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Abstract 

Cementitious materials such as mortar or concrete are brittle and have an inherent weakness 
in resisting tensile stresses. The addition of discontinuous fibers to such matrices leads to a 
dramatic improvement in their toughness and remedies their deficiencies. It is generally 
agreed that the fibers contribute primarily to the post-cracking response of the composite by 
bridging the cracks and providing resistance to crack opening (Suwaka & Fukuyama 2006). 

On the other hand, the multifield theory is a mathematical tool able to describe materials 
which contain a complex substructure (Mariano & Stazi 2005). This substructure is endowed 
with its own properties and it interacts with the macrostructure and influences drastically its 
behavior. Under this mathematical framework, materials such as cement composites can be 
seen as a continuum with a microstructure. Therefore, the whole continuum damage mechan-
ics theory, incorporating a new microstructure, is still applicable.  

A formulation, initially based on the theory of continua with microstructure Capriz 
(Capriz 1989), has been developed to model the mechanical behavior of the high perfor-
mance fiber cement composites with arbitrarily oriented fibers. This formulation approaches 
a continuum with microstructure, in which the microstructure takes into account the fiber-
matrix interface bond/slip processes, which have been recognized for several authors (Li 
2003, Naaman 2007b) as the principal mechanism increasing the ductility of the quasi-brittle 
cement response. In fact, the interfaces between the fiber and the matrix become a limiting 
factor in improving mechanical properties such as the tensile strength. Particularly, in short 
fiber composites is desired to have a strong interface to transfer effectively load from the 
matrix to the fiber. However, a strong interface will make difficult to relieve fiber stress 
concentration in front of the approaching crack. According to Naaman (Naaman 2003), in 
order to develop a better mechanical bond between the fiber and the matrix, the fiber should 
be modified along its length by roughening its surface or by inducing mechanical deforma-
tions. Thus, the premise of the model is to take into account this process considering a micro 



 

 
 

field that represents the slipping fiber-cement displacement. The conjugate generalized stress 
to the gradient of this micro-field verifies a balance equation and has a physical meaning.  

 This contribution includes the computational modeling aspects of the high fiber rein-
forced cement composites (HFRCC) model. To simulate the composite material, a finite 
element discretization is used to solve the set of equations given by the multifield approach 
for this particular case. A two field discretization: the standard macroscopic and the micro-
scopic displacements, is proposed through a mixed finite element methodology. Furthermore, 
a splitting procedure for uncoupling both fields is proposed, which provides a more conve-
nient numerical treatment of the discrete equation system. 

The initiation of failure in HPFRCC at the constitutive level identified as the onset of 
strain localization depends on the mechanical properties of the all compounds and not only 
on the matrix ones. As  localization criteria is considered the bifurcation analysis in combina-
tion with the localized strain injection technique presented by Oliver et al. (Oliver et al. 
2010a). It consists of injecting a specific localization mode during the localization stage, via 
mixed finite element formulations, to the path of elements that are going to capture the 
cracks, and, in this way, the spurious mesh orientation dependence is removed. 

Model validation was performed using a selected set of experiments that proves the via-
bility of this approach. The numerical examples of the proposed formulation illustrated two 
relevant aspects, namely: 1) the role of the bonding mechanism in the strain hardening beha-
vior after cracking in the HPFRCC and 2) the role that plays the finite element formulation in 
capturing the displacement localization in the localization stage.  
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Chapter 1                                  
Introduction and state of the art 

1.1. High performance fiber reinforced cement composites 

Cementitious materials such as mortar or concrete are brittle and have an inherent weakness 
in resisting tensile stresses. However, the addition of discontinuous fibers to such matrices 
leads to a dramatic improvement in their toughness and remedies their deficiencies. It is 
generally agreed that the fibers contribute primarily to the post-cracking response of the 
composite by bridging the cracks and providing resistance to crack opening (Suwaka & 
Fukuyama 2006).  

In conventional fiber reinforced concrete (conventional FRC), the fiber content is usually 
low and the tensile response is characterized by the widening of a single crack, similar to an 
unreinforced concrete (Li & Li 2000), while high performance fiber reinforced cement com-
posites (hereafter, HPFRC Composite) are highly ductile and characterized by pseudo strain 
hardening in tension. Consequently, strain hardening and multiple cracking constitute the 
main differences between FRC and HPFRC composite. 

In order to make a proper description of the HPFRC composites, we first introduce a 
commonly used definition of a composite material, as follows: “A composite material is a 
combination of two or more materials having compositional variations and depicting proper-
ties distinctively different from those of the individual materials of the composite. The com-
posite material is generally better than any of the individual components as regard their 
strength, heat resistance or stiffness” (Rajput 2008). 

From the mathematical point of view, this imposes significant restrictions on defining 
adequate models and simulation tools making the analysis quite complicated. Therefore, 
since the difficulty of building a composite model is enormous, composite models are mostly 
patchwork and trial-and-error approaches. In fact, there are fundamental difficulties common 
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to all composite models, which still remain unresolved. This motivates us to study the inter-
nal mechanisms in HPFRC composites, with the view towards developing an appropriate 
model.  

Our concern in this chapter is to introduce the description of the mechanisms involved in 
the HPFRC composites behavior and to present the current state of knowledge of simulation 
of this kind of composite. Pursuing these ideas, firstly, a brief overview of the principal ele-
ments of HPFRC composite mechanical behavior and an introduction to the key concepts are 
presented. Then, it is summarized a state-of-the art of current research on analytical and 
numerical methods in the context of both the composite analysis and the fracture problem 
and finally, it is outlined the general and specific objectives to be accomplished in this work.  

1.1.1. General classification of fiber reinforced concrete composites 

Over the recent years, there have been significant advances in the design and use of short 
fiber reinforced cement and concrete composites as an industrial material, especially those 
combining several different types of fibers. These materials are particularly developed for 
specific applications, for which toughness, ductility and energy absorption are fundamental 
properties. 

 

Figure 1.1 General classification of FRC composite. Adapted from (Naaman 2007a) 

A general classification has been suggested.in (Naaman & Reinhardt 2006) and is based 
on whether the response of the composite is strain-hardening or strain-softening, as is illu-
strated schematically in Figure 1.1. Thus, high performance fiber reinforced cement compo-
sites (HPFRC Composite) are a class of composites characterized by a strain-hardening be-
havior in tension after first cracking, accompanied by multiple cracking up to relatively high 
strain levels.  

