

Numerically Stable Formulas for a

Material Point Based Explicit
Exponential Integrator

P. Nadukandi

Publication CIMNE Nº-408, July 2014

Numerically Stable Formulas for a

Material Point Based Explicit
Exponential Integrator

P. Nadukandi

Publication CIMNE Nº-408, July 2014

International Center for Numerical Methods in Engineering
Gran Capitán s/n, 08034 Barcelona, Spain

Numerically stable formulas for a material

point based explicit exponential integrator

Prashanth Nadukandi
Centre Internacional de Mètodos Numèrics en Enginyeria (CIMNE),

Edifici C1, Gran Capitan s/n, 08034 Barcelona, Spain.

Email: npras@cimne.upc.edu, Tel: +34934010795, Fax: +34934016517

July 9, 2014

Abstract

We present numerically stable formulas for the analytical solution in the closed form of the
so-called X-IVAS scheme in 3D. The X-IVAS scheme is a material point based explicit ex-
ponential integrator. An intermediate step in the X-IVAS scheme is the solution of tangent
curves for piecewise linear vector fields defined on simplicial meshes. This is what we refer
to as particle tracing of streamlines and independent formulas for the same can be easily
distilled from the ones presented for the X-IVAS scheme. The formulas involve functions
of matrices which are defined using the corresponding Newton interpolating polynomial.
The evaluation of these formulas is stable, i.e. a certain number of significant digits in the
computed values are guaranteed to be exact. Using the double-precision floating-point
arithmetic specified by the IEEE 754 standard, we obtain at least 10 significant decimal
digits in the worst case scenarios. These scenarios involve fourth-order divided differences
of the exponential function. Additionally, an optimal series approximation of divided
differences is presented which is an essential part of the exposition.

1 Introduction

The particle finite element method (PFEM) [1, 2] is a versatile particle based numerical
method. It is shown to successfully simulate a wide variety of engineering problems [3, 4, 5, 6].
A recent development within the framework of the PFEM is the X-IVAS (eXplicit Integration
along the Velocity and Acceleration Streamlines) scheme [7, 8]. The development of the X-
IVAS scheme is motivated in the quest to attain enhanced accuracy, stability and efficiency in
the numerical simulations. Efficiency is sought by formulating an explicit method that admits
large time steps (algorithmic efficiency) and which can make the best out of the available
computational capacity (resource efficiency) via parallel computations on multicore CPUs,
GPGPUs etc. Accuracy and stability are sought based on the notion that the streamlines are
a good approximation to the pathlines and time integration of position and velocity along
the streamlines yields a better and a more stable approximation than doing so via standard
finite difference time integrators.

In this article we focus on the analytical solution of the X-IVAS scheme and present
numerically stable formulas for the same in 2D and 3D. The analytical solution of the X-
IVAS scheme in 2D was given by Idelsohn et.al. [7]. The solution in 3D was omitted therein
pointing out that the extension to 3D is straightforward. The functions of matrices appearing

1

therein are defined using the Jordan canonical form of the same. In 2D, the analytical
procedure to express matrices in the Jordan form is straightforward. Unfortunately in 3D
(and for matrices of larger dimensions) the analytical procedure to arrive at the Jordan form
is arduous as repeated eigenvalues with different Jordan blocks might exist. As this procedure
is not described in [7], we infer that the use of a numerical library, e.g. LAPACK, is suggested
for this purpose. As the Jordan structure of a 3D matrix involves multiple cases, we beg to
differ with [7] that it is not trivial to derive and implement (code) the approach suggested
therein to evaluate the analytical solution of the X-IVAS scheme in 3D.

A similar procedure to compute analytically the streamlines on a linear tetrahedra was
presented by Diachin and Herzog [9]. Therein, the functions of matrices were computed using
a procedure based on matrix decomposition methods. The singular value decomposition was
used to determine the matrix rank which in turn was used to classify the calculation procedure
into four cases in 3D. Using the matrix Schur decomposition the functions of matrices were
transformed to equivalent functions of upper triangular matrices. The evaluation of the latter
was done following a recursive relation proposed by Parlett [10].

Despite being analytical in nature, we do not consider the calculation procedures in [9, 7]
as formulas as they are not expressed in the closed form. Formulas for particle tracing of
streamlines in 3D were first presented by Nielson and Jung [11]. To be precise, formulas were
given in 2D and 3D for the analytical solution of tangent curves for linearly varying vector
fields over tetrahedral domains. These formulas are algebraically elegant and are expressed
in the closed form. We infer from the algebraic structure of these formulas that the functions
of matrices appearing therein are defined using the corresponding Lagrange interpolating
polynomial. In 2D, the analytical solution of the tangent curves are classified into five cases
which depend on the eigenvalues of the system matrix. In 3D, nine cases are contemplated
for the same.

Unfortunately, using finite precision arithmetic the as is evaluation of the expressions
that appear in the analytical solution procedure of [7] and in the formulas of [11] are only
conditionally stable. Numerical instabilities occur in a neighbourhood of the removable sin-
gularities present in these expressions. These instabilities are caused by cancellations in finite
precision arithmetic leading to a gradual loss of significant digits. This introduces evaluation
errors that gradually build up as we approach the points of removable singularities. To make
matters worse, these instabilities are not evident unless of course when they are catastrophic.
This is best explained using an example. Consider the following formula defined in a piecewise
manner,

ϕ(λ, t) :=


eλt − 1

λ
if λ 6= 0,

t if λ = 0.
(1)

It is clear that when λ = 0 we have a singularity in the expression (exp(λt)− 1)/λ. This
singularity is removed by defining ϕ(0, t) = t, i.e. by assigning the value (exp(λt)−1)/λ takes
in the limit λ→ 0. It is in this piecewise manner that all the cases of removable singularities
present in the formulas were defined in [7, 11]. Following the examples presented in [11],
demonstrating the formula evaluation for λ = 0 (the singular case) and for some λ = O(1)
(the case λ 6= 0) is not sufficient to claim that these formulas are stable when working with
finite precision. In fact, this is a typical example used to demonstrate numerical instabilities
in formula evaluations [12, 13].

In practice, the values which λ takes could be a result of a previous computation which

2

might include a negligible roundoff error. So the singular case λ = 0 might actually occur as
λ = 0 ± ε where 0 < ε � 1. It follows that the case λ 6= 0 will be used in the evaluation of
ϕ(0± ε, t) were we might loose all the significant digits due to cancellation. It is not unusual
to find a relative evaluation error greater than 100% whenever λ takes a value in a sufficiently
close neighbourhood of 0. Errors of this magnitude render the evaluation meaningless.

The conditional stability issue also extends to analytical solution procedure presented in
[9]. Although the matrix decompositions are generally not unique, they are robust/stable
with respect to rounding errors. However, the recursive algorithm used to compute the
exponential function of block upper triangular matrices breaks down in certain situations.
Moreover implementations in finite precision arithmetic can be expected to give inaccurate
results in other particular situations, cf. [10, page 199]. The message is clear: irrespective
of the choice of the solution procedure, issues related to numerical instability exist and they
need to be addressed.

Further, once such instabilities are identified, it is often not trivial to localize the terms in
these formulas that participate to obtain a finite limit at the removable singularities. Identi-
fying such terms is crucial to control numerical instabilities and bound the loss of significant
digits. We discuss these issues here and present algebraically equivalent yet numerically stable
formulas for particle tracing of streamlines and the X-IVAS scheme in both 2D and 3D.

This paper is organized as follows. The convention used in the kinematic description of
the flow is briefly described in Section 2. Section 3 describes the X-IVAS scheme and its
analytical solution with sufficient detail. Although we could have referred to the original
paper [7] for the same, we redo this part for the sake of completeness and to use a uniform
convention throughout the exposition. As the analytical solution of the X-IVAS scheme
involves functions of matrices, we dedicate Section 4 to this topic. Here we explain why we
choose to define functions of matrices using its Newton interpolation polynomial. Using this
definition we present formulas for exponential functions of 2×2 and 3×3 matrices in Section
4.2. We briefly summarize the formulas for the eigenvalues of 2 × 2 and 3 × 3 matrices in
Section 4.3. In Section 5 we discuss the stable evaluation of formulas using finite precision
arithmetic. The issue with unstable evaluations near removable singularities present in the
formulas are explained using an example. In Section 5.2 we briefly summarize how double-
precision floating-point numbers are stored as per the IEEE 754 standard. The optimal
series approximation of divided differences are presented in Section 5.3. In Section 5.4, the
stable piecewise evaluation technique used in this work is explained in detail via an example.
Following this technique we present in Section 5.5 the stable piecewise definition of all the
expressions in the solution of the X-IVAS scheme which otherwise yield unstable evaluations.
A proposal for the implementation of the stable formulas is summarized in Section 6 and
some examples are presented in Section 7.

2 Preliminaries

In this section we describe briefly the convention used in the description of the flow. The
independent variables in Lagrangian kinematics are (χ, t), where χ represents a label to
identify particles (material points) and t represents the time elapsed after labeling. The
primary dependent variable is the fluid particle trajectory denoted as X(χ, t). The initial
particle positions denoted by X0 := X(χ, 0) are assumed to be given. A natural choice for
the label χ is the ordered triple X0. The Lagrangian velocity and acceleration, denoted as

3

Ẋ(χ, t) and Ẍ(χ, t), respectively are defined as follows.

Ẋ(χ, t) :=
d

dt
X(χ, t), Ẍ(χ, t) :=

d2

dt2
X(χ, t) (2)

On the other hand, the independent variables in Eulerian kinematics are (x, t). Here x
denotes the spatial coordinate. The primary dependent variable is the fluid velocity u(x, t).
The so-called fundamental principle of kinematics [14] states that the velocity u(x, t) and
acceleration a(x, t) at a given time t and fixed position x (Eulerian description) is equal to
the velocity Ẋ(χ, t) and acceleration Ẍ(χ, t) of a particle that is present at that position and
at that instant (Lagrangian description). Thus,

u(x, t) =
d

dt
X(χ, t)

∣∣∣∣
X(χ,t)=x

, a(x, t) =
d2

dt2
X(χ, t)

∣∣∣∣∣
X(χ,t)=x

(3)

As a corollary we have the following exact but implicit equations of particle motion.

d

dt
X(χ, t) = u(X(χ, t), t),

d2

dt2
X(χ, t) =

d

dt
Ẋ(χ, t) = a(X(χ, t), t) (4)

3 The X-IVAS scheme

3.1 Introduction

The X-IVAS scheme is a material point based explicit exponential integrator; cf. [15, 16, 17]
for an overview of exponential integrators. The idea is to perform the time integration not
along the pathlines which are yet unknown but along the streamlines obtained for the latest
known configuration. The latter choice makes the method explicit and permits one to use
very large time steps (e.g. 20-25 times the classical CFL limit [7]) which reduce significantly
the computational time. Following this idea the equations of motion are given by,

d

dt
X(χ, t) = u(X(χ, t), tn),

d

dt
Ẋ(χ, t) = a(X(χ, t), tn) (5)

We remark that the X-IVAS scheme is just based on the above idea and that Eq. (5) will be
subjected to further simplifications before we fix the approximate equations of motion. This is
because the data corresponding to the dependent variables is stored with the particles which
form a sufficiently large yet finite set. It implies that the data at any given time is available
as discrete samples at the spatial locations occupied by the particles. Data interpolation
is inevitable to have spatially continuous vector fields and to solve for the particle motion.
Hence in the equations of motion u(x, tn) and a(x, tn), which are unknown for an arbitrary
x are replaced by the interpolated counterparts uh(x, tn) and ah(x, tn), respectively. The
superscript h represents the discretization size associated to the interpolation. It follows
that the trajectory obtained from these interpolated vector fields needs to be represented as
Xh(χ, t).

In the following we describe the X-IVAS scheme to integrate the equations of particle
motion from time tn to tn+1 as a four step process.

Step 1: Projection. This step involves the projection of vector fields stored with the
particles onto a simplicial mesh. Consider a simplicial mesh over the problem domain and

4

a set of characteristic domains corresponding to every node of the mesh. Let P i be an
operator that projects data onto a mesh node with index i from a set of sample points in the
corresponding characteristic domain. Using this projection operator we calculate the velocity
ūi(tn) and acceleration āi(tn) vector fields at the mesh nodes as follows.

ūi(tn) := P i[Ẋ(χ, tn)], āi(tn) := P i[Ẍ(χ, tn)] (6)

This projection step is unnecessary when tn = 0 where one can obtain ūi(0) and āi(0)
directly from the prescribed initial conditions.

Step 2: Interpolation. In this step we do a piecewise linear interpolation of vector fields
projected onto the mesh nodes. Using the velocity ūi(tn) and acceleration āi(tn) vector fields
at the mesh nodes we construct a piecewise linear interpolation of these vector fields as follows.

uh(x, tn) := Ni(x)ūi(tn), ah(x, tn) := Ni(x)āi(tn) (7)

In the above equation Ni(x) represents the piecewise linear shape function corresponding
to the node i. Let xj denote the spatial coordinate of node j, 〈 〉j denote the average operator
over the index j and δij denote the Kronecker delta. For a given simplex, we can express
Ni(x) in terms of its gradient ∇Ni (which is constant within the simplex) and the spatial
coordinate x as follows.

Ni(x) := ∇Ni ·(x− 〈xj〉j) +
1i

δkk
(8)

Using the above equation uh(x, tn) and ah(x, tn) can be expressed within each simplex
as follows.

uh(x, tn) = [ūi(tn)⊗∇Ni] · (x− 〈xj〉j) + 〈ūj(tn)〉j = An · x + bn (9)

ah(x, tn) = [āi(tn)⊗∇Ni] · (x− 〈xj〉j) + 〈āj(tn)〉j = Cn · x + dn (10)

Here ⊗ denotes the tensor product. Further, An,bn,Cn and dn are constant tensors
evaluated for each simplex at time tn and are defined as follows.

