation (1) using the first ¢ modes of vibration, the displacement
vector is approximated as

D(t) ~ Z¢ yi(t) (20)

where ¢, is the eigenvector and the function y,(t) is the general coordinate corre-
spondlng to the mode of vibration i. An equation of the uncoupled system has the
following form [14]

T

()4 2,0, 5,(8) + iy, () = — D d (o) =12 (21)
Y; Wi Y; WoHt) = T Mo D ;o 1=1,2,..q

j
where v; and w; are the damping ratio and the eigenfrequency corresponding to the

mode of v1brat10n j. Transformation (20) is also applied to the variable D of equation

(2), giving

q .. . .
M[Z ®, yi(t)-}-J(db-I—a)] +my(d,+a)+c,d,+k,d,+f=0 (22)

i=1

In this way the system to be solved is made up of ¢ equations of type (21) and equation
(22). These equations may be expressed in the following compact form



®"MJ - " MJ
QTMde__QTMQa’( ) (23)

J+2vwytw’y+

T M®j+(J MI+my)d, +c,d, +h,dy+ f=—(J MJ)a(t)—m,a(t)  (24)

where ® is the modal matrix corresponding to the first ¢ modes of vibration with
dimensions (n X q), v is the diagonal matrix of damping ratios, w is the diagonal
matrix of frequency and w  the diagonal matrix of the squared frequencies. The
terms y, and g, in equation (22) and d, and d in equation (23) can be expresed in
function of the accelerations g; and d by applymg the Newmark discretization or
that of central differences. A problem Wlth the same characteristics as that described
by the system of equations (9) is thus produced. The procedure to be implemented
is therefore the same as that described earlier.

3.4 The case of the structure without uncoupling

A similar formulation is used for the case when the system of equations (1) is not
uncoupled. Equations (1) and (2) are written as follows

MD+MJd, +CD+KD=—-M Ja(t) (25)

T o T ” " T
J MD+(J MJ+m,)d,+c,d,+k,d,+f=—J MJa(t)—m,a(t) (26)
If discretization is applied we obtain once again get a system similar to (9).

4 STEP BY STEP INTEGRATION ALGORITHMS

In previous studies, the seismic response of base isolated structures has been simu-
lated by solving the system of equations composed of (1) and (2) using step-by-step
integration methods [2-12]. Generally speaking, such methods are applied in the
following sequence of operations:

1. If the modal uncoupling of equations (1) and (2) is used, the first ¢ modes of vi-
bration are calculated and the uncoupling performed, which produces equations
(23) and (24).

2. The computational process is started by initializing the values of the displace-
ment, velocity and acceleration responses of the structure.

3. The hysteretic force in equation (4) is solved numerically using the Runge-Kutta
scheme of fourth order. The value of z is thus obtained. A base displacement
limit has to be considered for each type of bearing analyzed.

4. Newmark’s or central difference step-by-step integration methods are used to
solve the equations of motion (25) and (26) or their uncoupled versions (23) and

(24).



5 EFFECTIVENESS OF THE BLOCK ITERATION SCHEME

5.1 Objectives and comparison criteria

The following study analyses the efficiency and convergence of the numerical block
iteration scheme applied to the problem of base isolated buildings and compares it
to the Newmark monolithic integration method. This comparison is made using
two different methods of time discretrization of the equations of motion: Newmark
differences and central differences. The comparison between these two methods uses
the number of iterations in each discretization instant and the variation of the residual
norm at a given time instant.

The comparison is carried out numerically, considering a shear building with ten
storeys and only one degree of freedom in a horizontal direction (Figure 1). The mass

of each of the ten storeys, as well as that of the base, is 6 x 10° Kg. The stiffness of
the columns in the structure varies by 5 x 10'N /m between storeys from 9 x 10°N /m

at the first level to 4.5 x 10° N/m at the top. The damping ratios have been fixed at
0.05 for all vibration modes.