However, the above presented classification is simple and does not reflect any peculiari-
ties. According to (Naaman & Reinhardt 2006), a more specific classification is possible 
using the volume fraction of fibers,  fV ,  as the property characterizing strain-hardening and 
deflection-hardening response in fiber composites. Figure 1.2 contains the information on the 
critical volume fraction of fibers,  f cri

V , needed to achieve strain-hardening or deflection-
hardening behavior. Thus, under tensile stress, the condition  f f cri tension

V V

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cause deflection-hardening, otherwise the composite response will show strain-softening or 
deflection-softening, respectively. 
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Figure 1.2. Classification of FRC composites based on tensile strain-stress response. Adapted from 

(Naaman & Reinhardt 2006) 

1.1.2. Typical stress-strain curves under tension. Conventional FRC vs. HPFRC 
composites 

The stress-strain response characterizes the material behavior of plain concrete, conven-
tional FRC and HPFRC composites. In brittle materials under tension (plain concrete or 
cement matrices), occurs little or no plastic deformation and the material fractures near the 
end of linear-elastic portion of the curve. Nevertheless, unlike the plain concrete, the charac-
terization of the response of concrete-based composites not only involves the macroscale 
behavior but also the mesoscale one. Consequently, in conventional FRC and HPFRC com-
posite, the presence of the fibers might contribute to promote inelastic deformation, im-
proved ductility, and increased toughness. In this regard, it has been recognized as being the 
basic fracture mechanisms that influences the postcracking response, the following: (i) the 
debonding of the fibers, (ii) the pull-out of the fibers from the matrix, and (iii) the associated 
increase in crack opening.  
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Figure 1.3 Typical stress-strain curve in tension until complete separation (a) Conventional 
strain-softening FRC composite (b) Strain-hardening composite. Adapted from (Naaman & 

Reinhardt 2006) 

A brief discussion of the characteristics of the concrete-based composite response is in-
troduced at this point, which gives some insights of the general behavior of these materials. 
Let us consider figure 1.3(a) that represents the typical response for conventional fiber rein-
forced concrete; the stress strain curve shows an ascending branch up to the peak stress, this 
point is characterized by its stress-strain coordinate  ,cc cc  , which is followed almost 
immediately by the post-cracking behavior. After localization, the curve presents a descend-
ing branch, and therefore, no multiple cracking occurs. 

In contrast, the stress-strain curve of an HPFRC composite, as in figure 1.3(b), starts 
with an initial ascending portion up to first structural crack  ,cc cc  ;  at this point, the 
stress-strain curve deviates from the linear portion. This point is followed by a strain-
hardening branch ending in the point  ,pc pc  , which is denominated maximum post crack-
ing stress-strain point. At the peak point, one crack becomes critical and starts the localiza-
tion process, no other cracks can develop, and only this critical crack will open under defor-
mation. Localization is characterized in the stress-strain curve by a descending branch and 
during this process fibers pull-out or fail (Li 2003). In summary, the general conclusion is 
that the introduction of short fibers in a cement-based matrix changes significantly the strain-
stress curve, increasing the failure strain and the fracture toughness of the composite (Lin & 
Li 1997), (Li 2003). 
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According to (Suwannakarn 2009), it is possible to separate the curve in different stages 
and characterize each branch. Three stages can be considered in the HPFRC composite be-
havior, as follows (see Figure 1.3(b)), 

 Elastic stage and first crack point before reaching the point:  ,cc cc   
 Multiple cracking stage from  ,cc cc   till  ,pc pc  . 
 Localization and softening stage.  

In the first stage, the matrix remains intact and essentially elastic, so that the curve 
shows linear behavior up to cc . When the first crack occurs, conventional FRC response 
softens, while HPFRC composite hardens (Stage II). This strain-hardening effect in the re-
sponse of HPFRC composites is due, at least in part, to the ability of fibers to transfer the 
stresses during pull-out. As the load increases, new micro-cracks initiate, and possible coa-
lescence between them might occur. The higher is the load, the longer are the cracks (Fantilli 
et al. 2007), (Fantilli et al. 2009). Consequently, the stiffness reduces, but its value remains 
positive, and therefore, the post cracking strength pc  is higher than cc (Suwannakarn 
2009). After saturation of matrix cracking, the stress applied on the composite is sustained 
only by unbroken fibers, and as far as this stress increases, the fraction of broken fiber could 
increase depending on the friction between the fibers and the matrix.  

 After reaching a maximum value in the post-cracking tensile strength point  ,pc pc  , 
the localization process starts (Stage III) and softening of the response is exhibited by the 
curve. Only one of the multiple cracks, previously developed in stage II, remains opening 
while the others cracks close (Naaman 2007b). The main underlying mechanism during this 
stage is the fiber pull out behavior of the composite (Suwannakarn 2009). It is evident that 
the behavior of the material into the last two stages depends on several parameters and phe-
nomena including fracture toughness of the composite, fiber pull-out mechanism and fiber 
parameters, as well as bridging effect  (Fischer 2006).  

1.1.3. Main fiber characteristics  

The fibers used in cement composites are mainly organic, mineral or man-made and they can 
be classified, in general, into two categories: metallic and non-metallic. Today, for large 
scale civil and architectural structures, steel fibers are mainly used. Due to the increased 
interest in this field, many scientists devote much effort to study and develop new approach-
es for optimizing the fiber performance by changing its physical and mechanical features. A 
brief description of  HPFRC composites with metallic and non metallic fibers is presented in 
(Colin 2000) and (Naaman A. E 1995). In the case of steel fibers, the geometry can play an 
important role; therefore, nowadays the industry has a wide variety of geometries available. 
Figure 1.4 is a sketch of possible geometries for short fibers. The benefits of fibers in cement 
based composite are evident, nevertheless, fiber inclusion to concrete reduces the workability 
during fabrication. 
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Figure 1.4. Steel fiber profiles. 

The major problem of short fiber composites is that the interfaces between the fiber and 
the matrix become a limiting factor in improving mechanical properties such as strength. 
Particularly, in short fiber composites, it is desired to have a strong interface to transfer ef-
fectively load from the matrix to the fiber. However, a strong interface will make difficult to 
relieve fiber stress concentration in front of the approaching crack. In this regard, currently, 
the research on steel short fiber composites concerns the optimal combination of geometric 
properties to obtain a superior performance. According to Naaman (Naaman 2003), to devel-
op a better mechanical bond between the fiber and the matrix, the fiber can be modified 
along its length by roughening its surface or by inducing mechanical deformations. Namman 
(Naaman 2003) also discuses about the development and design of a new generation of steel 
fibers for use in cement, ceramic and polymeric matrices.  