An := [ūi(tn)⊗∇Ni], bn := 〈ūi(tn)〉i −An · 〈xi〉i (11)

Cn := [āi(tn)⊗∇Ni], dn := 〈āi(tn)〉i −Cn · 〈xi〉i (12)

Step 3: Integration. Here we describe the time integration of the approximate equations
of particle motion. The approximate equations of motion for the particles in the X-IVAS
scheme can be written as follows.

d

dt
Xh(χ, t) = uh(Xh(χ, t), tn),

d

dt
Ẋh(χ, t) = ah(Xh(χ, t), tn) (13)

Recall that the above equations are expressed in a piecewise manner as both uh and ah

are defined in this manner. To be precise, within each simplex the particle motion is driven
by the following equations which vary from one simplex to another.

d

dt
Xh(χ, t) = An ·Xh(χ, t) + bn,

d

dt
Ẋh(χ, t) = Cn ·Xh(χ, t) + dn (14)

Likewise, the time integration of these equations should also be done in a piecewise manner.
In other words, if a particle tends to exit the current simplex prior to the end of the time step,

5

its subsequent motion is driven by the equations written for the simplex in which it tends to
enter and so forth until the end of the time step.

Further, certain relationships that existed between the dependent variables in the ex-
act equations of motions no longer hold for the corresponding variables in the approximate
equations of motion. That is,

Ẋh(χ, t) 6= d

dt
Xh(χ, t), Ẍh(χ, t) :=

d

dt
Ẋh(χ, t) 6= d2

dt2
X(χ, t), (15)

Nevertheless, the X-IVAS scheme is consistent in the sense that these relations are recov-
ered as the discretization size h → 0. The analytical solution to the pair of equations given
in Eq. (14) can be written within each simplex as follows.

Xh(χ, t) = e(t−t
n)An ·Xh(χ, tn) +

[∫ t

tn
e(t−τ)A

n
dτ

]
· bn (16)

Ẋh(χ, t) = Ẋh(χ, tn) + Cn ·
[∫ t

tn
Xh(χ, τ) dτ

]
+ (t− tn)dn (17)

Note that the particle motion is restricted to the tangent curve of uh(x, tn) (i.e. the
streamline) on which it was located at time tn and is accelerated along this curve up to time
tn+1. Note that the solution for the particle velocity Ẋh(χ, t) is given as an integral of the
particle position Xh(χ, t). This integral is left here as is for compactness and its evaluated
form will be given in the following section.

Step 4: Update. In this step we update the dependent variables at time tn+1 and repeat
the process. At the end of the time step we obtain Xh(χ, tn+1) and Ẋh(χ, tn+1) which are
governed by the kinematics of the flow. The state of Ẍh(χ, tn+1) is governed by the dynamics
of the internal and the external force terms that appear in the momentum balance equation
of the flow.

3.2 Remarks on the analytical solution

In this section we simplify the analytical solution given in Eq. (16) and Eq. (17) and identify
relationships among the terms that appear therein, if any. Consider three matrices P,Q and
R which in turn are defined as functions of a given matrix A and a scalar τ as follows.

P(τ,A) := eτA, Q(τ,A) :=

∫ τ

0
eξA dξ, R(τ,A) :=

∫ τ

0

∫ η

0
eξA dξ dη (18)

As it can be seen from the above equation, the considered matrices are exponential func-
tions of the given matrix A. The matrix P is usually called the propagator [18]. The following
relationships can be identified between the matrices P and Q.

Q(τ,A) =

∫ τ

0
P(ξ,A) dξ =

[
eτA − I

]
· inv(A) = [P(τ,A)− I] · inv(A) (19)

⇒ P(τ,A) = Q(τ,A) ·A + I (20)

Likewise, the matrices Q and R satisfy the following relationships.

R(τ,A) =

∫ τ

0
Q(ξ,A) dξ =

[(
eτA − I

)
· inv(A)− τI

]
· inv(A) (21)

R(τ,A) = [Q(τ,A)− τI] · inv(A), ⇒ Q(τ,A) = R(τ,A) ·A + τI (22)

6

In the above equations inv(A) denotes the matrix inverse of A. Further, the products
involving inv(A) and A in these equations are commutative, i.e. the order in which they
appear are irrelevant. Using these definitions, we can express the analytical solution of the
equations of motion in the X-IVAS scheme as follows.

Xh(χ, t) = P(t− tn,An) ·Xh(χ, tn) + Q(t− tn,An) · bn (23)

Ẋh(χ, t) = Ẋh(χ, tn) + Cn · [Q(t− tn,An) ·Xh(χ, tn) + R(t− tn,An) · bn] + (t− tn)dn

(24)

Recall that a nodal projection of the data carried by the particles onto the background
mesh is done after every time step and the tensors An,bn,Cn and dn have to be recalculated
for each element using the projected data. It follows that the matrices P,Q and R also need
to be recalculated for each element after every time step.

3.3 Piecewise integration using Newton linearisation

In this section we explain an approach to perform the piecewise integration of particle motions
described earlier in the paragraph following Eq. (14). The task effectively reduces to finding
the exit points of the particles on the simplex boundary. To find the exit points we need to
solve the intersection of its trajectory with the simplex boundary. The procedure followed
here to solve for the exit points was presented earlier by Kipfer et.al. [19].

Recall that for any simplex, the boundary consists of three straight edges in 2D and
four flat faces in 3D. Let x̃ denote the centroid of an edge/face of a 2D/3D simplex and Λ
denote the normal to the considered edge/face. The equation of the line/plane containing the
edge/face is given by,

(x− x̃) ·Λ = 0 (25)

Substituting x = Xh(χ, t) in the above equation, we get the equation for the intersection
of the particle trajectory with the considered edge/face of the simplex. Thus the intersection
point satisfies,

Λ ·
[
x̃−P(t− tn,An) ·Xh(χ, tn)−Q(t− tn,An) · bn

]
= 0 (26)

⇒ Λ ·
[
x̃−Xh(χ, tn −Q(t− tn,An) · [An ·Xh(χ, tn) + bn]

]
= 0 (27)

In the above equation we solve for the time when the particle trajectory intersects the
considered edge/face of the simplex. This is an implicit equation and we solve it using the
Newton’s linearisation method. Let δti and ri denote the time increment and the residual at
the ith iteration, respectively. The iterative solution procedure can be described as follows.

ri := Λ ·
[
x̃−Xh(χ, tn −Q(ti − tn,An) · [An ·Xh(χ, tn) + bn]

]
(28)

δti := ti+1 − ti, ri +
dri

dt
δti = 0 (29)

Simplifying the above equation, we can express the time increment δti as follows.

δti =
Λ ·
[
x̃−Xh(χ, tn −Q(ti − tn,An) · [An ·Xh(χ, tn) + bn]

]
Λ · [P(ti − tn,An) · [An ·Xh(χ, tn) + bn]]

(30)

7

Clearly any acceptable solution for an exit point should be such that t ≥ tn. This process
should be done for all the edges/faces of the simplex and the smallest of all acceptable solutions
should be chosen.

In the Newton’s linearisation method the matrices P,Q and R have to be evaluated
at every iteration as the time increments need not be uniform. Should one decide to use
analytical sub-stepping procedures to arrive at the exit point and if a constant sub time step
is used for all the particles throughout the sub-stepping procedure, then we need to compute
these matrices for each element just once. The incremental method for computing tangent
curves [11] and the analytical time stepping algorithm called ANTS [9] are based on this idea.

4 Formulas for evaluating functions of matrices

4.1 Introduction

In this section we describe the extension of a scalar function f(λ) of a scalar argument λ to
the case when the argument is a square matrix A. Let the size of A be n×n and assume that
f(λ) takes well-defined values (including values associated with derivatives where appropriate)
at the eigenvalues of A denoted by the sequence Z := {λ1, λ2, · · · , λn}. In particular we will
focus on the exponential function exp(λ) as it plays a major role in the terms of the analytical
solution described in the earlier section.

Functions of matrices can be defined in various yet equivalent ways; cf. [20] for a com-
prehensive presentation of the same. One such definition is a direct extension to matrix
arguments of the Taylor series of f(λ). Specifically for exp(λ), the series converges absolutely
and ultimately very quickly (n! grows at a much faster rate than λn). However, representing
f(A) by Taylor series is seldom done in practice as often a large number of terms must be
added up until every subsequent term is smaller than the sum of the series.

Despite popular choices to represent f(A) either via the Jordan canonical form of A or by
the Hermite interpolating1 polynomial, in this work we will use the definition that represents
f(A) by the Newton interpolating polynomial. The coefficients of the Newton interpolating
polynomial have the algebraic structure of divided differences. On the one hand, it warns
us about the gradual loss of significant digits in some limit cases2 due to cancellations in
floating point arithmetic; divided differences are known to suffer from cancellation errors near
removable singularities. On the other hand, it paves way to systematically design procedures
for the stable evaluation of f(A) near removable singularities. By stable evaluation we mean
that a certain number3 of significant digits in the computed values are guaranteed to be exact.
Further, unlike the Hermite interpolating polynomial, the Newton interpolating polynomial
is independent of the Jordan structure of A which makes it convenient to implement in a
computer program.

We denote the kth-order divided difference of f(λ) on the subsequence Zki := {λi, λi+1, · · · ,
1The use of the phrase interpolating polynomial does not imply that f(A) defined in this way is an approx-

imation
2For instance, when some of the eigenvalues are zero or are sufficiently close to each other leading to nearly

confluent divided differences.
3In the worst case scenarios, for the terms involving the second, third and fourth order exponential divided

differences, this number is usually above 14, 12 and 10 digits, respectively

8

λi+k} as f[λi; λi+1; · · · ; λi+k] and define it using the following recurrence equations.

f[λi] := f(λi) (31)

f[λi;λi+1; · · · ;λi+k] :=
f[λi+1;λi+2; · · · ;λi+k]− f[λi;λi+1; · · · ;λi+k−1]

λi+k − λi
(32)

λi = λi+1 = · · · = λi+k ⇒ f[λi;λi+1; · · · ;λi+k] :=
1

k!

∂k

∂λk
f(λ)

∣∣∣∣
λ=λi

(33)

It is a well-known fact that the value of f[λi; λi+1; · · · ; λi+k] does not depend on the order
of λi, λi+1, · · · , λi+k in Zki . In other words f[λi; λi+1; · · · ; λi+k] is a symmetric function of λi,
λi+1, · · · , λi+k. The Newton interpolating polynomial p(λ) for f(λ) is expressed as follows.

p(λ) := f[λ1] +
n−1∑
k=1

f[λ1;λ2; · · · ;λ1+k](λ− λ1)(λ− λ2) · · · (λ− λk) (34)

p(λi) = f(λi), ∀i ∈ {1, 2, · · · , n} (35)

A fundamental result in matrix theory which can be used to evaluate f(A) is that,

f(A) = p(A) = f[λ1]I +
n−1∑
k=1

f[λ1;λ2; · · · ;λ1+k](A− λ1I)(A− λ2I) · · · (A− λkI) (36)

It is possible to write the kth divided difference f[λ1; λ2; · · · ; λ1+k] as follows4.

f[λ1;λ2; · · · ;λ1+k] :=

1+k∑
i=1

f(λi)∏
j 6=i(λi − λj)

, j ∈ {1, 2, · · · , 1 + k} (37)

We do not prefer to make the above simplification to arrive at an elegant form as it does
not avoid existing issues related to cancellation errors and makes matters worse by obscuring
them5.

Henceforth we restrict the exposition to the cases where n ≤ 3. These are the only cases
to be considered to express the solution of the X-IVAS scheme in closed form. For n = 3, we
can evaluate f(A) as follows.

f(A) = f(λ1)I + f[λ1;λ2](A− λ1I) + f[λ1;λ2;λ3](A− λ1I)(A− λ2I) (38)

Without loss of generality we assume that the eigenvalue λ3 is a real number and the
eigenvalues λ1 and λ2 might be complex numbers. Complex eigenvalues will always occur
in conjugate pairs, i.e. {λ1, λ2} = {λc, λ∗c}. The subscript c indicates that it is a complex
number and the superscript ∗ indicates that it is a complex conjugate.

Although Eq. (38) holds for all eigenvalues, this form is convenient to implement in a
computer program when the eigenvalues are real numbers. In the case of complex eigenvalues
Eq. (38) can be simplified to evaluate f(A) as follows.

f(A) =
Im[f∗(λc)λc]

Im[λc]
I +

Im[f(λc)]

Im[λc]
A

+

[
f(λ3) Im(λc)− λ3 Im[f(λc)]− Im[f∗(λc)λc]

Im[λc]

] [
A2 − 2 Re(λc)A + |λc|2I
λ23 − 2 Re(λc)λ3 + |λc|2

]
(39)

4Using this identity we can transform the formulas given here to the ones presented by Nielson and Jung
[11]

5The example in Section 5.1 drives the point home

9

Here, the functions Re(λc) and Im(λc) return the real and imaginary parts of a complex
argument λc, respectively.

4.2 Formulas for exponential functions of 2× 2 and 3× 3 matrices

In this section we consider the case when f(λ) := exp(τλ) and write the expressions for
the matrices P(τ,A), Q(τ,A) and R(τ,A) which were defined earlier in Eq. (18). It is
straightforward to verify the following results.∫ τ

0
eξλ dξ =

eτλ − 1

λ
= τ exp[0; τλ] (40)∫ τ

0

∫ η

0
eξλ dξ dη =

eτλ − 1− τλ
λ2

= τ2 exp[0; 0; τλ] (41)

Following this line we define two auxiliary functions q(x) and r(x) which are divided
differences of the exponential function.

q(x) := exp[0;x] =


ex − 1

x
if x 6= 0,

1 if x = 0.
(42)

r(x) := exp[0; 0;x] = q[0;x] =


ex − 1− x

x2
if x 6= 0,

1

2
if x = 0.

(43)

Using these auxiliary functions we can express P(τ,A),Q(τ,A) and R(τ,A) as follows.