Two types of base isolation were considered: hysteretic and frictional, as shown
schematically in Figure 2. In either of the two cases the damping ratio of the bearing
is 0.2 and its stiffness k, = 2 x 107N/m. For the aseismic hysteretic bearing, the
secant stiffness required in equation (2) is defined as a relation between the yield
limit fy and the yield displacement d’ of the isolation. In the analysis fy was equal

to 1.5 x 10° N and d” to 0.0245m. The constants defining the uniaxial hysteretic
model are A = 1.0, v = 0.5, ¥ = 0.5 y n = 1. The characteristics of the frictional
bearing are p,,,. =0.175, p_. =0.100 and S=2.

5.2 Time history of the response

The seismic excitation used in this case was an accelerogram of the El Centro (1940)
earthquake. Figure 3 shows the time variation of the displacement of the highest point
of the structure relative to the base for both the hysteretic and frictional cases as well
as when the building has fixed base. The figure shows the reduction in the response
when some type of base isolation is used in the building. It also shows that the
response in the hysteretic case is less than in the frictional case. The plots in Figure
4 show how the displacement of the base varies in relation to the foundations. This
figure also shows that this displacement is less in the frictional model than in the
hysteretic case. In figures 5 and 6 a comparison is shown between three different base
isolation systems and the fixed base system (FB). The mencioned base isolators are
the hysteretic (H), the hysteretic with a frictional system connected in series (H+F-
SER) and the hysteretic with a frictional system connected in parallel (H4-F-PAR).
Figure 7 shows the hysteretic behaviour of the system during the action of the El
Centro (1940) earthquake.
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Figure 2 Base isolation systems: (a) histeretic H; (b) frictional F.
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Figure 7 Variation of the restoring force in the hysteretic case.

5.3 Analysis of the efficiency of the procedure

A comparison was made of the efficiency of the iterative block scheme to the New-
mark method for the case that considers the modal uncoupling of the system of equa-
tions of the structure (including the 10 modes of vibration) as well as for the case
when this is not applied. The seismic excitation a(t) has been defined in this case as

the sinusoidal acceleration a(t) = Asen #t with an amplitude A of A de 3.5m/ s’ and
a frequency 6 of 10rad/s.

Figure 8 shows the results of the comparison between the Newmark method and
the iterative block scheme using the Newmark discretization with a tolerance of 1%.
In both cases modal uncoupling of the structure was applied. The process of iterative
blocks with Newmark discretization has a lower number of iterations throughout the
calculation of the response of the system. Figure 9 shows the same comparison using
central differences discretization. The iterative block scheme has a lower number of
iterations than the monolithic solution method for each of the calculation steps.

In figures 10 and 11 a comparison between the process of iterative blocks —using
Newmark’s and the central differences discretization— and the monolithic solution
method can be seen for the case in which the modal uncoupling was not used. It
can be observed that in both cases the blocks iteratives schemes are more efficient, as
they require a smaller number of iterations to calculate the response.

All the above results correspond to a hysteretic base isolation system. Figures
12 and 13 show the same comparison between the monolithic solution method and
the iterative block which uses the Newmark formulation, but for a frictional base

12
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isolation system. The results of Figure 12 correspond to the case of using prior modal
uncoupling, whereas Figure 13 shows the results of the system of equations without
uncoupling. Comparison of Figures 9 and 10 (frictional bearing) with Figures 8 and
9 (hysteretic bearing) shows that the average number of iterations is similar for both
types of bearings. Nevertheless, there is a greater variation in the number of iterations
between calculation steps in the frictional case.

5.4 Convergence analysis

This section analyzes the variation of the residual norm for cases using iterative
block schemes compared to cases using monolithic solutions. This comparison is made
at the step in which the maximum number of iteration occurres. A tolerance of 1%
in residual forces has been considered in the evaluation of the convergence of the
iterative process. Figure 14 shows the variation of the residual norm for the case of
the structure with hysteretic isolation for the Newmark formulation, whereas Figure
15 shows the solutions for the case of frictional isolation. The same comparison can be
seen in Figure 16 for the case of a hysteretic isolation, the central differences method
being used. Note that the variation of the residual norm is similar in the two cases
where the iterative block method is applied (Newmark and central differences).
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Figure 14 Variation of the residual norm, structure with hysteretic isola-
tion, Newmark method.