1.2. Some aspects about fiber reinforcement mechanics 

As previously discussed, the evidence from both analytical and experimental studies strongly 
supports that the primary mechanisms of the HPFRC composites response involves mechan-
isms at mesoscopic or microscopic levels. Although, several models have been proposed to 
describe the behavior of the HPFRC composites in tension, an adequate model should cap-
ture naturally, at least partially, those features of the material response, which most critically 
influence the structural performance. In the remainder of this section, we will confine our 
attention on the principal aspects and issues associated with the fiber-matrix interface action 
and the manner in which it affects the cement based composites behavior. 
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1.2.1. Fiber pullout and bond slip 

The interaction forces between fiber and the matrix are transmitted by the interfacial bond, 
between the fiber and the surrounding matrix (Naaman & Najm 1991). Moreover, bond is 
considered a key phenomenon governing the mechanical properties of the composite 
(Guerrero & Naaman 2000). This mechanism is very complex in cement composites because 
of the presence of combined actions and the variability in the bond properties. Among these 
properties are: (1) physical and chemical adhesion between fiber and matrix, (2) geometrical 
characteristics of the mechanical adhesion surfaces, in the case of deformed, crimped, and 
hooked fiber, (3) fiber-to-fiber interlock and (4) friction by confinement (Naaman & Najm 
1991). Additionally, another important component is the inclination of the fiber respect to the 
loading action ((Naaman A. E 1976) and (Laranjeira et al. 2010)). 

Fiber pullout consists of pulling on one of both ends of a fiber embedded in a matrix. Fi-
ber pull out tests are often conducted to understand the nature of the underlying mechanisms 
of the reinforcement processes and to assess bond-slip characteristics, where the fiber slip is 
monitored as a function of the applied load. From the experimental results, a typical bond 
shear stress-slip curve can be adequately adjusted by pullout testing to different situations. 
Nevertheless, it is emphasized that the bond characteristics depend on several factors involv-
ing the orientation of the applied load, the embedded length of the fiber, the shape of the 
fiber, and the strength of the matrix (Lee et al. 2010). Figure 1.5(a) illustrates the configura-
tion of the fiber-matrix interface consisting of a quarter of fiber surrounding by the matrix 
material (bulk matrix). The Interfacial transition zone (ITZ) in concrete and cement compo-
sites is the region of the material surrounding the fibers (see Figure 1.5(a)). Figure 1.5(b) 
shows the general relationship between local bond shear stress and slip during the pullout 
process of a fiber into the composite, which is characterized by the shear modulus fG and 
the maximum bond shear strength max . 

Figure 1.5 (a) Configuration of the fiber-matrix interface (b) General relationship between 

local bond shear stress and slip during the pullout process.  Adapted from (Barros et al. 
2005) 
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1.2.1.1. Matrix-fiber bound characteristics 

The interfacial region between the bulk matrix and the fiber plays an important role to trans-
fer the stresses from the matrix to the fiber. It is widely acknowledged that this zone has 
different morphology if compared with the remaining material. The properties of ITZ depend 
mainly on the nature of the binder, the presence of additives, and the water/cement ratio. 
During the loading process, three types of debonding mechanisms are involved, i.e. chemi-
cal, mechanical and frictional. In the pullout process of straight fiber, after the initial elastic 
region has been passed (1) (see Figure 1.5(b)), the chemical debonding mechanism is acti-
vated (region (2)). During this stage, there exists fully compatible fiber-matrix deformation. 
When chemical bonding is exhausted, frictional stresses are generated along the embedded 
length (portion of the fiber in the concrete matrix) due to the abrasion in the interfacial zone 
(region (3)), (Cunha et al. 2007).  

The frictional bond can be improved by deformation processes in the steel fibers (Li & 
Stang 1997), which leads to better local interaction between the fiber and the matrix; in this 
case, the strain distribution in the compounds is smoother. This technique has proven to be 
the most effective one in improving the matrix-fiber interface (Banthia & Trottier 1994).  

1.2.1.2. Aligned fibers 

Three different phases can be distinguished in the pullout response of smooth steel fibers 
(Guerrero & Naaman 2000), namely, elastic stage, debonding and frictional pull out, as illu-
strated in Figure 1.6. The first phase is a linear ascending branch (OA), which is associated 
with elastic and/or adhesive bond. The pre-peak branch (AB) corresponds to the cracking of 
the interface transition zone, this crack growth causes the crack to be maximal at the critical 
debonding length until peak load, and the portion (BC) represents the propagation of the 
crack in the interfacial debonding zone until the end of the fiber length, namely, fully de-
bonding. The point C indicates the initiation of the pull out under frictional slip. The load 
decreases since both the available frictional area and the roughness decrease (Cunha et al. 
2007). 

The pre-peak pullout response of hooked end fibers can be characterized by three differ-
ent branches. In the (OA) and (AB’) ascending branches, the adhesive bond and debonding 
up to full debonding appears which occurs at point B’. Path (B’C’) is an additional increase 
of load due to the mechanical anchorage provided by the hooked end. The branches (C’D’) 
and (D’E’) correspond to the deformation of the hooked end. Finally, the load decreases in 
the branch (E’F’), following the same frictional mechanism as in the straight fibers. It can be 
concluded that the fundamental mechanism that increases the pullout response in hooked end 
fibers is the plastic deformation that occurs in the hook portion (Naaman & Najm 1991). 
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Figure 1.6 Pull out relationship between the load and the end-slip. Adapted from                

(Cunha et al. 2007) 

1.2.1.3. Inclined fibers  

When the fibers are inclined with respect to the loading direction, a very complex stress field 
in the vicinity of the fiber can be induced (Banthia & Trottier 1994). A noticeable increasing 
is observed in both the pullout and the bond shear stress-slip relationship with respect to non-
inclined fibers. Additionally, the pullout response of the inclined straight and deformed fi-
bers display other effects, such as fiber bending, matrix spalling and local frictional effects 
(Laranjeira et al. 2010). 