P(τ,A) = eτλ1I + τ exp[τλ1; τλ2](A− λ1I) + τ2 exp[τλ1; τλ2; τλ3](A− λ1I)(A− λ2I) (44)

Q(τ,A) = τ q(τλ1)I + τ2 q[τλ1; τλ2](A− λ1I) + τ3 q[τλ1; τλ2; τλ3](A− λ1I)(A− λ2I)
(45)

R(τ,A) = τ2 r(τλ1)I + τ3 r[τλ1; τλ2](A− λ1I) + τ4 r[τλ1; τλ2; τλ3](A− λ1I)(A− λ2I)
(46)

The expression for P(τ,A) is a trivial extension of Eq. (38). We obtain Q(τ,A) by
integrating the terms in P(ξ,A) with respect to ξ; cf. Eq. (19). Likewise, R(τ,A) is
obtained by integrating the terms in Q(ξ,A) with respect to ξ; cf. Eq. (21). We have used
the following results to arrive at these equations.∫ τ

0
ξ exp[ξλ1; ξλ2] dξ = τ

exp[0; τλ2]− exp[0; τλ1]

λ2 − λ1
= τ2 q[τλ1; τλ2] (47)∫ τ

0
ξ2 exp[ξλ1; ξλ2; ξλ3] dξ =

∫ τ

0
ξ

exp[ξλ2; ξλ3]− exp[ξλ1; ξλ2]

λ3 − λ1
dξ

= τ3 q[τλ1; τλ2; τλ3]

(48)

∫ τ

0

∫ η

0
ξ exp[ξλ1; ξλ2] dξ dη = τ2

exp[0; 0; τλ2]− exp[0; 0; τλ1]

λ2 − λ1
= τ3 r[τλ1; τλ2] (49)∫ τ

0

∫ η

0
ξ2 exp[ξλ1; ξλ2; ξλ3] dξ dη =

∫ τ

0

∫ η

0
ξ

exp[ξλ2; ξλ3]− exp[ξλ1; ξλ2]

λ3 − λ1
dξ dη

= τ4 r[τλ1; τλ2; τλ3]

(50)

10

Let α, β be real numbers and consider a complex number λc as defined below.

i :=
√
−1, λc := α+ iβ, ⇒ λ∗c = α− iβ (51)

The cardinal sine function sinc(x) is defined as follows.

sinc(x) :=


sin(x)

x
if x 6= 0,

1 if x = 0.
(52)

Further, define two auxiliary functions Ψ(x, y) and Φ(x, y) as follows.

Ψ(x, y) := cos(y)− x sinc(y) (53)

Φ(x, y) := exp[−iy;x; iy] =


ex −Ψ(−x, y)

x2 + y2
if (x, y) 6= (0, 0),

1

2
if (x, y) = (0, 0).

(54)

In the case of complex eigenvalues, i.e. {λ1, λ2} = {λc, λ∗c} we can evaluate P(τ,A),Q(τ,A)
and R(τ,A) as follows.

P(τ,A) = eτα
[
Ψ(τα, τβ)I + τ sinc(τβ)A + τ2 Φ(τλ3 − τα, τβ)[(A− αI)2 + β2I]

]
(55)

Q(τ,A) = τeτα
[

sinc(τβ)I + τ Φ(−τα, τβ)(A− 2αI)

+ τ2 Φ(?, τβ)[−τα; τλ3 − τα][(A− αI)2 + β2I]
] (56)

R(τ,A) = τ2eτα
[

Φ(−τα, τβ)I + τ Φ(?, τβ)[−τα;−τα](A− 2αI)

+ τ2 Φ(?, τβ)[−τα;−τα; τλ3 − τα][(A− αI)2 + β2I]
] (57)

The expression for P(τ,A) is a trivial extension of Eq. (39) and the choice of the auxil-
iary functions Ψ(x, y) and Φ(x, y) is motivated by the structure of the same. The notation

Φ(?, y)[x1;x2] means that the divided differences are to be taken with respect to the vari-
able in whose place the symbol ? appears. The rest of this section describes some results
which were used to arrive at the expressions for Q(τ,A) and R(τ,A) from the expression for
P(τ,A).

The following integrals are straightforward.∫ τ

0
eξα cos(ξβ) dξ =

eτα[α cos(τβ) + β sin(τβ)]− α
α2 + β2

= τeτα[sinc(τβ)− ταΦ(−τα, τβ)] (58)∫ τ

0
eξα sin(ξβ) dξ =

eτα[α sin(τβ)− β cos(τβ)] + β

α2 + β2
= τ2βeτβ Φ(−τα, τβ) (59)

⇒
∫ τ

0
eξα Ψ(ξα, ξβ) dξ = τeτα[sinc(τβ)− 2ταΦ(−τα, τβ)] (60)

11

Using Eqs. (59) and (60) we obtain the following result.∫ τ

0
eξαξ2 Φ(ξλ3 − ξα, ξβ) dξ =

∫ τ

0

eξλ3 − eξα[Ψ(ξα, ξβ) + ξλ3 sinc(ξβ)]

(λ3 − α)2 + β2
dξ (61)

= τ

[
q(τλ3)− eτα[sinc(τβ) + τ(λ3 − 2α) Φ(−τα, τβ)]

(λ3 − α)2 + β2

]
(62)

= τeτα
[

[eτλ3 − 1]e−τα − τλ3[sinc(τβ) + τ(λ3 − 2α) Φ(−τα, τβ)]

τλ3[(λ3 − α)2 + β2]

]
(63)

= τeτα
[

eτλ3−τα −Ψ(τα− τλ3, τβ)− τ2[(λ3 − α)2 + β2] Φ(−τα, τβ)

τλ3[(λ3 − α)2 + β2]

]
(64)

= τ3eτα
[

Φ(τλ3 − τα, τβ)− Φ(−τα, τβ)

(τλ3 − τα)− (−τα)

]
= τ3eτα Φ(?, τβ)[−τα, τλ3 − τα] (65)

The results given in Eqs. (59), (60) and (65) are used to obtain Q(τ,A) from P(τ,A).
Substituting λ3 = 0 in Eq. (65) we get the following result.∫ τ

0
eξαξ2 Φ(−ξα, ξβ) dξ = τ3eτα Φ(?, τβ)[−τα;−τα] (66)

Using Eqs. (65) and (66) we arrive at the following result.∫ τ

0
eξαξ3 Φ(?, ξβ)[−ξα; ξλ3 − ξα] dξ =

∫ τ

0
eξαξ2

Φ(ξλ3 − ξα, ξβ)− Φ(−ξα, ξβ)

λ3
dξ (67)

= τ3eτα
[

Φ(?, τβ)[−τα; τλ3 − τα]− Φ(?, τβ)[−τα;−τα]

λ3

]
(68)

= τ4eτα Φ(?, τβ)[−τα;−τα; τλ3 − τα] (69)

The results given in Eqs. (59), (66) and (69) are used to obtain R(τ,A) from Q(τ,A).
Recall that we have considered the case when n = 3 (3D problems) and note that the

equations for P(τ,A), Q(τ,A) and R(τ,A) are expressed as the sum of three terms. Due to
the properties of the polynomial in the Newton’s form, the corresponding equations for n = 2
(2D problems) can be obtained from the equations for n = 3 by dropping out the third term.

4.3 Formulas for the eigenvalues of 2× 2 and 3× 3 matrices

The eigenvalues of a given matrix are found by solving its characteristic equation. Let det(A)
and tr(A) denote the determinant and trace of the matrix A, respectively. The characteristic
equation of the matrix A is given by the following.

det(A− λI) = 0 (70)

When n = 2, the characteristic equation can be expressed as,

λ2 − tr(A)λ+ det(A) = 0 (71)

The solution of the above quadratic equation is straight-forward.

λ1 =
tr(A)−

√
tr(A)2 − 4 det(A)

2
, λ2 =

tr(A) +
√

tr(A)2 − 4 det(A)

2
(72)

12

Clearly, we get complex eigenvalues when tr(A)2 < 4 det(A) and on the contrary we get
real eigenvalues. In this section we follow the convention that the square roots are single-
valued and positive. Note that the two admissible solutions to the square root function are
already taken into consideration in the above formula. In the case of real eigenvalues, it is
straightforward to verify that the above formula guarantees λ1 ≤ λ2.

When n = 3, the characteristic equation can be expressed as,

λ3 − tr(A)λ2 +
tr(A)2 − tr(A2)

2
λ− det(A) = 0 (73)

The solution of the above cubic equation can be found by the classical method published
by Gerolamo Cardano, cf. [21]. The calculation steps of the same are summarized below.

B := A− tr(A)

3
I, Q :=

tr(B2)

6
, R :=

det(B)

2
(74)

λ1 =
tr(A)

3
+

3

√
R−

√
R2 −Q3 e−i(2π/3) +

3

√
R+

√
R2 −Q3 ei(2π/3) (75)

λ2 =
tr(A)

3
+

3

√
R−

√
R2 −Q3 e−i(4π/3) +

3

√
R+

√
R2 −Q3 ei(4π/3) (76)

λ3 =
tr(A)

3
+

3

√
R−

√
R2 −Q3 +

3

√
R+

√
R2 −Q3 (77)

We follow the convention that the cube roots that appear in the above expressions are
real and single valued. The three admissible solutions to the cube root function are already
taken into consideration in the above formula.

Note that when the discriminant (R2 −Q3) > 0, we obtain complex eigenvalues. In this
case, the formulas are already in a suitable format for implementation. When (R2 −Q3) ≤ 0
we obtain real eigenvalues and the formulas for the same can be written in a form better
suited for implementation as follows.

θ := arccos(
R√
Q3

), λn =
tr(A)

3
+ 2
√
Q cos(

2πn+ θ

3
) (78)

where arccos() denotes the inverse cosine function whose range is defined to be the closed
interval [0, π]. The formula for the real eigenvalues given in Eq. (78) guarantees λ1 ≤ λ2 ≤ λ3.
This can be verified using the following results.

0 ≤ θ ≤ π ⇒

−1 ≤ cos(
2π + θ

3
) ≤ −1

2
−1

2
≤ cos(

4π + θ

3
) ≤ 1

2
1

2
≤ cos(

6π + θ

3
) ≤ 1

⇒

tr(A)

3
− 2
√
Q ≤ λ1 ≤

tr(A)

3
−
√
Q

tr(A)

3
−
√
Q ≤ λ2 ≤

tr(A)

3
+
√
Q

tr(A)

3
+
√
Q ≤ λ3 ≤

tr(A)

3
+ 2
√
Q

(79)

Note that in the case of two equal eigenvalues, it will be either λ1 = λ2 or λ2 = λ3. In all
the situations the eigenvalue λ3 is always a real number.

5 Stable evaluation of formulas under finite precision

5.1 Introduction

The issue with stable evaluation of formulas is best explained by an example. The example
consists in the näıve evaluation of a second-order divided difference given by the expression

13

h Formula1 evaluation Exact 16 digits Formula2 evaluation

10−01 1.503 335 165 136 320 1.503 335 165 136 325 1.503 335 165 136 292
10−02 1.372 811 947 550 877 1.372 811 947 550 820 1.372 811 947 550 871
10−03 1.360 500 848 424 467 1.360 500 848 315 854 1.360 500 848 386 436
10−04 1.359 276 824 430 971 1.359 276 836 249 607 1.359 276 831 150 054
10−05 1.359 152 790 283 402 1.359 154 505 717 948 1.359 151 840 209 960
10−06 1.359 135 026 857 928 1.359 142 273 371 229 1.359 375
10−07 1.332 267 628 772 320 1.359 141 050 143 621 1.359 375
10−08 2.220 446 084 949 470 1.359 140 927 820 931 4
10−09 0 1.359 140 915 588 663 256
10−10 0 1.359 140 914 365 436 0
10−11 −2 220 445.681 810 107 1.359 140 914 243 114 −4 194 304
10−12 −222 005 130.399 6447 1.359 140 914 230 881 −268 435 456
10−13 0 1.359 140 914 229 658 17 179 869 184
10−14 2 223 999 815 985.422 1.359 140 914 229 536 4 398 046 511 104
10−15 0 1.359 140 914 229 523 0

Table 1: Loss of significant digits in the näıve evaluations of exp[1; 1 + h; 1 + 2h].

exp[1; 1+h; 1+2h]. We denote by Formula1 the “as is” expression of the second-order divided
difference.

x1 = 1, x2 = 1 + h, x3 = 1 + 2h (80)

exp[x1;x2;x3] =
1

x3 − x1

[
ex3 − ex2

x3 − x2
− ex2 − ex1

x2 − x1

]
(81)

Using Eq. (37) the above equation can be rearranged in an algebraically equivalent form
which we denote as Formula2.

exp[x1;x2;x3] =
ex1

(x1 − x2)(x1 − x3)
+

ex2

(x2 − x1)(x2 − x3)
+

ex3

(x3 − x1)(x3 − x2)
(82)

All the expressions that appear in the formulas given in [11] are expressed in the above
simplified form.

Table 1 illustrates the results of the näıve evaluation of both formulas for values of h
gradually tending to zero and using double precision floating point arithmetic. The exact
values up to 16 digits of precision are given in the third column. The significant digits in
both the formula evaluations that coincide with the exact values are highlighted in green
colour. We observe a gradual loss of significant digits in both the formula evaluations which
deteriorates as h → 0. In fact, for h ≤ 10−8 we lose all the significant digits in both the
formula evaluations making these computations useless. These numerical instabilities worsen
when we switch the computations to single precision floating point arithmetic.

In these evaluations which have removable singularities when h = 0, it is critical to first
identify terms which suffer from cancellation errors. This identification serves two purposes:
a) to foresee numerical instability in formula evaluations and b) to assist in the design of
procedures to control the loss of significant digits in these evaluations. In this sense, Formula1
has an algebraic structure which facilitates the identification of such terms. Removable sin-
gularities in Formula1 are localized to terms which appear as divided differences which in turn

14

are known to suffer from cancellation errors. Thus, the identification of cancellations errors
in Formula1 is trivial. On the other hand, removable singularities in Formula2 are not local-
ized, i.e. the terms that participate to obtain a finite limit at the removable singularities are
dispersed within the formula. This obscures the a priori identification of possible cancellation
errors as they are not evident, i.e. one might not foresee numerical instability.