16



\\‘:Q\
\\\\\ -
N
=1 \\ \\\ =
~ NN
NN
N \\\\\ B
NN
i - \\\\\\__
Newmark frictional
—————— 10 modes-monolithic
—-—- 10 modes-block iterative
— — = Without uncoupling-monolithic -
—— — = Without uncoupling-block
T l T I T | T I T
5. 10. 15. 20. 25.
[teration

Figure 15 Variation of the residual norm, structure with frictional isolation,
Newmark method.

0
10

Norm

=
\\\
\\\\ ~
\\ \\\\\ ~
\ ~ \
\\\\\\\ S~
~ \:\\ \ =~
\\\ Ly \\
~ SO
\Q\\ ~ \
~ \\\\\\ \\
\\\\\\\
\\\\\\\\\

Central differences hysteretic

10 modes-monolithic

- 10 modes-block iterative
Without uncoupling-monolithic
=—— = Without uncoupling-block

T

|
5. 10. 20.
[teration

! T ! T T T T
15.

25.

Figure 16 Variation of the residual norm, structure with hysteretic isola-
tion, central differences method.

17




5.5 Comparison of computation times

This section analyzes the time used by the computer to solve the problem for the
various procedures described above. These times are taken for different modes of
vibration in the case including modal analysis and for the case without uncoupling,
for both the monolithic scheme and that of iterative blocks. The following tables
summarize the results obtained for the ten storey building described earlier and for the
sinusoidal vibration mentioned in section 5.3. Table 1 shows the CPU time obtained
in a VAX-6420 computer for the monolithic solution using the Newmark simple-
step method and Table 2 shows the times corresponding to the block iterative scheme
using the Newmark discretization. These tables show that the block iterative schemes
calculates the response of the system in less time than the monolithic scheme for all
cases analyzed.

Table 1— Calculation times for the monolithic scheme.

Modes Loops (s) Iterations (s) System solutions (s)
10 226.10621 0.02690 0.01221
5 146.95659 0.01879 0.00586
1 81.48294 0.01386 0.00210
No uncoupling 250.11798 0.02724 0.01180

Table 2— Calculation times for the block iteration scheme.

Modes Loops (s) Iterations (s) System solutions (s)
10 208.92214 0.02602 0.01124
5 122.46383 0.01761 0.00481
1 45.63047 0.01269 0.00175
No uncoupling 210.67212 0.02598 0.00967

6 CONCLUSIONS

In this paper we have described the application of a block iterative technique to a
nonlinear problem in structural analysis: the numerical simulation of the seismic re-
sponse of structures with nonlinear base isolation. The method couples the equations
describing the motion of the building with those of the isolated base. This coupling
is done by means of an iterative procedure that accounts for the nonlinearity of the
problem. This nonlinearity is particularly relevant for the type of isolation that we
have considered, that is, frictional and hysteretic.

In contrast to what happens when the monolithic system of equations is linearized,
the block iterative technique treats the nonlinearity together with the coupling. This,
apart from reducing the size of the problem by splitting it into two subproblems, may
improve the convergence behaviour of the iterative scheme.

18



The numerical experiments carried out show that in fact convergence improves
when the block iterative method is used for the problem that we have studied in
this work. It has to be noticed that the nonlinear terms have been linearized by
computing them in the iteration previous to the current one. For the block iterative
scheme, the resulting algorithm has a linear convergence rate with a slope steeper
than using the monolithic one, and more uniform. Moreover, due to the smaller size
of the subproblems to be dealt with, the computer time per iteration is also smaller.

Besides the better convergence and the less computer cost, another aspect that
makes the block iterative technique attractive is the ease for its numerical implemen-
tation in existing codes. For the problem treated in this paper, codes dealing with
fixed base structures are easily adapted simply by adding the equations corresponding
to the isolation system, no further modification of the construction of the matrices
and solution of the equations for the building being required.
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