Crack opening will induce not only pullout, but bending on the fiber. For this reason, 
Leung and Geng (Leung & Geng 1998) proposed to decompose the bridging force P  in two 
components: S  represents the debonding/pull-out component due to interfacial stress along 
the fiber, and R , the bending component due to reactions from the matrix. The last compo-
nent causes concentration of stress in the region between the fiber and the crack, resulting in 
concrete spalling (Cunha et al. 2007) and increase of the pullout load. Additionally, the pul-
lout resistance of inclined fiber depends on both, bending and yielding, mechanisms, which 
are developed under small pullout loads, since the fiber will almost immediately be bent 
when the pullout starts to apply. 

1.2.2. Bridging effect 

In order to understand the bridging effect, a fiber-reinforced specimen can be considered 
subjected to tensile loads, as it is shown in Figure 1.7. In absence of fibers, the cementitious 
material behaves as a quasi brittle material, but when the fibers are immersed into the matrix, 
the tensile stresses are transmitted from the matrix to the fibers (Nammur 1989). The applied 
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load will be shared by both components: the matrix and the fibers, and the participation of 
each compound is dictated by their relative stiffness and by the interfacial transition zone 
(ITZ) properties. As aforementioned, the tensile specimen will reach a stress stage at which 
the first micro-cracks develop. However, these are so small to be visible by the naked eye. 

 When a micro-crack is observed under close inspection at higher magnification (see for 
instance Figure 1.7), the fibers are seen passing through it and bridging the crack surfaces. 
The fibers transfer the forces across the crack and new micro-processes are activated (Kabele 
2007a). These transfer processes are dominated by the bond strength in the interfacial zone. 
Experimental observations indicate that the properties of the fiber affect strongly the bridg-
ing effect; regarding this, the geometrical and mechanical properties can be modified in order 
to increase the bond strength and subsequently the bridging effectiveness (Naaman 2003). 

 
Figure 1.7 Pull out  and bridging effect under tensile load. 

1.3. Material nonlinearities in reinforced cement composite 

In HPFRC composites, various large-scale non-linearities associated with the matrix 
damage and fiber failure arise. This coexistence of degradation processes in the compounds, 
prior to composite failure, takes place during strain-hardening stage, in which the matrix 
failure is controlled by pre-existing flaws. Then, multiple cracks develop, until strain locali-
zation occurs at one of these cracks (Zhang et al. 2002). According to (Wu & Li 1994), the 
evolution of multiple cracking appears to be a stochastic process associated with distributed 
initial flaw sizes.  The main sources of nonlinearities are, therefore, due to the nonlinear 
behavior of the compounds. The following sections provide basic information about the 
damage process in the matrix and the plasticity in the steel fiber. 

1.3.1.  Matrix damage 

Concrete is a quasi-brittle material, i.e., in controlled uniaxial tensile test, it is observed a 
softening branch after reaching a maximum load (Hariri 2001). Due to this characteristic, a 
damage model is usually employed to describe its mechanical behavior. The damage theory 
was presented by Kachanov in 1958 and further elaborated upon by Kachanov, Lemaître and 
Chaboche (1985). They described damage as a degradation in elasticity properties with con-
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sequent decrease of the areas that transmit internal forces, through the appearance and subse-
quent growth of microcracks and microcavities (Maugin 1992). In the context of continuum 
mechanics, the growth of microcracks and microcavities is taken into account by introducing 
an internal variable that characterizes the degradation level of the material and transforms the 
real stress tensor into an effective stress tensor. 

An additional process due to the brittle nature of cementitious matrices, is provoked 
when a fiber crosses a microcrack and the most superficial pieces of matrix wedges tend to 
spall off (Laranjeira et al. 2010). This is called matrix spalling. The larger is the crack open-
ing displacement, the higher is the bending of the debonded segments of the fibers. The ma-
trix spalling can influence the fiber behavior in the composite, since it deviates from the 
original direction the applied force at the fiber exit point. 

Another failure mode exists in HPFRC composites and occurs when concrete strain 
reaches ultimate strain before rupture strain in the reinforcement under compression, this is 
referred as compressive crushing. This failure mode typically occurs if the element is over 
reinforced (Volume fraction of fibers higher than 4%), causing high compressions in bending 
test (Si-Larbi et al. 2006). Moreover, local crushing in the matrix may occur before the fiber 
can be drawn out (Li & Stang 1997), when debonding reaches the hooked end in deformed 
fibers.  

1.3.2.  Plasticity in the fiber 

Fibers in cement composite are either brittle (such as glass) or ductile with an initial elastic 
response (such as steel). For brittle fibers with linear elastic behavior, three parameters are 
needed to model their mechanical response: fE , fu , fu ; where fE  stands for the elastic 
constant (Young’s modulus) of the material and the couple  ,fu fu  , characterizes the ulti-
mate strength of the fiber under tensile load. In the case of ductile fibers, which are the most 
common used for structural purposes, a yielding process is well defined, and therefore, two 
additional parameters are needed: the yield stress fy  and the corresponding strain fy
(Naaman 2007a).  

Figure 1.8 Locations of the plastic strain points during elastoplastic-straightening deformation in 

hooked end fibers. Adapted from (Xu et al. 2010) 

Similar to straight steel fiber pullout test, the hooked-end steel fiber pullout process also 
includes debonding and frictional sliding. However, unlike the straight steel fiber, hooked-
end fibers suffers also mechanical sliding that is greatly dominated by elastoplastic straigh-
tening deformation of the hooked end (Xu et al. 2010). During the mechanical pullout 
process, the hooked end steel fiber will be gradually elastoplastically deformed, without 
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significantly damaging in the surrounding matrix. The Figure 1.8 displays the locations of 
the points of the plastic strain that exhibit elastoplastic-straightening strain in the pullout 
process.  

1.4. Modeling approaches  

Various models, both numerical and analytical, have been proposed for analyzing compo-
sites. The purpose of this section is to review some of these models. Emphasis is initially 
placed in the models generally used to assess the short fiber reinforced composites. Then, 
emphasis is given to multiscale approaches and continuum with microstructure, which are 
briefly explained. It is worth mentioning that, in spite of all the existing information and the 
actual knowledge about this material, its complex behavior (anisotropy, modes of failure, 
non-linearities, etc) requires a very deep analysis. Its total understanding still remains an 
open problem.  

The history of modeling composite materials can be divided in two periods. The first one 
(before computers) is characterized by analytical procedures, particularly, studying the com-
posite substructure, and searching parameters to solve the heterogeneous problem via a suit-
able homogeneous process. The second period, the advances in computer science originated 
a continuous development of new methodologies and modeling approaches, which using 
numerical methods allow simulating the complex behavior of the composite materials. Thus, 
new models based on computational mechanics, mathematics and engineering, emerge no-
wadays, in which the mesostructure, or even lower scales, can be considered in the analysis.  