In the analytical solution of the X-IVAS scheme, the following expressions might suffer
from cancellation errors in a straight-forward (näıve) evaluation of the same using finite
precision arithmetic.

exp[τλ1; τλ2], exp[τλ1; τλ2; τλ3], q(τλ1), q[τλ1; τλ2], q[τλ1; τλ2; τλ3],

r(τλ1), r[τλ1; τλ2], r[τλ1; τλ2; τλ3], Φ(−τα, τβ), Φ(τλ3 − τα, τβ),

Φ(?, τβ)[−τα;−τα], Φ(?, τβ)[−τα; τλ3 − τα], Φ(?, τβ)[−τα;−τα; τλ3 − τα] (83)

The above expressions can be identified as the elements of the following nested set of
divided differences.{{

exp[x1;x2], q(x)
}
,
{

exp[x1;x2;x3], q[x1;x2], r(x),Φ(x, y)
}
,{

q[x1;x2;x3], r[x1;x2],Φ(?, y)[x1;x2]
}
,
{

r[x1;x2;x3],Φ(?, y)[x1;x1;x2]
}}

(84)

The order of the divided differences gradually increase from first-order in the first subset
to fourth-order in the last subset. All elements of a subset are particular cases of the first
element of that subset. For instance,

q[x1;x2] = exp[0;x1;x2], r(x) = exp[0; 0;x], Φ(x, y) = exp[−iy;x; iy] (85)

Following this line, it is possible to express all the divided differences in Eq. (84) as the
divided differences of the exponential function; The details of the same are given in Section
5.4. As h→ 0, the rate of loss of significant digits in a näıve evaluation of divided differences
is generally equal to the order of the same. In the considered example, i.e. exp[x1;x2;x3]
we loose significant digits at a second order rate. Following this line, näıve evaluations of
the third and the fourth subsets in Eq. (84) are meaningless for h ≤ 10−5 and h ≤ 10−4,
respectively.

An algorithm for the accurate computation of divided differences of the exponential func-
tion was already presented by McCurdy et.al [22]. Following this line, a similar algorithm for
the accurate computation of divided differences of the auxiliary functions q() and r(), cf. Eq.
(42) and Eq. (43), was presented by Caliari [23]. These algorithms have a wider scope, i.e.
they were designed to evaluate functions of n× n matrices appearing in exponential integra-
tors for large systems of equations (ordinary or differential). A user who already has these
algorithms implemented, might just invoke them to evaluate the divided differences listed in
Eq. (83) and use them in the formulas for P(τ,A), Q(τ,A) and R(τ,A) given in Section 4.2.
This would address the numerical stability issues in the formula evaluations.

In what follows, we discuss a simple yet stable piecewise evaluation technique for divided
differences of limited scope. In other words, this technique should be understood as a spe-
cialization for the at most fourth-order divided differences found in the formulas for P(τ,A),
Q(τ,A) and R(τ,A).

15

5.2 Double precision floating point numbers

It pays to understand how floating point numbers are stored in a computer. In this section we
briefly describe how double precision floating point numbers are stored as per the IEEE 754
standard. Any decimal floating point number within the range of the double can be written
in the normalized form as follows.

Decimal form→ (−1)s 2e 1.f ≈ s

1

(e+ 1023)b

11

0.fb

52

← Binary form

← No. of bits stored

(86)

In the above equation the boolean s ∈ {0, 1} is called the sign bit, the integer e is called
the exponent ; −1022 ≤ e ≤ 1023 and the fraction f is called the significand. The numbers
with a subscript b are expressed in the binary format. For instance,

0.1 = (−1)0 2−4 1.6, ⇒ s = 0, (e+ 1023) = 1019, 0.f = 0.6 (87)

1019b = 11 1111 1011, 0.6b = 0.{1001}∞ (88)

The binary expression for 0.6 is a nonterminating fraction. The notation {1001}n means
that the bits 1001 are repeated n times. Thus, using finite precision (52 bits to store the
significand) the fraction 0.6 cannot be represented exactly. We get a fraction which is exactly
representable as a double by truncating the nonterminating binary fraction after 52 bits.
Further adjacent doubles are obtained by adding and subtracting a unit in the least significant
position (ulp), respectively. These three exactly representable numbers are,

0 011 1111 1011 {1001}12 1000 =
1

10
− 8

5
2−56 (89)

0 011 1111 1011 {1001}12 1001 =
1

10
− 3

5
2−56 (90)

0 011 1111 1011 {1001}12 1010 =
1

10
+

2

5
2−56 (91)

Hence, when 0.1 is stored as a double, it is rounded to the nearest representable number.

0.1b = 0.0001{1001}∞ ≈ 0 011 1111 1011 {1001}12 1010 =
1

10
+

2

5
2−56 (92)

Due to finite precision, the error in representing/storing a given decimal number as a
double is at most half ulp. For a given number, the ulp depends on its exponent as shown
below.

1 ulp = 2e 2−52 (93)

In other words, the gap between two adjacent doubles is nonuniform. This allows 52 bits
of precision throughout the range of double when expressed in the normalized form.

5.3 Optimal series approximation of divided differences

In this section we establish optimal series approximation of divided differences of a given
function f(x). Consider the sequence {x1, x2, · · · , xn} and some definitions related to this

16

sequence.

xa :=
1

n

n∑
i=1

xi, x̃i := xi − xa, X := {x̃1, x̃2, · · · , x̃n} (94)

Xp := choose(X , 2),

(
n

k

)
:=

n!

k!(n− k)!
, x2p :=

(n2)∑
i=1

2∏
j=1

Xp(i, j) (95)

where xa is the mean value of the sequence and x̃i is the fluctuation of xi about the
mean. The function choose(X , 2) returns a sequence Xp consisting of pair-combinations
(2− combinations) of elements from X . The sum of the product of the pairs in Xp is stored
as the square of the auxiliary variable xp. The result is stored as x2p to highlight the fact
that it is a second order term. Likewise, the triple, quadruple and quintuple combinations
of X are denoted as Xt, Xq and Xv, respectively. Further, the sum of the product of the
triples, quadruples and quintuples are stored in x3t , x

4
q and x5v, respectively. Following x2p, the

superscripts (which are ordinary powers) in x3t , x
4
q and x5v highlight the fact that they are

third, fourth and fifth order terms, respectively. Thus,

Xt := choose(X , 3), Xq := choose(X , 4), Xv := choose(X , 5) (96)

x3t :=

(n3)∑
i=1

3∏
j=1

Xt(i, j), x4q :=

(n4)∑
i=1

4∏
j=1

Xq(i, j), x5v :=

(n5)∑
i=1

5∏
j=1

Xv(i, j) (97)

Using the above definitions, we can derive6 the following identity for the divided differences
of f(x). The mean value theorem guarantees the existence of a ξ in the smallest interval
containing {x1, x2, · · · , xn} such that,

f(n)(ξ) :=
∂n

∂λn
f(λ)

∣∣∣∣
λ=ξ

, f(xn) = f(ξ + xn − ξ) = f(ξ) +
∞∑
n=1

(xn − ξ)n
f(n)(ξ)

n!
(98)

f[x1;x2; · · · ;xn] =
f(n−1)(xa)

(n− 1)!
− x2p

f(n+1)(xa)

(n+ 1)!
+ x3t

f(n+2)(xa)

(n+ 2)!
+ (x4p − x4q)

f(n+3)(xa)

(n+ 3)!

+ (x5v − 2x2px
3
t)

f(n+4)(ξ)

(n+ 4)!

(99)

Note that the first term in the above equation provides a second-order approximation
to f[x1;x2; · · · ;xn]. If the series is expanded with respect to any point other than xa, the
first-order terms are resurrected. Thus, the approximation is optimal for the choice xa. For
the first-order divided difference f[x1;x2], the above equation can be simplified and easily
extended to any number of terms as shown below.

h :=
x2 − x1

2
, x2p = −h2, x2t = 0, x2q = 0, x2v = 0 (100)

f[x1;x2] = f(1)(xa) + h2
f(3)(xa)

3!
+ · · ·+ h2n−2

f(2n−1)(xa)

(2n− 1)!
+ h2n

f(2n+1)(ξ)

(2n+ 1)!
(101)

6As the algebra involved is overwhelming and error-prone, we have used the computer algebra system Maple

to perform the simplifications and verifications. Thus, human intervention is dedicated to identify patterns
and to discover abstract expressions such as xp, xt, xq, etc.

17

Likewise, for the second-order divided difference f[x1;x2;x3], Eq. (99) can be simplified
to the following.

x2p = −3

2
x2σ, x2σ :=

x̃21 + x̃22 + x̃23
3

, x3t = x̃1x̃2x̃3, x2q = 0, x2v = 0 (102)

f[x1;x2;x3] =
1

2
f(2)(xa) +

x2σ
16

f(4)(xa) +
x3t
120

f(5)(xa) +
x4σ
320

f(6)(xa) + 3x2σx
3
t

f(7)(ξ)

7!
(103)

where xσ is the standard deviation of the considered sequence. It is possible to relate xp
and xσ for all n and in this work we exploit this relationship as it reduces the number of
arithmetic operations.

x2p = −n
2
x2σ (104)

5.4 Stable piecewise evaluation technique

To control (bound) the loss of significant digits in the evaluations of the subsets in Eq. (84),
we resort to a piecewise evaluation of the same. In other words, we switch the evaluations
to the corresponding series expansions of the same should the difference of the independent
variables be less than some threshold. These threshold values are chosen such that we retain
as many significant digits as possible. Although this technique is elementary, it is systematic.
Nevertheless, to put it in the words of Kahan and Darcy [12], before this technique can be
used, three messy questions need tidy answers: 1) What value should be assigned to the
threshold in this technique? 2) How many terms in the series approximation should this
technique retain? and 3) How accurate is this technique? In this section we describe the
piecewise evaluation technique in full detail and answer the above three questions.

The first subset in Eq. (84) can be evaluated to machine precision by rearranging them
to the following functional form7.

sinhc(x) :=

{
sinh(x)
x if x 6= 0,

1 if x = 0.
(105)

exp[x1;x2] = e(x1+x2)/2 sinhc

(
x2 − x1

2

)
, q(x) = ex/2 sinhc

(x
2

)
(106)

We now describe the details of the piecewise evaluation technique using the evaluation of
exp[x1;x2;x3] as an example. This term can be written as,

exp[x1;x2;x3] = ex2 exp[x1 − x2; 0;x3 − x2] = ex2
q(x3 − x2)− q(x1 − x2)

x3 − x1
(107)

where the function q(x) is evaluated as shown in Eq. (106). Without loss of generality,
we assume x1 ≤ x2 ≤ x3. Consequently we have,

∀ ξ ∈ [x1, x3], |ξ − x2| ≤ (x3 − x1) (108)

x2σ ≤ (x3 − x1)2, |x3t | ≤ (x3 − x1)3 (109)

In the evaluations of divided differences, the loss of significant digits is essentially due to
the cancellations that occur in the dependent variables. Particularly, in Eq. (107) the loss of

7In this form the difference of the independent variables appear symbolically as input to a function that
could be evaluated to machine precision

18

significance is due to the cancellations that occur in the term q(x3 − x2)− q(x1 − x2). This
term admits the following series expansion.

q(x3 − x2)− q(x1 − x2) =
x3 − x1

2
[1 + (xa − x2) + · · ·] (110)

Let x3 − x1 = 2−m where m ≥ 1 is an integer. Then, Eq. (108) implies that the higher
order terms in Eq. (110) gradually tend to zero. Thus,

x3 − x1 = 2−m

x1 ≤ x2 ≤ x3

}
⇒ q(x3 − x2)− q(x1 − x2) = O(2−(m+1)) (111)

When written in the normalized decimal form (cf. Eq. (86)), the exponent of q(x3 − x2)
and q(x1− x2) will be 0 and −1, respectively. This can be inferred using Eq. (108) as shown
below.

0 ≤ x ≤ 2−m ⇒ 20 ≤ q(x) < 21, −2m ≤ x ≤ 0⇒ 2−1 ≤ q(x) < 20 (112)

0 ≤ (x3 − x2) ≤ 2−m ⇒ q(x3 − x2) = (−1)0 20 1.f̂ ≈ 0 1023b 0.f̂b (113)

−2−m ≤ (x1 − x2) ≤ 0⇒ q(x1 − x2) = (−1)0 2−1 1.f̃ ≈ 0 1022b 0.f̃b (114)

where f̂ and f̃ denote the significands of q(x3 − x2) and q(x1 − x2), respectively. The
subtraction q(x3 − x2)− q(x1 − x2) can be described schematically as follows.

q(x3 − x2)− q(x1 − x2) = (−1)0 20 1.f̂ − (−1)0 2−1 1.f̃

≈ 0 1023b 0.f̂b − 0 1022b 0.f̃b normalized form

= 0 1023b 0.f̂b − 0 1023b 0.1f̃b align radix points

= 0 1023b 0.{0}m1fb O(2−(m+1))

= 0 (1022−m)b 0.fb normalized form

(115)

We see that among the stored 52 bits of f̂b and f̃b, the first m bits are lost due to
cancellation. After subtraction, the unit bit at the m + 1th place will become the implicit
bit of the result which is not stored, cf. Eq. (86). The exponent of the result will become
−(m+ 1). The significand of the result will become the remaining bits denoted in Eq. (115)
as fb of which only 51−m bits are significant.

We see that if exp[x1;x2;x3] is evaluated as shown in Eq. (107) we loose significant bits at
a first order rate. We will call this form of evaluation as the direct evaluation. If x1 ≤ x2 ≤ x3
and x3 − x1 = 2−m then in the direct evaluation of exp[x1;x2;x3] we are left with 51 − m
significant bits in the significand.

Using Eq. (103) we can write the series expansion for exp[x1;x2;x3] as follows.

exp[x1;x2;x3] =
exa

2
S, S :=

[
1 +

x2σ
8

+
x3t
60

+
x4σ
160

+
x2σx

3
t

840
+ · · ·

]
(116)

The above form to evaluate exp[x1;x2;x3] will be called as the series evaluation. Clearly,
in the series evaluation we do not find removable singularities which imply that there are no

19

instances of cancellation errors. However, the truncation of the series will introduce an error
which will limit the number of significant digits in the series evaluation that match those in
an exact evaluation. When the series S is truncated after the first n terms it will be denoted
as Sn. As exp(xa)/2 can be evaluated to machine precision, the number of significant digits
in the series evaluation is essentially limited by the term Sn. The series S when written in
the normalized decimal form has a zero exponent when x1 ≤ x2 ≤ x3 and x3 − x1 = 2−m.
This can be inferred using Eqs. (103) and (109) as follows.

∃ ξ ∈ [x1, x3] such that,
exa

2

[
1 +

x2σ
8

+
x3t
60

+ · · ·
]

=
exa

2
+
x2σ
16

eξ (117)

1 +
x2σ
8

+
x3t
60

+ · · · = 1 +
x2σ
8

eξ−xa , 20 ≤ 1 +
x2σ
8

eξ−xa ≤ 1 + 2−(2m+3)e2
−m

< 21 (118)

It follows that all terms except the first one contribute to the significand of S. Thus,

S = (−1)0 20 1.f ≈ 0 1023b 0.fb (119)

Hence, when S is replaced by Sn, the associated truncation error can be understood as to
limit the number of significant digits in the series evaluation. The truncation error associated
to Sn is denoted as En. From Eqs. (109) and (116) we infer,

E1 = O

(
x2σ
8

)
≤ O(2−(2m+3)), E2 = O

(
x3t
60

)
≤ O(2−(3m+6)) (120)

E3 = O

(
x4σ
160

)
≤ O(2−(4m+8)), E4 = O

(
x2σx

3
t

840

)
≤ O(2−(5m+10)) (121)

Expressing Sn = S − En in the double storage format we get,

S1 ≈ 0 1023b 0.fb − 0 1023b 0.{0}2m+21 · · · (122)

S2 ≈ 0 1023b 0.fb − 0 1023b 0.{0}3m+51 · · · (123)

S3 ≈ 0 1023b 0.fb − 0 1023b 0.{0}4m+71 · · · (124)

S4 ≈ 0 1023b 0.fb − 0 1023b 0.{0}5m+91 · · · (125)

where En is written after the alignment of radix points and the remaining digits in the
significands are denoted as · · · . This implies that we have (2m + 2), (3m + 5), (4m + 7) and
(5m+ 9) significant digits in S1,S2,S3 and S4, respectively.

For each Sn we solve for m by matching the accuracy of the series evaluation with the one
obtained in the direct evaluation. In this way, we obtain the threshold value of (x3−x1) = 2−m

and the lower bound for the number of significant digits nsd in a piecewise evaluation of
exp[x1;x2;x3]. Thus,

S1 : 51−m = 2m+ 2 ⇒ m = 16, nsd = 34 bits ≈ 11 decimal digits (126)

S2 : 51−m = 3m+ 5 ⇒ m = 12, nsd = 39 bits ≈ 12 decimal digits (127)

S3 : 51−m = 4m+ 7 ⇒ m = 9, nsd = 42 bits ≈ 13 decimal digits (128)

S4 : 51−m = 5m+ 9 ⇒ m = 7, nsd = 44 bits ≈ 14 decimal digits (129)

20

h Formula3 evaluation Exact 16 digits Formula4 evaluation

10−01 1.503 335 165 136 323 1.503 335 165 136 325 1.503 335 165 136 323
10−02 1.372 811 947 550 791 1.372 811 947 550 820 1.372 811 947 550 791
10−03 1.360 500 848 316 010 1.360 500 848 315 854 1.360 500 848 315 854
10−04 1.359 276 836 253 229 1.359 276 836 249 607 1.359 276 836 249 607
10−05 1.359 154 505 691 532 1.359 154 505 717 948 1.359 154 505 717 948
10−06 1.359 142 273 371 116 1.359 142 273 371 229 1.359 142 273 371 229
10−07 1.359 141 050 143 620 1.359 141 050 143 621 1.359 141 050 143 622
10−08 1.359 140 927 820 931 1.359 140 927 820 931 1.359 140 927 820 931
10−09 1.359 140 915 588 663 1.359 140 915 588 663 1.359 140 915 588 663
10−10 1.359 140 914 365 436 1.359 140 914 365 436 1.359 140 914 365 436
10−11 1.359 140 914 243 114 1.359 140 914 243 114 1.359 140 914 243 114
10−12 1.359 140 914 230 881 1.359 140 914 230 881 1.359 140 914 230 881
10−13 1.359 140 914 229 658 1.359 140 914 229 658 1.359 140 914 229 658
10−14 1.359 140 914 229 536 1.359 140 914 229 536 1.359 140 914 229 536
10−15 1.359 140 914 229 524 1.359 140 914 229 523 1.359 140 914 229 524

Table 2: Loss of significant digits controlled in the stable piecewise evaluations of exp[1; 1 +
h; 1 + 2h].

In the above equations, the solution for m is rounded to the nearest integer. Using this
rounded m we estimate nsd as the minimum of the number of significant digits found in the
direct and the series evaluations. As the loss of significant digits is bounded from below, the
piecewise evaluation of exp[x1;x2;x3] is stable.

The numerical test presented in Section 5.1 is repeated here with x1 = 1, x2 = 1 + h,
x3 = 1+2h. Table 2 illustrated the results of the piecewise evaluation of the same using double
precision floating point arithmetic and for values h gradually tending to zero. The exact values
up to 16 digits of precision are given in the third column. We denote by Formula3 and Formula4
the piecewise evaluations considering S1 and S4 for the series evaluations, respectively. The
significant digits in both formula evaluations that differ from the exact values are highlighted
in green color. The lower bounds for the number of significant digits given in Eqs. (126) and
(129) are reproduced in this test for Formula3 and Formula4, respectively.

5.5 Stable formulas for exponential divided differences

In this section we present stable piecewise definitions of all the expressions that belong to
the subsets in Eq. (84). In the series evaluation part of every piecewise definition, we will
consider the first four terms in the corresponding series expansion. Recall that each of these
expressions can be written as some divided difference of the exponential function, cf. Eq.
(85). The exponential function is its own derivative. This feature along with the abstraction
(e.g. xp, xt etc.) in the optimal series expansion permits us to use multiple terms in the series
expansion without incurring substantial computational cost.

The first subset in Eq. (84) can be evaluated to machine precision without resorting to
a series evaluation, cf. Eq. (106). The first element in the second subset, i.e. exp[x1;x2;x3]
was used as an example to describe the details of the piecewise evaluation technique in the
previous section. The stable piecewise definition of the same when x1 ≤ x2 ≤ x3 can be

21

summarized as follows.

exp[x1;x2;x3] =


ex2

q(x3 − x2)− q(x1 − x2)
x3 − x1

if (x3 − x1) > 2−7

exa

2

[
1 +

x2σ
8

+
x3t
60

+
x4σ
160

]
else

(130)

It is essential to sort the arguments lest the series evaluation should incur a significant
truncation error. The variation in the number of significant digits nsd in exp[x1;x2;x3] with
respect to m, where (x3 − x1) = 2−m, is denoted as nsd(exp[x1;x2;x3],m). Using the above
stable formula for exp[x1;x2;x3] we obtain,

nsd(exp[x1;x2;x3],m) =


51−m if m < 7

5m+ 9 if 7 ≤ m < 8.6

52 if m ≥ 8.6

,

nsd

m
15971

44

50
52

(131)

Recall that q[x1;x2] = exp[x1; 0;x2], r(x) = exp[0; 0;x] and Φ(x, y) = exp[−iy; iy;x]. Let
sort be a sorting function and x̂1 ≤ x̂2 ≤ x̂3. Then, using Eq. (130) a stable formula for
q[x1;x2] is,

{x̂1, x̂2, x̂3} = sort({x1, 0, x2}), q[x1;x2] = exp[x̂1; x̂2; x̂3]; (132)

Likewise a stable formula for r(x) is,

{x̂1, 0, x̂3} = sort({0, 0, x}), r(x) = exp[x̂1; 0; x̂3]; (133)

As exp[−iy; iy;x] involves complex numbers it needs special attention. Recall that the
exponential function is holomorphic, i.e. it is complex differentiable in a neighbourhood of
every point in its domain. This implies that it is infinitely differentiable and equals to its
own Taylor series. Thus, the optimal series approximation of divided differences presented
in Section 5.3 naturally extends to exp[−iy; iy;x]. Following this line, a stable formula for

Φ(x, y) can be obtained as shown below.

z := x+ iy, za :=
x

3
, z2σ := 2z2a −

2

3
y2, z3t := 2za(z

2
a + y2) (134)

Φ(x, y) = exp[−iy; iy;x] =


ez/2 sinhc(z∗/2)− sinc(y)

z
if |z| > 2−7

eza

2

[
1 +

z2σ
8

+
z3t
60

+
z4σ
160

]
else

(135)

The above definition assumes the availability of a complex math library which provides an
interface for a stable evaluation of common arithmetic operations, elementary and transcen-
dental functions. This assumption holds for the C++ programming language which is equipped
with the standard math library <complex>.

We now discuss the stable evaluation of exp[x1;x2;x3;x4], which is a template for the
elements of the third subset in Eq. (84). Following Eq. (99), the series expansion of this term

22

can be written as,

exp[x1;x2;x3;x4] =
exa

3!

[
1−

x2p
20

+
x3t
120

+
x4p − x4q

840
−
x2px

3
t

3360
+ · · ·

]
(136)

Let x1 ≤ x2 ≤ x3 ≤ x4. Truncating the above series after four terms and following a
procedure similar to the one described in Section 5.4 we infer,

E4 = O

(
x2px

3
t

3360

)
, x4 − x1 = 2−m ⇒ E4 ≤ O(2−(5m+11))⇒ nsd(S4,m) = 5m+ 10 (137)

Thus, in the series evaluation of exp[x1;x2;x3;x4] we have 5m+10 significant digits when
(x4 − x1) = 2−m. The direct evaluation of the same is written as,

exp[x1;x2;x3;x4] =
exp[x2;x3;x4]− exp[x1;x2;x3]

x4 − x1
(138)

wherein the second order divided differences are evaluated using the stable formula given
in Eq. (130). The subtraction exp[x2;x3;x4]− exp[x1;x2;x3] yields a O(x4 − x1) term which
results in a further loss of of m+ 1 significant bits. Using Eq. (131) we infer,

x4 − x1 = 2−m ⇒ 0 ≤ x3 − x1 ≤ 2−m (139)

⇒ nsd(exp[x1;x2;x3],m) ≥


44 if m < 7

5m+ 9 if 7 ≤ m < 8.6

52 if m ≥ 8.6

(140)

An identical lower bound can be found for the term exp[x2;x3;x4]. Assuming this lower
bound to be the nsd of the terms in the numerator we estimate the nsd in the direct evaluation
of exp[x1;x2;x3;x4] as the result of subtracting m + 1 from the former. We solve for m by
matching the nsd in the series evaluation with the nsd in the direct evaluation.

5m+ 10 = −(m+ 1) +


44 if m < 7

5m+ 9 if 7 ≤ m < 8.6

52 if m ≥ 8.6

,

nsd

m
15971

36

42
44 LHS

RHS (141)

The solution to the above equation is m = 5.5. When m = 5, the nsd in the direct and
series evaluations are 38 and 35, respectively. When m = 6, we obtain for the same 37 and
40, respectively. As the lower bound for the nsd is maximized for the integer value m = 6,
we choose it as the rounded solution. Thus, a stable piecewise definition of exp[x1;x2;x3;x4]
when x1 ≤ x2 ≤ x3 ≤ x4 can be summarized as follows.

exp[x1;x2;x3;x4] =


exp[x2;x3;x4]− exp[x1;x2;x3]

x4 − x1
if (x4 − x1) > 2−6

exa

3!

[
1−

x2p
20

+
x3t
120

+
x4p − x4q

840

]
else

(142)

23

Using the above piecewise definition for exp[x1;x2;x3;x4] we obtain,

nsd(exp[x1;x2;x3;x4],m) =


43−m if m < 6

5m+ 10 if 6 ≤ m < 8.4

52 if m ≥ 8.4

,

nsd

m
12961

37
40
42

52

(143)

It is straightforward to verify that q[x1;x2;x3] = exp[0;x1;x2;x3], r[x1;x2] = exp[0; 0;x1;x2]
and Φ(?, y)[x1;x2] = exp[−iy; iy;x1;x2]. Using Eq. (142) a stable formula for q[x1;x2;x3] is,

{x̂1, x̂2, x̂3, x̂4} = sort({0, x1, x2, x3}), q[x1;x2;x3] = exp[x̂1; x̂2; x̂3; x̂4]; (144)

Likewise a stable formula for r[x1;x2] is,

{x̂1, x̂2, x̂3, x̂4} = sort({0, 0, x1, x2}), r[x1;x2] = exp[x̂1; x̂2; x̂3; x̂4]; (145)

Again exp[−iy; iy;x1;x2] deserves special attention. Following the approach taken to de-
fine Φ(x, y) = exp[−iy; iy;x] in Eq. (135), a stable formula for Φ(?, y)[x1;x2] can be obtained
as follows.

{x̂1, x̂2} = sortabs({x1, x2}), z1 := x̂1 + iy, z2 := x̂2 + iy, za :=
x̂1 + x̂2

4
(146)

z2p := y2 + x̂1x̂2 − 6z2a , z3t := 2za(y
2 − x̂1x̂2 + 4z2a), z4q := (y2 + z2a)(x̂1x̂2 − 3z2a) (147)

Φ(?, y)[x1;x2] =



[
exp[x̂1; x̂2]− ez1/2 sinhc(z∗1/2)

z∗2
− Φ(x̂1, y)

]
1

z2
if |z2| > 2−6

eza

3!

[
1−

z2p
20

+
z3t

120
+
z4p − z4q

840

]
else

(148)

where sortabs is a function that sorts its arguments with respect to its absolute value,
i.e. |x̂1| ≤ |x̂2|. The term Φ(x̂1, y) is evaluated using the stable formula given in Eq. (135).