1.4.1. Analytical methods for FRC 

The addition of short steel fibers to concrete was reported in 1911 by Graham, but serious 
studies started in 1920 by Griffith (Rodriguez 1984).  However, the interest in composites, 
for applications in advanced fields of technology, began in the early 1960s and, since then, 
engineers and scientists exploited seriously the potential of these materials (Herakovich 
1998).  

Composites can be roughly classified into continuous and discontinuous. It is generally 
accepted that the properties of short fiber composites (discontinuous composites) are con-
trolled not only by the properties of the compounds and fiber-matrix interface but also by the 
fiber length, orientation, and fiber dispersion. As for the analysis of discontinuous compo-
sites, most models used to predict their mechanical response are derived from those proposed 
for continuous fiber composites. In the field of composite materials, different approaches 
may be performed to study the mechanical behavior of the composite material, two of them 
can be considered as classical : 1) nonlinear constitutive models that describe the composite 
response taking into account the anisotropy and, 2) Micromechanics models which are fre-
quently used in combination with finite element calculations to provide reference properties 
of the composite material. 
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Micromechanics models for short fiber composites include the Eshelby’s equivalent in-
clusion, the self-consistent model for finite length fiber, Mori-Tanaka type models, bounding 
models, the Halpin-Tsai equation, and shear lag model (Tucker Iii & Liang 1999). Briefly, 
some of them are described in the following. All these models use the following basic as-
sumptions: 1.The fibers and the matrix are nearly elastic, the matrix is isotropic and the fi-
bers are either isotropic or transversally isotropic. 2. The fibers are axisymmetric, and iden-
tical in shape and size. 3. The fibers and matrix are well bonded, and remain in that way 
during the deformation. 

One of the first attempt to model FRC was the shear lag theory proposed by Cox (Cox 
1952). This model assumes that the load is transferred from a broken fiber to adjacent fibers 
by the matrix shear forces, which are assumed, in turn, to be independent of the transversal 
displacements. Hence, the longitudinal and transversal equilibrium equations are uncoupled 
(Tripp 1989). This theory assumes, in essence that no slip occurs on the fiber-matrix inter-
faces, and that the presence of the fiber redistributes the stresses and strains within the com-
posite material. The procedure uses two hypotheses: (1) a shear stress occurs at the fiber-
matrix interface, and (2) the harder phase carries a comparatively greater part of the stress, 
while the soft phase tends to take the greater part of the strain (with reference to the volume 
fraction ratio) (Zhao & Ji 1997). 

Hill (Hill 1964) has introduced into the literature the Hill’s concentration factor ap-
proach, which considers the composites consisting of three elastic phases, namely, fiber, 
matrix and fiber-matrix interface. The average stresses, in every phase, are then expressed in 
terms of phase-average concentration factors, as developed by Hill. The stress concentration 
factor is defined as the ratio between the local stress in an intact fiber and the applied stress 
(Zhou & Wagner 1999). This method takes into account the fracture process of the fiber and 
the stress concentrations caused by the redistribution of stress from a failed fiber to the intact 
adjacent neighboring fibers.  

 Aveston and Kelly (Aveston & Kelly 1973) made meaningful contributions and post-
ulated the ACK theory , in order to understand the strain-stress curve and the cracking pattern 
found in reinforced cement, plasters and other brittle materials. They developed an analytical 
model for multicracking in composites with continuous aligned fibers, and assumed that the 
fibers are held up by the matrix only through frictional stresses.  

In 1973 the Mori-Tanaka method was published (Mori & Tanaka 1973) and it was res-
tated in a more tractable form by Benveniste in 1987 (Eshelby-Mori-Tanaka scheme). Later, 
the modified scheme (Eshelby-Mori-Tanaka’s scheme) was employed to provide accurate 
approximations of the properties of an aligned short fiber composite. Then, the properties of 
a misoriented short fiber composite was computed from those of the aligned one, averaging 
over all possible orientations (Nguyen & Khaleel 2004). All these works were basically con-
ducted on linear behaviors.  

The method of cells (MOC) (Aboudi 1989) and its extension, the generalized method of 
cells (GMC) (Paley & Aboudi 1992), are approximate analytical methods for predicting the 
elastic as well as inelastic response of fibrous composites. The analysis in this method is 
limited to a unit cell that includes one fiber and the surrounding matrix material. However, in 
spite of useful predictive capabilities proven by this method for the response of fibrous com-
posites, it has still some limitations in non-unidirectional composites. Another advantage of 
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the generalized method is that is able to model specific fiber shape as well as different ar-
rangements of fibers in the composite.   

1.4.2.  Multiscale models and continuum with microstructure   

1.4.2.1. Multiscale Modeling 

Multiscale methods make possible to derive and compute phenomena and material parame-
ters at macroscopic level from processes that take place one to several scales below. In the 
multiscale analysis, many scales can be considered, even though, in the study of heterogene-
ous media normally is adopted a two scales scheme (Sanchez-Palencia 1987). In multiscale 
models, a central problem is the scale bridging (Wu 2011), which is a sequential, serial, 
information-passing or parameter-passing process from one scale to the other. This is often 
achieved via homogenization techniques. Nevertheless, the computational effort and memory 
required, has motivated an intensive search for new and improved methods. 

Figure 1.9 Approaches to modeling different scales in materials (Kabele 2007b). 

 Multi-scale models hinges on the concept of a representative volume element (RVE), 
which  contains numerous substructures on the finer length scale and it is small enough to be 
viewed as a material point (figure 1.10). Additionally, the RVE is well defined in only two 
situations: (i) unit cell in a periodic microstructure, and (ii) statistically representative vo-
lume containing a very large (mathematically infinite) set of microscale elements (e.g., 
grains) (Ostoja-Starzewski 2002). So that, it is acceptable, and computationally convenient, 
to model the material on the large length scale by a spatially uniform constitutive law, which 
is determined as the relationship between an overall stress and overall deformation of the 
RVE (Kabele 2007a). In fact, the macroscopic response of the heterogeneous material is 
obtained from homogenization of the response at smaller (meso, micro) length scales. In the 
field of structural analysis of composites, the objective of multiscale analysis consists of 
building an efficient, yet simple, “material” model for the scale chosen. Therefore, to take 
into account the information at various length scales is required a multiscale solid constitu-
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tive model that provides more accurate description of the material, since the conventional 
phenomenological continuum constitutive models appear to be inappropriate.  