Finally we discuss the stable evaluation of exp[x1;x2;x3;x4;x5], which is a template for the
elements of the third subset in Eq. (84). To arrive at a stable formula for exp[x1;x2;x3;x4;x5]
we follow the same approach as was taken to define exp[x1;x2;x3;x4]. Hence we summarize
just the salient features. Assuming x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 and considering a four term
series evaluation we can infer,

x5 − x1 = 2−m ⇒ ∀x1 ≤ ξ ≤ η ≤ x5, 0 ≤ η − ξ ≤ 2−m (149)

E4 = O

(
x5v − x2px3t

15120

)
⇒ E4 ≤ O(2−(5m+13)) ⇒ nsd(S4,m) = 5m+ 12 (150)

⇒ nsd(exp[x1;x2;x3;x4],m) ≥


37 if m < 6

5m+ 10 if 6 ≤ m < 8.4

52 if m ≥ 8.4

(151)

24

An identical lower bound for nsd can be found for the term exp[x2;x3;x4;x5]. The sub-
traction exp[x2;x3;x4;x5] − exp[x1;x2;x3;x4] will result in a further loss of m + 1 signif-
icant bits. Matching the accuracy of the series evaluation with that of the direct evalu-
ation we obtain m = 4. Thus a stable piecewise definition of exp[x1;x2;x3;x4;x5] when
x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 can be summarized as follows.

exp[x1;x2;x3;x4;x5] =


exp[x2;x3;x4;x5]− exp[x1;x2;x3;x4]

x5 − x1
if (x5 − x1) > 2−4

exa

4!

[
1−

x2p
30

+
x3t
210

+
x4p − x4q

1680

]
else

(152)

Using the above piecewise definition for exp[x1;x2;x3;x4;x5] we obtain,

nsd(exp[x1;x2;x3;x4;x5],m) =


36−m if m < 4

5m+ 12 if 4 ≤ m < 8

52 if m ≥ 8

,

nsd

m
12841

32
35

52

(153)

It is straightforward to verify that r[x1;x2;x3] = exp[0; 0;x1;x2;x3] and Φ(?, y)[x1;x2;x3] =
exp[−iy; iy;x1;x2;x3]. Using Eq. (152) a stable formula for r[x1;x2;x3] can be written as,

{x̂1, x̂2, x̂3, x̂4, x̂5} = sort({0, 0, x1, x2, x3}), r[x1;x2;x3] = exp[x̂1; x̂2; x̂3; x̂4; x̂5]; (154)

As expected exp[−iy; iy;x1;x2;x3] deserves special attention. Following the approach
taken to define Φ(?, y)[x1;x2] in Eq. (148), a stable formula for Φ(?, y)[x1;x2;x3] can be
obtained as follows.

{x̂1, x̂2, x̂3} = sortabs({x1, x2, x3}), z3 := x̂3 + iy (155)

za :=
x̂1 + x̂2 + x̂3

5
, z4q := 6z4a +

1

2
[11z2a − (x̂21 + x̂22 + x̂23)](y

2 + 3z2a)− 2zax̂1x̂2x̂3 (156)

z2p :=
1

2
[2y2 + 5z2a − (x̂21 + x̂22 + x̂23)], z3t :=

za
2

[4y2 − 35z2a + 3(x̂21 + x̂22 + x̂23)] + x̂1x̂2x̂3

(157)

Φ(?, y)[x1;x2;x3] =



[
exp[x̂1; x̂2; x̂3]− exp[iy; x̂1; x̂2]

z∗3
− Φ(?, y)[x̂1; x̂2]

]
1

z3
if |z3| > 2−4

eza

4!

[
1−

z2p
30

+
z3t

210
+
z4p − z4q
1680

]
else

(158)

where the term Φ(?, y)[x̂1; x̂2] is evaluated using the stable formula given in Eq. (148).
Note that in the stable formula for Φ(?, y)[x̂1; x̂2], just the direct evaluation of exp[iy; x̂1; x̂2]
is sufficient as the threshold value of |z2| to switch to a series evaluation is larger for the
former than the latter. This means that the series evaluation of exp[iy; x̂1; x̂2] will never be
used in the stable evaluation of Φ(?, y)[x̂1; x̂2]. On the contrary, in the stable evaluation of

25

Φ(?, y)[x1;x2;x3] the switch to the series evaluation is governed by some threshold value of
|z3| which includes the possibility |z2| → 0. Therefore, in Eq. (158) it is necessary to evaluate
the term exp[iy; x̂1; x̂2] in a piecewise manner.

Following Eqs. (130) and (135), a stable formula for exp[iy; x̂1; x̂2] can be obtained as
follows.

z1 := x̂1 + iy, z2 := x̂2 + iy, za :=
x̂1 + x̂2 + iy

3
(159)

z̃1 := iy − za, z̃2 := x̂1 − za, z̃3 := x̂2 − za, z2σ :=
z̃21 + z̃22 + z̃23

3
, z3t := z̃1z̃2z̃3 (160)

exp[iy; x̂1; x̂2] =


exp[x̂1; x̂2]− ez1/2 sinhc(z∗1/2)

z∗2
if |z2| > 2−7

eza

2

[
1 +

z2σ
8

+
z3t
60

+
z4σ
160

]
else

(161)

6 Summary

In this section we propose a procedure to evaluate the analytical solution of the X-IVAS scheme
in 3D and summarize the stable formulas associated to this procedure. First we compute the
matrix R(τ,A). If A has complex eigenvalues, then the divided difference coefficients (cf.
Eq. (57)) in the definition of R(τ,A) have the following structure: Φ(x1, y), Φ(?, y)[x1;x1]
and Φ(?, y)[x1;x1;x3], respectively. Recall that latter three expressions are evaluated as
exp[−iy; iy;x1], exp[−iy; iy;x1;x1] and exp[−iy; iy;x1;x1;x3], respectively. Using the general
stable formulas given in the previous section, we summarize in seven steps the specializations8

of the same for Φ(x1, y), Φ(?, y)[x1;x1] and Φ(?, y)[x1;x1;x3].
Step 1: Evaluate exp[x1;x1;x3] as follows.

h := (x3 − x1), xa = x1 +
h

3
(162)

exp[x1;x1;x3] =


ex1

q(h)− 1

h
if |h| > 2−7

exa

2

[
1 +

h2

36
+

h3

810
+

h4

3240

]
else

(163)

Step 2: Evaluate Φ(x1, y) = exp[−iy; iy;x1] as follows.

z1 := x1 + iy, za :=
x1
3
, z2σ := 2z2a −

2

3
y2, z3t := 2za(z

2
a + y2) (164)

Φ(x1, y) = exp[−iy; iy;x1] =


ez1/2 sinhc(z∗1/2)− sinc(y)

z1
if |z1| > 2−7

eza

2

[
1 +

z2σ
8

+
z3t
60

+
z4σ
160

]
else

(165)

8Note that repeated values appear here (symbolically) as input for the divided differences. This facilitates
further simplifications in the piecewise evaluations without compromising its accuracy/stability.

26

Step 3: Store x̂1, x̂3 such that {x̂1, x̂3} = sortabs({x1, x3}) and evaluate exp[iy; x̂1;x1]
as follows.

ẑ1 := x̂1 + iy, z1 := x1 + iy, za :=
x̂1 + x1 + iy

3
(166)

z̃1 := iy − za, z̃2 := x̂1 − za, z̃3 := x1 − za, z2σ :=
z̃21 + z̃22 + z̃23

3
, z3t := z̃1z̃2z̃3 (167)

exp[iy; x̂1;x1] =


exp[x̂1;x1]− eẑ1/2 sinhc(ẑ∗1/2)

z∗1
if |z1| > 2−7

eza

2

[
1 +

z2σ
8

+
z3t
60

+
z4σ
160

]
else

(168)

Note that threshold condition to switch from the direct evalaution to the series evaluation
is the same as in Step 2. Hence, in a computer program Step 2 and Step 3 be implemented
in the same conditional scope.

Step 4: Evaluate Φ(x̂1, y) = exp[−iy; iy; x̂1] as follows.

ẑ1 := x̂1 + iy, za :=
x̂1
3
, z2σ := 2z2a −

2

3
y2, z3t := 2za(z

2
a + y2) (169)

Φ(x̂1, y) = exp[−iy; iy; x̂1] =


eẑ1/2 sinhc(ẑ∗1/2)− sinc(y)

ẑ1
if |ẑ1| > 2−7

eza

2

[
1 +

z2σ
8

+
z3t
60

+
z4σ
160

]
else

(170)

Step 5: Evaluate Φ(?, y)[x1;x1] = exp[−iy; iy;x1;x1] as follows.

z1 := x1 + iy, za :=
x1
2
, z2p := y2 − 2z2a , z3t := 2zay

2, z4q := z2a(z2a + y2) (171)

Φ(?, y)[x1;x1] =



[
ex1 − ez1/2 sinhc(z∗1/2)

z∗1
− Φ(x1, y)

]
1

z1
if |z1| > 2−6

eza

3!

[
1−

z2p
20

+
z3t

120
+
z4p − z4q

840

]
else

(172)

Note that the evaluation of Φ(x1, y) is already done in Step 2.
Step 6: Evaluate Φ(?, y)[x̂1;x1] = exp[−iy; iy; x̂1;x1] as follows.

ẑ1 := x̂1 + iy, z1 := x1 + iy, za :=
x̂1 + x1

4
(173)

z2p := y2 + x̂1x1 − 6z2a , z3t := 2za(y
2 − x̂1x1 + 4z2a), z4q := (y2 + z2a)(x̂1x1 − 3z2a) (174)

Φ(?, y)[x̂1;x1] =



[
exp[x̂1;x1]− eẑ1/2 sinhc(ẑ∗1/2)

z∗1
− Φ(x̂1, y)

]
1

z1
if |z1| > 2−6

eza

3!

[
1−

z2p
20

+
z3t

120
+
z4p − z4q

840

]
else

(175)

Note that the evaluation of Φ(x̂1, y) is already done in Step 4. Further, the condition to
switch from the direct evaluation to the series evaluation is the same as in Step 5. Hence, in
a computer program Step 5 and Step 6 can be implemented in the same conditional scope.

27

Step 7: Evaluate Φ(?, y)[x1;x1;x3] = exp[−iy; iy;x1;x1;x3] = exp[−iy; iy; x̂1;x1; x̂3] as
follows.

ẑ3 := x̂3 + iy, za :=
x̂1 + x1 + x̂3

5
, z2p :=

1

2
[2y2 + 5z2a − (x̂21 + x21 + x̂23)] (176)

z3t :=
za
2

[4y2 − 35z2a + 3(x̂21 + x21 + x̂23)] + x̂1x1x̂3 (177)

z4q := 6z4a +
1

2
[11z2a − (x̂21 + x21 + x̂23)](y

2 + 3z2a)− 2zax̂1x1x̂3 (178)

Φ(?, y)[x1;x1;x3] =



[
exp[x1;x1;x3]− exp[iy; x̂1;x1]

ẑ∗3
− Φ(?, y)[x̂1;x1]

]
1

ẑ3
if |ẑ3| > 2−4

eza

4!

[
1−

z2p
30

+
z3t

210
+
z4p − z4q
1680

]
else

(179)

Note that the evaluation of exp[x1;x1;x3], exp[iy; x̂1;x1] and Φ(?, y)[x̂1;x1] is already done
in Step 1, Step 3 and Step 4, respectively.

If A has real eigenvalues, then the divided difference coefficients (cf. Eq. (46)) in the
definition of R(τ,A) have the following structure: r(x1), r[x1;x2] and r[x1;x2;x3], respectively.
Recall that the formulas to compute the eigenvalues guarantee a sorted input data, i.e. x1 ≤
x2 ≤ x3}. Further, r(x1), r[x1;x2] and r[x1;x2;x3] is evaluated as exp[0; 0;x1], exp[0; 0;x1;x2]
and exp[0; 0;x1;x2;x3], respectively. To avoid sorting the input data augmented with zeros
in the latter three expressions, we propose an alternate yet stable approach 9. Recall that
the definition of R(τ,A), cf. Eq. (46), is independent of the ordering of the eigenvalues. So
we may sort the eigenvalues with respect to their modulus and define R(τ,A) using these
sorted eigenvalues. In this alternate definition, the divided difference coefficients will have
the following structure: r(x̂1), r[x̂1; x̂2] and r[x̂1; x̂2; x̂3], respectively and where {x̂1, x̂2, x̂3} =
sortabs({x1, x2, x3}). Then we may follow an approach similar to the one taken in the case of
complex eigenvalues and fixing the imaginary parts to be zero. We summarize the evaluation
of r(x̂1), r[x̂1; x̂2] and r[x̂1; x̂2; x̂3] in five steps.

Step 1: Evaluate exp[x1;x2;x3] using the definition given in Eq. (130) prior to sorting
the input data using sortabs.

Step 2: Evaluate exp[0; 0; x̂1] as follows.

xa :=
x̂1
3
, exp[0; 0; x̂1] =


exp[0; x̂1]− 1

x̂1
if |x̂1| > 2−7

exa

2

[
1 +

x2a
4

+
x3a
30

+
x4a
40

]
else

(180)

9This approach is stable only when at least one of the input data is zero. Otherwise, we loose control of
the truncation error in the series approximation.

28

Step 3: Evaluate exp[0; x̂1; x̂2] as follows.

xa :=
x̂1 + x̂2

3
, x̃1 := −xa, x̃2 := x̂1 − xa, x̃3 := x̂2 − xa (181)

x2σ :=
x̃21 + x̃22 + x̃23

3
, x3t := x̃1x̃2x̃3 (182)

exp[0; x̂1; x̂2] =


exp[x̂1; x̂2]− exp[0; x̂1]

x̂2
if |x̂2| > 2−7

exa

2

[
1 +

x2σ
8

+
x3t
60

+
x4σ
160

]
else

(183)

Step 4: Evaluate exp[0; 0; x̂1; x̂2] as follows.

xa =
x̂1 + x̂2

4
, x2p = x̂1x̂2 − 6x2a, x3t = 2xa(4x

2
a − x̂1x̂2), x4q = x2a(x̂1x̂2 − 3x2a) (184)

exp[0; 0; x̂1; x̂2] =


exp[0; x̂1; x̂2]− exp[0; 0; x̂1]

x̂2
if |x̂2| > 2−6

exa

3!