 
 
Figure 1.10. Problem to be solved in two scales. Adapted from (Sanz-Herrera et al. 2008) 

1.4.2.2. Homogenization theory 

In modeling heterogeneous media, it is tempting to adopt a macroscopic point of view, which 
considers the composite as a homogenized medium with anisotropic properties to be deter-
mined (Fish et al. 1997). Basically, the homogenization theory is based on the assumptions 
of spatial periodicity of the microscopic representative volume elements (RVE) and local 
uniformity of macroscopic fields within each RVE (Ghosh et al. 2001), as in Figure 1.10. In 
the mid 70s, methods based on multiple scale asymptotic expansions appeared by the name 
of mathematical homogenization (Benssousan et al. 1978).  

Homogenization approaches are based on the spatial averaging theorem of the classical 
homogenization theory presented by Suquet in 1986. The main hypothesis in the homogeni-
zation procedures is that the heterogeneous media is somehow statistically homogeneous. 
Under this hypothesis is possible to determine an RVE in the media (Suquet 1987). Several 
formulations have been proposed in order to obtain the homogenized material properties. By 
far, the better known of these theories are the spatial averaging and the asymptotic expan-
sion. 

In the spatial averaging approach, the average macroscopic properties of the original he-
terogeneous material are calculated from the characteristic parameters of the microscopical 
response that, in turn, are obtained using a representative element domain. On the other hand,  
the asymptotic expansions approach proposed and developed by Sánchez-Palencia (Sanchez-
Palencia 1987) and Bensoussan (Bensoussan et al. 1978), consists in a decomposition of the 
heterogeneous media through asymptotic expansions in scales with different orders of mag-
nitude (Sánchez-Palencia 1986). A rigorous mathematical analysis is carried out to obtain in 
every scale the strain-stress constitutive equations. 
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On the other hand, motivated by the nature of the interaction between the compounds in 
composites, an specific homogenization case was developed by (Trusdell & Toupin 1960c). 
This is based on the hypothesis of homogeneous strain and is often referred to as the Taylor 
assumption, but it is also known as the so-called rule of mixtures theory. The two main hypo-
theses are: 1. all composite constituents are subjected to the same strain (iso-strain assump-
tion) and 2. Each constituent contributes to the composite behavior according to its volume-
tric participation. The rule of mixtures theory is used to insert the basic constitutive expres-
sions for each substance on the multiphase composite (Oller et al. 1996). However, the main 
drawback is the iso-strain condition, forcing the parallel distribution of the constituents. In 
order to outweigh this unfavorable condition, Rastellini (Rastellini et al. 2008) included the 
serial/parallel theory, eliminating the iso-strain condition. 

The homogenization theory, for the analysis of linear elastic fiber reinforced composites, 
has been successfully applied in conjunction with computer simulations, by means of the 
finite element method. A vast amount of applications have been reported, for instance Tole-
dano and Murakami (1987), Guedes and Kikuchi (1991) and Devries et al. (1989).  

1.4.2.3. Continuum with microstructure 

Due to the necessity of an enriched geometrical description of the body as the one provided 
by the usual continuum mechanics, the theory of continua with microstructure was post-
ulated. The Cosserat brothers were the pioneers of this kind of theories. Their ideas were 
later developed by Ericsen et al. and then by Eringen. 

In words of (Mariano 2000), the locution “continua with microstructure” refers to mod-
els of bodies where the material texture influence the gross mechanical behavior (macros-
cale) of the body. Classical examples of these materials are liquid crystals, dislocated conti-
nua, micro cracked continua, etc.  

Unlike continuum mechanics, in continua with microstructure, mappings into the Eucli-
dean space are still necessary for the description of the body, but other mappings are also 
expedient to represent into further details of the microstructure (Bongué Boma & Brocato 
2010). In other words, the current state of the evolving microstructure is described by global 
fields of microscopic order parameters and their gradients, which, together with the macros-
copic deformation, define the multifield character of the problem under consideration 
(Welschinger & Miehe 2008). From the theoretical point of view, this is the main difference 
with respect to multiscale models. Moreover, as it may be surmised, the materials described 
by means of this approach must satisfy the laws of thermodynamics. 

1.4.3. Fracture mechanics approaches  

The main goal of models in fracture mechanics is to determine how a crack grows under 
certain conditions and whether it remains stable. Displacement discontinuities can either be 
described as discrete separate entities (discrete fracture mechanics approach), or embedded 
within the continuum format (continuum mechanics approach). Therefore, fracture mechan-
ics can be divided into two categories, for application in concrete: Discrete and smeared 
crack models.  
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Numerical simulation was first applied to problems of concrete cracking by Ngo and Ra-
shid in 1968 (Rashid 1968), who introduced discrete crack and smeared crack models, re-
spectively. Subsequently, it was used extensively to predict the failure mechanisms. Since 
the beginning of the 1970s, several specific finite elements were developed to capture the 
discontinuities in the displacement and stress fields. The discrete model is aimed at simulat-
ing the initiation and propagation of dominant cracks. In contrast, the smeared crack model is 
based on the idea that in concrete, due to its heterogeneity and the presence of reinforcement, 
many cracks nucleate which only in a later stage if the loading process link up to form a 
more dominant crack. Since each individual crack is not numerically resolved, the smeared 
crack model captures the deterioration process through a constitutive relation (Borst et al. 
2004). 

1.4.3.1. Smeared crack model (continuum based models) 

In smeared crack models, the crack process is smeared in a region. Rashid (1968) has 
considered an infinite number of microcracks into the domain of a finite element. Hence, the 
process can be conveniently modeled by reducing the stiffness in the normal direction of the 
cracks and being the limit stress given by the tensile strength of the material. Generally, 
when the combination of stresses satisfies a specific criterion, a crack is initiated.  

Although the cohesive zone model is essentially a discrete concept it can be transformed 
into a continuum or smeared formulation by distributing the work of separation or the frac-
ture energy over the width of an element (Pietruszczak & Mróz 1981). The cohesive crack 
model was initially proposed by Barenblatt and Dugdale (Dugdale’s model). Subsequently, 
Dugdale’s model was reconsidered by (Bilby et al. 1963), Willis (Willis 1967), who referred 
to it as the final stretch criterion rather than a model. In this model, it is introduced a soften-
ing stress-crack opening displacement constitutive law, and the area under the closing stress 
vs. crack opening displacement curve represents the fracture energy, GF, assumed as a ma-
terial property. Based on this model, (Hillerborg et al. 1976) proposed the fictitious crack 
model in order to study crack propagation in concrete. The crack is assumed to propagate 
when the stress at the crack tip reaches the tensile strength. Additionally, it is considered that 
the crack can emerge somewhere without a preexistent crack. 

In computational practice, the crack band models can be seen as numerical implementa-
tion of a cohesive crack model in which the crack opening is smeared over a finite element 
and the crack band is made of a row of finite elements (Planas et al. 2003). The crack band 
(Bažant & Oh 1983) uses a softening stress–strain relation, for the material included in a 
band around the crack (the bandwidth is an additional parameter to be determined) 
(Carpinteri et al. 2003). It is attractive because it involves only the modification of the clas-
sical constitutive relationship without requiring remeshing procedures. This model is based 
on the observation that microcracking, crack branching, and other toughening mechanism 
associated with the crack occurring within a fracture process zone, and the width of this zone 
is typically related to the maximum size of the heterogeneities (Bolander & Sukumar 2005). 

The strong discontinuity concept emerged in the works of (Simo et al. 1993), (Armero & 
Garikipati 1996), and consists of the introduction of a strong discontinuity in the kinematics 
describing the continua. Although the jump introduced in the displacement field produces 
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unbounded values in any strain measure involved in the problem, the approach maintains the 
compatibility between the constitutive equations and the kinematics via the so-called strong 
discontinuity analysis. 

1.4.3.2. Discrete crack model 

The discrete crack approach to concrete fracture is intuitively appealing: a crack is intro-
duced as a geometrical entity (Borst et al. 2004). Thus, discrete models describe fracture by 
means of discrete cracks, which are postulated to exist a priori. The models range from linear 
elastic fracture mechanics (LEFM) to cohesive crack models (Planas et al. 2003). The dis-
crete crack approach has several disadvantages, being the main in its original version: cracks 
are forced to propagate along element boundaries, so that mesh bias is introduced. Further-
more, in the standard finite element method, discontinuity has to be placed along the finite 
element boundaries, and mesh adaptation is required to capture its geometry. Otherwise, 
displacement discontinuity can be described either at the element level, as in the assumed 
enhanced strain methods (AES) (Oliver et al. 2006b), or it can be explicitly introduced at the 
nodal level, as in the partition of unity finite element method (Möes et al. 1999), also known 
as the eXtended Finite Element Method (XFEM) (Benvenuti 2008). 

1.4.4. Some recent approaches in HPFRC composites including cracking and 
postcracking behavior 

High performance fiber reinforced cement composite behavior has been simulated by com-
bining some of the approaches described above. In this section, the most recent contributions 
in this field are enumerated. They are presented in chronological order to illustrate the evolu-
tionary development of these approaches.  

Before 1998, the contributions in HPFRC composites aimed at the characterization of 
the material and, therefore, a vast amount of experimental results were reported. These stu-
dies were conducted to determine the mechanisms that control the mechanical response. 
Naaman, Li, Banthia and Bentur made remarkable contributions to understanding of short 
fiber reinforced concrete. Additionally, they made substantial progress in the analytical mod-
eling of these composites based on their experimental results ((Naaman 2007a), (Banthia et 
al. 1998), (Li 1992)). However, the development of non linear numerical models, encom-
passing the involved mechanisms in an appropriate manner, does not appear until the late of 
1990’s. 

 In 1998, a constitutive model was proposed by (Boulfiza 1998), in which, it was as-
sumed that the continuum damage mechanics (CDM) is able to predict the prepeak branch of 
the HPFRC composite response and the nonlinear fracture mechanics (NLFM) can predict 
the postcracking behavior. Then, in 2000, Ferrata Liberato (Ferrara Liberato 2000) presented 
a non-local damage model, together with a suitable constitutive model that was employed for 
steel fibers reinforced concrete. The main contribution was a mode I fracture model. A three 
point bending test on beams of different sizes and different fiber contents were simulated 
using this model. Another model based on the continuum damage mechanics was the one of 
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(Peng & Meyer 2000) to describe the inelastic behavior of HPFRC composites and the no-
velty of this approach is the inclusion of randomly distributed short fibers.  

A nonlinear analytical model based on continuum damage mechanics was used by Li 
and Li (Li & Li 2001) to characterize the tensile stress-strain response, where the governing 
equation takes into account the damage evolution for both the matrix and the fiber. Further-
more, the damage evolution of the fiber considers the interface zone between the matrix and 
the fiber. Three years later,  Zhang and Li (Zhang & Li 2004) published a model relying on 
the fracture mechanics approach. They used a superposition method to calculate the crack tip 
intensity factor. The fundamental parameters in this model were the fracture toughness of the 
hardened cement paste, the crack bridging law and the stress-crack opening width relation-
ship of the material. In 2007 (Ferreira 2007), also employed a fracture mechanics model to 
study the fracture behavior of HPFRC composite by using R-curves.  

A multiscale approach to model fracture in HPFRC composite appeared in 2007 (Kabele 
2007a). He has described each scale and identified dominant substructures and physical 
mechanisms of deformation. In this analytical/numerical model, interconnections between 
the models were defined. At the same time, a simplified model to predict the constitutive 
response of cement composite was suggested in the work of (Naaman 2007a), taking into 
consideration the precracking state and the postcracking part based on a widely experimental 
study. 

Bolander and coworkers have presented a discrete model with attention to the effects of 
non-uniform fiber distribution (Bolander et al. 2008). In the simulation, it was utilized a 
lattice model of the matrix phase of the composite, based on voronoi tessellation. They used 
a band crack approach and each fiber was explicitly modeled. Another model that considers 
the contribution of every fiber was the one developed by (Radtke et al. 2010), where fibers 
were not explicitly discretized, but they were modeled by applying discrete forces to a back-
ground mesh. The background mesh represented the matrix, while the discrete forces 
represented the interaction between fibers and matrix. These forces were assumed to be equal 
to fiber pull-out forces. More recently, a macroscale plasticity model was proposed by 
(Sirijaroonchai et al. 2010), which is a phenomenological model capable of representing 
hardening, softening, and the related cracking and crushing behavior. This model was based 
on experimental results obtained by the same author. 