[
1−

x2p
20

+
x3t
120

+
x4p − x4q

840

]
else

(185)

Note that the evaluation of exp[0; x̂1; x̂2] and exp[0; 0; x̂1] is already done in Step 3 and
Step 2, respectively.

Step 5: Evaluate exp[0; 0; x̂1; x̂2; x̂3] as follows.

xa :=
x̂1 + x̂2 + x̂3

5
, x4q := 6x4a +

3x2a
2

[11x2a − (x̂21 + x̂22 + x̂23)]− 2xax̂1x̂2x̂3 (186)

x2p :=
1

2
[5x2a − (x̂21 + x̂22 + x̂23)], x3t :=

xa
2

[3(x̂21 + x̂22 + x̂23)− 35x2a] + x̂1x̂2x̂3 (187)

exp[0; 0; x̂1; x̂2; x̂3] =



[
exp[x1;x2;x3]− exp[0; x̂1; x̂2]

x̂3
− exp[0; 0; x̂1; x̂2]

]
1

x̂3
if |x̂3| > 2−4

exa

4!

[
1−

x2p
30

+
x3t
210

+
x4p − x4q

1680

]
else

(188)

Note that the evaluation of exp[x1;x2;x3], exp[0; x̂1; x̂2] and exp[0; 0; x̂1; x̂2] is already
done in Step 1, Step 3 and Step 4, respectively.

Using the evaluation of R(τ,A), we can evaluate Q(τ,A) and P(τ,A) using the relation-
ships given in Eqs. (20) and (22).

7 Examples

We present two examples to validate the numerical stability in the evaluation of the proposed
formulas for the X-IVAS scheme. In these examples the eigenvalues of the matrix A and
the gap between them gradually tends to zero. The symbolic evaluation of the formulas for
the chosen eigenvalues are done using Maple and the first 16 significant decimal digits are
stored as reference solutions. These reference solutions are used to measure the relative error

29

in the formula evaluations using double precision floating point arithmetic. In this way, we
study the stability of the formulas in the neighbourhood of the removable singularities. These
examples might not be representative of typical situations which one encounters in practice.
However particular instances of the considered situations do occur occasionally10.

7.1 Example 1

In this example we consider the case when two of the eigenvalues of the matrix A are complex
numbers. We define h := 10−n and choose n ∈ {1, 2, 3, · · · , 15}. For each h, we define the
matrix A as follows.

A :=

a+ h −2h b
2h a+ h c
0 0 a+ dh

⇒ eigs(A) = {a+ h± i2h, a+ dh} (189)

where eigs(A) represents the eigenvalues of A. As per the chosen notation we identify
α = a+ h, β = 2h and λ3 = a+ dh. We can drive all the eigenvalues and/or the gap betwen
them to zero by appropriately choosing the parameters a and d. For each A we evaluate
P(τ,A), Q(τ,A) and R(τ,A) using the stable formulas summarized in the previous section.

For comparison, we also evaluate the formula obtained for R(τ,A) by integrating twice
the formula for P(τ,A) given in the Eq. (55). However, unlike in Eqs. (56) and (57), here we
perform the integrals without rearranging the coefficients in the obtained integrals as divided
differences. Following this line, we obtain the following alternate but algebraically equivalent
formula11 for R(τ,A).

R(τ,A) = τ2eτα Φ(−τα, τβ)I + τ3 Υ(−τα, τβ)(A− 2αI)

+ τ4
[

r(τλ3)− τ(λ3 − 2α) Υ(−τα, τβ)− eτα Φ(−τα, τβ)

τ2[(λ3 − α)2 + β2]

]
[(A− αI)2 + β2I] (190)

where the auxiliary function Υ(x, y) is defined as follows.

Υ(x, y) :=
1− ex[sinc(y) + 2xΦ(x, y)]

x2 + y2
(191)

The formula for R(τ,A) given in Eq. (190) and the as is evaluation of the same are
denoted as the usual formula and the usual evaluation, respectively. The matrices Q(τ,A)
and P(τ,A) are evaluated using the relationships Q(τ,A) = R(τ,A) ·A + τI and P(τ,A) =
Q(τ,A) ·A + I, respectively.

First we examine the evaluation of the coefficient Φ(?, τβ)[−τα;−τα; τλ3−τα] using both
the usual and the stable formulas. This coefficient in the usual formula is,

Φ(?, τβ)[−τα;−τα; τλ3−τα] =

[
r(τλ3)− τ(λ3 − 2α) Υ(−τα, τβ)− eτα Φ(−τα, τβ)

[(λ3 − α)2 + β2]eτα

]
(192)

Choosing τ = 1, a = 0 and d = 4 the coefficient simplifies to Φ(?, 2h)[−h;−h; 3h] and its
evaluation using both the usual and stable formulas is shown in Table 3. Therein, the first

10This study originated due to the numerical instabilities found in the unit testing phase
11We assume that one would have derived this algebraically equivalent formula should he/she be unaware

of the numerical instabilities in their evaluation

30

h Usual evaluation Exact 16 significant Stable evaluation
digits ×102 ×102

10−01 +4.252 986 132 164 403× 10−02 4.252 986 132 162 584 4.252 986 132 163 262
10−02 +4.175 027 955 863 544× 10−02 4.175 027 977 160 363 4.175 027 977 159 309
10−03 +4.167 319 156 849 885× 10−02 4.167 500 277 976 287 4.167 500 277 976 286
10−04 +5.724 100 125 516 537× 10−02 4.166 750 002 777 976 4.166 750 002 777 976
10−05 −2.993 217 938 464 562× 10+01 4.166 675 000 027 777 4.166 675 000 027 778
10−06 +7.859 720 003 935 763× 10+05 4.166 667 500 000 277 4.166 667 500 000 277
10−07 −9.042 591 902 568 542× 10+09 4.166 666 750 000 002 4.166 666 750 000 002
10−08 −9.088 426 027 317 757× 10+13 4.166 666 675 000 000 4.166 666 674 999 999
10−09 −7.139 611 827 083 238× 10+17 4.166 666 667 500 000 4.166 666 667 499 999
10−10 +2.298 194 888 769 120× 10+21 4.166 666 666 750 000 4.166 666 666 749 999
10−11 +2.291 964 121 707 557× 10+24 4.166 666 666 675 000 4.166 666 666 674 999
10−12 −6.126 014 110 580 096× 10+29 4.166 666 666 667 500 4.166 666 666 667 499
10−13 +8.610 789 808 137 885× 10+33 4.166 666 666 666 750 4.166 666 666 666 749
10−14 −2.213 384 780 309 904× 10+37 4.166 666 666 666 675 4.166 666 666 666 674
10−15 −2.213 384 780 372 381× 10+40 4.166 666 666 666 667 4.166 666 666 666 667

Table 3: Significant digits that match the exact evaluation of Φ(?, 2h)[−h;−h; 3h].

16 significant decimal digits of the usual evaluation and the stable evaluation are compared
to those of an exact evaluation. The evaluations are done using double precision floating
point arithmetic. The significant digits in both formula evaluations that differ from the exact
values are highlighted in green colour. Note that we loose significant digits at a fourth-order
rate in the usual evaluation. This is expected as Φ(?, 2h)[−h;−h; 3h] can be expressed as a
fourth-order divided difference. The established lower bound of at least 10 significant digits
is reproduced in the stable evaluations. We have not considered the effect of carry-over digits
while highlighting those that differ from the exact evaluation. This explains why for smaller
values of h in the stable evaluation we have outliers in the highlighting pattern despite those
being accurate up to machine precision.

Table 4 illustrates the relative errors in the evaluations of the matrices P(τ,A), Q(τ,A)
and R(τ,A) choosing τ = 1, a = 0, b = c = 1 and d = 4. The notation Ru and Rs

denotes the usual and stable evaluations of the matrix R, respectively and the norm used
in ||R|| is the Frobenius norm. The relative errors (||Ps − P||/||P||), (||Qs −Q||/||Q||) and
(||Rs−R||/||R||) are found to be within the guaranteed evaluation accuracies established for
the same and reflect the robustness of the stable formulas. The gradual loss of significance as
h→ 0 is reflected as a gradual increase in the relative error (from machine epsilon to values
intolerably high) in the usual evaluations of the considered matrices. The maximum relative
error in the usual evaluations of Pu, Qu and Ru are of the order of 10−4, 1010 and 1025,
respectively. In other words, as h → 0 we observe (||Pu − P||/||P||) is O(h) times smaller
than (||Qu − Q||/||Q||) which in turn is O(h) times smaller than (||Ru − R||/||R||) which
in turn is O(h) times smaller than Φ(?, 2h)[−h;−h; 3h]. The following results explain this

31

h ||Ru−R||
||R||

||Rs−R||
||R||

||Qu−Q||
||Q||

||Qs−Q||
||Q||

||Pu−P||
||P||

||Ps−P||
||P||

10−01 6.1× 10−15 7.4× 10−15 5.3× 10−16 1.1× 10−15 1.1× 10−16 2.6× 10−16

10−02 6.7× 10−12 4.8× 10−13 6.9× 10−14 7.5× 10−15 1.1× 10−15 9.7× 10−17

10−03 5.7× 10−09 4.3× 10−17 6.1× 10−12 0.0× 10+00 1.1× 10−14 9.9× 10−17

10−04 4.9× 10−06 6.9× 10−17 5.2× 10−10 0.0× 10+00 9.8× 10−14 0.0× 10+00

10−05 9.4× 10−04 1.2× 10−16 1.0× 10−08 0.0× 10+00 1.8× 10−13 2.1× 10−21

10−06 2.4× 10+00 2.1× 10−16 2.6× 10−06 5.9× 10−17 4.9× 10−12 9.9× 10−17

10−07 2.8× 10+03 3.0× 10−17 3.0× 10−04 8.3× 10−17 5.7× 10−11 9.9× 10−17

10−08 2.8× 10+06 0.0× 10+00 3.0× 10−02 8.3× 10−17 5.7× 10−10 9.9× 10−17

10−09 2.2× 10+09 3.0× 10−17 2.4× 10+00 5.9× 10−17 4.5× 10−09 9.9× 10−17

10−10 7.2× 10+11 0.0× 10+00 7.7× 10+01 0.0× 10+00 1.4× 10−08 0.0× 10+00

10−11 7.2× 10+13 0.0× 10+00 7.7× 10+02 1.2× 10−27 1.4× 10−08 2.0× 10−27

10−12 1.9× 10+18 2.1× 10−16 2.0× 10+06 5.9× 10−17 3.8× 10−06 9.9× 10−17

10−13 2.7× 10+21 2.1× 10−16 2.9× 10+08 5.9× 10−17 5.4× 10−05 9.9× 10−17

10−14 6.9× 10+23 6.2× 10−31 7.4× 10+09 0.0× 10+00 1.4× 10−04 1.9× 10−30

10−15 6.9× 10+25 3.0× 10−17 7.4× 10+10 1.4× 10−31 1.4× 10−04 0.0× 10+00

Table 4: Relative errors in the usual and stable evaluation when λ = {h± i2h, 4h}.

behaviour.

Z := (A− αI)2 + β2I = h

0 0 b(d− 1) + ch
0 0 c(d− 1) + bh
0 0 dh(d− 2) + 5h

⇒ ZA = (a+ dh)hZ

ZA2 = (a+ dh)2hZ
(193)

R(τ,A) ≈ Φ(?, τβ)[−τα;−τα; τλ3 − τα]Z, Q(τ,A) ≈ RA, P(τ,A) ≈ RA2 (194)

Equation (194) holds when the evaluation error of Φ(?, τβ)[−τα;−τα; τλ3 − τα] is large;
Observe in Table 3 that Φ(?, 2h)[−h;−h; 3h] ≈ 1040 when h → 0. Substituting a = 0,
b = c = 1 and d = 4 in the above equations we can arrive at the maximum relative errors
found in the usual evaluations of the matrices. Recall that the matrices P(τ,A) and Q(τ,A)
govern the evolution of the particle positions. Likewise, the matrices Q(τ,A) and R(τ,A)
govern the evolution of the particle velocities.

7.2 Example 2

In this example we consider the case when all the eigenvalues of the matrix A are real numbers.
We consider the same sequence for h used in previous example. The matrix A is defined as
follows.

A :=

a+ h b c
0 a+ 2h d
0 0 a+ 3h

⇒ eigs(A) = {a+ h, a+ 2h, a+ 3h} (195)

As per the chosen notation we identify λ1 = a + h, λ2 = a + 2h and λ3 = a + 3h.
By construction, all the eigenvalues and the gap between them can be driven to zero with
decreasing values of h for appropriate choice of the parameter a. For each A we evaluate
P(τ,A), Q(τ,A) and R(τ,A) using the stable formulas summarized in the previous section.

32

h Usual evaluation Exact 16 significant Stable evaluation
digits ×102 ×102

10−01 +4.703 252 003 753 182× 10−02 4.703 252 003 748 591 4.703 252 003 756 346
10−02 +4.217 015 681 096 254× 10−02 4.217 015 682 095 156 4.217 015 682 094 985
10−03 +4.171 659 312 435 238× 10−02 4.171 670 140 675 349 4.171 670 140 675 349
10−04 +4.170 737 644 124 122× 10−02 4.167 166 701 390 674 4.167 166 701 390 674
10−05 +7.401 468 326 839 742× 10−02 4.166 716 667 013 890 4.166 716 667 013 890
10−06 +7.401 484 980 461 280× 10+01 4.166 671 666 670 138 4.166 671 666 670 138
10−07 +0.000 000 000 000 000× 10+00 4.166 667 166 666 701 4.166 667 166 666 701
10−08 +3.700 743 378 409 752× 10+07 4.166 666 716 666 667 4.166 666 716 666 667
10−09 −3.700 743 420 043 115× 10+10 4.166 666 671 666 666 4.166 666 671 666 666
10−10 +0.000 000 000 000 000× 10+00 4.166 666 667 166 666 4.166 666 667 166 666
10−11 +0.000 000 000 000 000× 10+00 4.166 666 666 716 666 4.166 666 666 716 666
10−12 −3.700 743 415 419 038× 10+19 4.166 666 666 671 666 4.166 666 666 671 665
10−13 +3.700 743 415 416 816× 10+22 4.166 666 666 667 166 4.166 666 666 667 166
10−14 +7.401 486 830 834 415× 10+25 4.166 666 666 666 716 4.166 666 666 666 716
10−15 −7.401 486 830 834 381× 10+28 4.166 666 666 666 671 4.166 666 666 666 671

Table 5: Significant digits that match the exact evaluation of r[h; 2h; 3h].

For comparison, we also evaluate the formula for R(τ,A) given in the Eq. (46) wherein
the higher-order divided difference coefficients are evaluated as is. The first-order divided
differences are evaluated using the functional form described in Eq. (106). This way of
evaluating R(τ,A) is what we refer to herein as the usual evaluation. The matrices Q(τ,A)
and P(τ,A) are evaluated as in Example 1.

First we examine the evaluation of the coefficient r[τλ1; τλ2; τλ3]. Choosing τ = 1 and a =
0, this coefficient simplifies to r[h; 2h; 3h] and its evaluation using both the usual and stable
formulas is shown in Table 5. The evaluations are done using double precision floating point
arithmetic and the first 16 significant decimal digits of the usual and the stable evaluations are
compared to those of an exact evaluation. The significant digits in both formula evaluations
that differ from the exact values are highlighted in green colour. As r[h; 2h; 3h] can be
expressed as a fourth-order divided difference, we expect a fourth-order loss of significant
digits. However, as the first-order divided differences are evaluated to machine precision, we
just observe a third-order loss of significant digits in the usual evaluation. The established
lower bound of at least 10 significant digits is reproduced in the stable evaluations.

Table 6 illustrates the relative errors in the evaluations of the matrices P(τ,A), Q(τ,A)
and R(τ,A) choosing τ = 1, a = 0 and b = c = d = 1. The behaviour of the usual and
stable evaluations are similar to what is observed in the previous example. The maximum
relative error in the usual evaluations of Pu, Qu and Ru are of the order of 10−2, 1013 and
1028, respectively. As before (||Pu −P||/||P||) is O(h) times smaller than (||Qu −Q||/||Q||)
which in turn is O(h) times smaller than (||Ru − R||/||R||). The following results explain

33

h ||Ru−R||
||R||

||Rs−R||
||R||

||Qu−Q||
||Q||

||Qs−Q||
||Q||

||Pu−P||
||P||

||Ps−P||
||P||

10−01 3.9× 10−14 7.1× 10−14 1.7× 10−15 3.2× 10−15 5.4× 10−16 4.0× 10−16

10−02 1.0× 10−11 7.1× 10−14 1.2× 10−13 2.1× 10−14 1.0× 10−15 2.1× 10−15

10−03 1.1× 10−07 1.3× 10−16 6.8× 10−11 7.8× 10−17 6.6× 10−14 1.1× 10−16

10−04 3.8× 10−05 1.3× 10−16 1.4× 10−09 7.9× 10−17 9.3× 10−14 8.2× 10−17

10−05 3.5× 10−02 5.2× 10−17 4.2× 10−07 0.0× 10+00 8.1× 10−12 0.0× 10+00

10−06 8.0× 10+01 0.0× 10+00 4.4× 10−05 5.5× 10−17 5.8× 10−11 0.0× 10+00

10−07 4.5× 10−02 1.7× 10−16 6.7× 10−05 7.9× 10−17 7.8× 10−11 8.2× 10−17

10−08 4.0× 10+07 5.2× 10−17 4.7× 10−01 0.0× 10+00 7.5× 10−09 8.2× 10−17

10−09 4.0× 10+10 0.0× 10+00 5.5× 10+01 5.5× 10−17 1.0× 10−07 8.2× 10−17

10−10 3.4× 10−01 3.0× 10−17 8.3× 10−02 0.0× 10+00 1.5× 10−08 0.0× 10+00

10−11 3.4× 10−01 3.0× 10−17 8.3× 10−02 0.0× 10+00 1.5× 10−08 0.0× 10+00

10−12 4.0× 10+19 3.0× 10−17 5.5× 10+07 7.9× 10−17 1.0× 10−04 8.2× 10−17

10−13 4.0× 10+22 0.0× 10+00 5.5× 10+09 5.5× 10−17 1.0× 10−03 8.2× 10−17

10−14 8.0× 10+25 3.0× 10−17 5.5× 10+11 0.0× 10+00 8.0× 10−03 8.2× 10−17

10−15 8.0× 10+28 4.2× 10−17 5.5× 10+13 0.0× 10+00 6.1× 10−02 1.1× 10−16

Table 6: Relative errors in the usual and stable evaluation when λ = {h, 2h, 3h}.

this behaviour.

Z := (A− λ1I)(A− λ2I) =

0 0 bd+ ch
0 0 2dh
0 0 2h2

⇒ ZA = (a+ 3h)Z

ZA2 = (a+ 3h)2Z
(196)

R(τ,A) ≈ r[τλ1; τλ2; τλ3]Z, Q(τ,A) ≈ RA, P(τ,A) ≈ RA2 (197)

Equation (197) holds when the evaluation error of r[τλ1; τλ2; τλ3] is large; Observe in
Table 5 that r[h; 2h; 3h] ≈ 1028 when h → 0. Substituting τ = 1, a = 0 and b = c = d = 1
in the above equations we can arrive at the maximum relative errors found in the usual
evaluations of the matrices.

8 Conclusions

Formula evaluations in the neighbourhood of removable singularities suffer loss of significance
when they are done using finite precision arithmetic. Formulas for particle tracing of stream-
lines and the solution of the X-IVAS scheme involve many removable singularities. Hence,
the use numerically stable formulas for the same is a criteria for robustness.

We have proposed numerically stable formulas for the analytical solution in the closed
form of the X-IVAS scheme. Therein, functions of matrices are defined using its Newton
interpolating polynomial. In this form, removable singularities and the terms/expressions that
participate to yield a finite limit at these points are grouped together as divided differences.
In other algebraically equivalent formulas, say obtained by a simplification (expanding the
divided differences and rearraging it to other elegant forms) of the proposed formulas, these
terms/expressions get dispersed. The poor reputation of divided differences with respect to
the loss of significance in a neighbourhood of removable singularities is a blessing in disguise;
we get an a priori warning about a possible loss of significance. To control the loss of

34

significance, we have presented piecewise definitions for these divided differences. To be
precise, the piecewise definitions switch the evaluations to the respective series approximations
of the divided differences should the gap between the independent variables be less than a
specified threshold. These divided differences are expressible as the divided difference of
the exponential function of an appropriate order less than or equal to four. For the terms
involving the second, third and fourth order divided differences, the evaluation of the piecewise
definitions of the same guarantee at least 14, 12 and 10 significant decimal digits to be exact,
respectively. Thus, this piecewise evaluation technique is both simple and stable.

9 Acknowledgements

This study was partially supported by the SAFECON project of the European Research
Council (European Commission) and the WAM-V project funded under the Navy Grant
N62909-12-1-7101 issued by Office of Naval Research Global. The United States Government
has a royalty-free license throughout the world in all copyrightable material contained herein.

References

[1] S. R. Idelsohn, E. Oñate, F. Del Pin, The particle finite element method: a powerful tool
to solve incompressible flows with free-surfaces and breaking waves, International Journal
for Numerical Methods in Engineering 61 (7) (2004) 964–989. doi:10.1002/nme.1096.
URL http://doi.wiley.com/10.1002/nme.1096

[2] E. Oñate, S. R. Idelsohn, F. Del Pin, R. Aubry, The particle finite element method.
An overview., International Journal of Computational Methods 1 (2) (2004) 267–307.
doi:10.1142/S0219876204000204.
URL http://www.worldscinet.com/ijcm/01/0102/S0219876204000204.html

[3] S. R. Idelsohn, J. Marti, A. Limache, E. Oñate, Unified Lagrangian formulation for elastic
solids and incompressible fluids: Application to fluid–structure interaction problems via
the PFEM, Computer Methods in Applied Mechanics and Engineering 197 (19-20) (2008)
1762–1776. doi:10.1016/j.cma.2007.06.004.
URL http://linkinghub.elsevier.com/retrieve/pii/S004578250700237X

[4] E. Oñate, S. R. Idelsohn, M. A. Celigueta, R. Rossi, Advances in the particle finite
element method for the analysis of fluidmultibody interaction and bed erosion in free
surface flows, Computer Methods in Applied Mechanics and Engineering 197 (19-20)
(2008) 1777–1800. doi:10.1016/j.cma.2007.06.005.
URL http://linkinghub.elsevier.com/retrieve/pii/S0045782507002368

[5] S. R. Idelsohn, M. de Mier-Torrecilla, E. Oñate, Multi-fluid flows with the Particle Finite
Element Method, Computer Methods in Applied Mechanics and Engineering 198 (33-36)
(2009) 2750–2767. doi:10.1016/j.cma.2009.04.002.
URL http://linkinghub.elsevier.com/retrieve/pii/S0045782509001534

[6] M. de Mier-Torrecilla, Numerical Simulation of Multi-Fluid Flows with the Particle Finite
Element Method, Phd thesis, Technical University of Catalonia (UPC) (2010).

35

[7] S. Idelsohn, N. Nigro, A. Limache, E. Oñate, Large time-step explicit integration method
for solving problems with dominant convection, Computer Methods in Applied Mechanics
and Engineering 217-220 (2012) 168–185. doi:10.1016/j.cma.2011.12.008.
URL http://linkinghub.elsevier.com/retrieve/pii/S0045782511003872

[8] S. R. Idelsohn, J. Marti, P. Becker, E. Oñate, Analysis of multifluid flows with large
time steps using the particle finite element method, International Journal for Numerical
Methods in Fluids 75 (9) (2014) 621–644. doi:10.1002/fld.3908.
URL http://doi.wiley.com/10.1002/fld.3908

[9] D. P. Diachin, J. A. Herzog, Analytic streamline calculations on linear tetrahedra, in:
13th Computational Fluid Dynamics Conference, American Institute of Aeronautics and
Astronautics, Reston, Virigina, 1997, pp. 733–742. doi:10.2514/6.1997-1975.
URL http://arc.aiaa.org/doi/abs/10.2514/6.1997-1975

[10] B. Parlett, A recurrence among the elements of functions of triangular matrices, Linear
Algebra and its Applications 14 (2) (1976) 117–121. doi:10.1016/0024-3795(76)90018-5.
URL http://linkinghub.elsevier.com/retrieve/pii/0024379576900185

[11] G. M. Nielson, I.-H. Jung, Tools for computing tangent curves for linearly varying vec-
tor fields over tetrahedral domains, IEEE Transactions on Visualization and Computer
Graphics 5 (4) (1999) 360–372. doi:10.1109/2945.817352.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=817352

[12] W. Kahan, J. D. Darcy, How Javas Floating-Point Hurts Everyone Everywhere (1998).
URL http://www.cs.berkeley.edu/ wkahan/JAVAhurt.pdf

[13] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial
and Applied Mathematics, 2002. doi:10.1137/1.9780898718027.
URL http://epubs.siam.org/doi/book/10.1137/1.9780898718027

[14] J. F. Price, Lagrangian and Eulerian Representations of Fluid Flow: Kinematics and the
Equations of Motion (2006).
URL http://www.whoi.edu/science/PO/people/jprice/class/ELreps.pdf

[15] M. Hochbruck, C. Lubich, H. Selhofer, Exponential Integrators for Large Systems of
Differential Equations, SIAM Journal on Scientific Computing 19 (5) (1998) 1552–1574.
doi:10.1137/S1064827595295337.
URL http://epubs.siam.org/doi/abs/10.1137/S1064827595295337

[16] A. Ostermann, M. Thalhammer, W. Wright, A Class of Explicit Exponential General
Linear Methods, BIT Numerical Mathematics 46 (2) (2006) 409–431. doi:10.1007/s10543-
006-0054-3.
URL http://link.springer.com/10.1007/s10543-006-0054-3

[17] M. Caliari, A. Ostermann, S. Rainer, Meshfree Exponential Integrators, SIAM Journal
on Scientific Computing 35 (1) (2013) A431–A452. doi:10.1137/100818236.
URL http://epubs.siam.org/doi/abs/10.1137/100818236

[18] F. Gilbert, G. E. Backus, Propagator matrices in elastic wave and vibration problems,
Geophysics 31 (2) (1966) 326–332. doi:10.1190/1.1439771.
URL http://library.seg.org/doi/abs/10.1190/1.1439771

36

[19] P. Kipfer, F. Reck, G. Greiner, Local Exact Particle Tracing on Unstructured Grids,
Computer Graphics Forum 22 (2) (2003) 133–142. doi:10.1111/1467-8659.00655.
URL http://doi.wiley.com/10.1111/1467-8659.00655

[20] N. J. Higham, Functions of Matrices: Theory and Computation, Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2008.

[21] E. W. Weisstein, Cubic Formula. From MathWorld–A Wolfram Web Resource.
URL http://mathworld.wolfram.com/CubicFormula.html

[22] A. McCurdy, K. C. Ng, B. N. Parlett, Accurate computation of divided differences
of the exponential function, Mathematics of Computation 43 (168) (1984) 501–501.
doi:10.1090/S0025-5718-1984-0758198-0.
URL http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-1984-0758198-0

[23] M. Caliari, Accurate evaluation of divided differences for polynomial interpolation of
exponential propagators, Computing 80 (2) (2007) 189–201. doi:10.1007/s00607-007-
0227-1.
URL http://link.springer.com/10.1007/s00607-007-0227-1

37