In the model presented in (Pros et al. 2011), the individual fibers immersed in the con-
crete bulk are accounted for in their actual location and orientation. The model is based on 
the immersed boundary (IB) methods, which initially were developed to account for 1D and 
2D solids immersed in fluids. Furthermore, the concrete bulk is playing the role of the fluid 
and the cloud of fibers as the immerse boundary. 

1.5. Aims and scope of the research  

The increasing use of short fiber reinforced cement composites in the concrete industry and 
the limited capacity of the existing models to simulate the response of these materials moti-
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vate the formulation of new simulation approaches. Since micro-scale and multiscale models 
focus on the behavior of the components of HPFRC composites, they have high computa-
tional demands, which severely limit their use in applications. Constitutive macroscale mod-
els can capture only the overall behavior, but do not provide detailed enough information 
about the microstructural behavior. Continuum with microstructure, however, can provide 
details of the incorporated microstructure, and in fact, the balance equations associated with 
the microfield arise naturally from the theoretical framework. Computational efficiency 
associated with continuum with microstructure based models will, of course, depend on the 
numerical scheme adopted to solve the governing equations.  

With the above motivation, the main objective of this research is to formulate, develop 
and implement a numerical model incorporating, what many authors recognize as the prin-
cipal factor responsible of hardening properties in cement composites, i.e., the debonding 
process. The continuum with microstructure model formulated within this approach is ex-
pected to capture the main macro and microscopic features in the behavior of the material, 
while still maintaining its applicability even with the use of few model parameters, each 
identifiable from standard tests. In addition, as the nonlinearity in the material takes place in 
fiber, matrix and fiber-matrix interface, the continuum with microstructure model, through 
an adequate homogenization technique, can capture the nonlinear behavior of the overall 
material. In this regard, thermodynamics plays an important role and, therefore, to avoid 
unrealistic results, the first and the second laws of thermodynamics should be the basis for 
the constitutive modeling of the composite material. 

The introduction of morphological descriptors to represent details of the microstructure 
of the body allows us to account directly for the interaction due to substructural effects that 
may change the stress distribution (Mariano & Stazi 2005). In this way, the continuum with 
microstructure is a tool to construct new models that contain any microstructure and, there-
fore, it is pursued in this study. The formulation and development of the new model for 
HPFRC composite using this framework follows procedures established in the multifield 
theory, which, in turn, satisfies the thermodynamic restrictions.  

Also, this research focuses on aspects of the numerical implementation of the new model 
for HPFRC composite involving numerical issues for simulating fracture. Conclusions drawn 
from previous studies suggest that the problem remains unsolved and requires additional 
refinement of the approaching techniques. It is an important issue to propose an appropriate 
integration scheme for the constitutive model, as well as, a convenient numerical algorithm 
for the nonlinear finite element analysis. One of the aims of this research is then to propose 
adequate strategy to solve the set of governing equation of the HPFRC composite.  

The introduction of softening in the constitutive model is motivated on theoretical and 
experimental grounds. However, from the mathematical point of view, softening leads to the 
loss of ellipticity of the governing partial differential equations in quasi-static analysis that 
results in ill-posed boundary value problems. Therefore, the solution of the boundary value 
problem using finite element schemes present several pathological features; the most critical 
is mesh dependent solutions. Therefore, special treatments such as regularization techniques 
are required in the resolution of the problem. One of these techniques is based on constitutive 
model regularization by means of the use of the fracture energy concept and the smeared 
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crack or crack band models, which can help to remove the mesh dependence. This approach 
is used in this study. 

1.6. Outline of the research 

The chapter 2 of this monography addresses the high performance fiber reinforced concrete 
as a continuum with microstructure. It presents the continuum with microstructure frame-
work and summarizes the basic concepts of the material multifield theory. The definition of a 
morphological descriptor associated to the pullout process and defined as the displacement 
jump introduced by the matrix-fiber slip. Afterwards, the fiber equation is rewritten as a 
mesoscopic momentum balance equation and the governing differential equations are estab-
lished in strong and weak forms.  

 Chapter 2 is also concerned with constitutive models for the components and homoge-
nization techniques employed to obtain the constitutive model of the composite material. The 
notion of the HPRFC composite as a continuum with microstructure is introduced while the 
constitutive model satisfies the laws of thermodynamics. Since the classical Taylor or homo-
genization miscroscopic strain model (also kwon as the rule of mixtures) for composite mate-
rials defines a linear relationship between the volumetric fraction of the components, it is 
necessary to define the individual constitutive material models for the fiber, the matrix and 
the fiber-matrix interface. In chapter 2, the models representing each compound are de-
scribed and the homogenization technique is developed in order to obtain a homogenized 
material constitutive equation amenable to be handled by a finite element methodology.  

In chapter 3, the finite element formulation for triangular and quadrilateral elements is 
developed. Once the governing equations of the continuum with microstructure based model 
for the HPFRC composite is postulated, a discretization is introduced by using a classical 
finite element technique. Two types of elements are chosen to discretize the domain, namely, 
the triangular and the quadrangular elements, both are provided with several degrees of free-
dom. The first two degrees of freedoms represent the classical displacement vector while the 
remaining ones represent the slip, in the debonding process, of the fibers in different direc-
tions. These aspects of the dicretization of the equations are described in this chapter among 
others important numerical implementation issues. Two schemes are proposed to integrate 
along the time the resulting system of equations, namely, a monolithic scheme and a partition 
scheme. In chapter 4, softening related problems and regularization techniques employed for 
the treatment of the mesh dependent pathologies are briefly reviewed. The strain injection 
procedure is introduced to alleviate these problems. 

Chapter 5 concerns the numerical validation. A selected set of examples is presented in 
this chapter. The resultant formulation is verified by simulating the selected examples and by 
comparing directly the results with the experimental data. Although, the main goal of the 
current work is to present a new methodology to solve HPFRC composite problems by a 
novel strategy, the interest is also focused on simulating fracture process in the composite 
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material and the numerical problems involved. Therefore, it is included into the analysis 
recent contributions in this regard. 



 

 
 

 

Chapter 2                                  
HPFRC composites as a continua with 

microstructure 

2.1. Introduction 

In general, the direct application of macroscale phenomenological models is not able to de-
scribe the real phenomena in the HPFRC composite response, which by physical evidence is 
influenced by events occurring at lower length scales. Alternatively, multiscale modeling 
provides macroscopic responses at specific material points, by performing a detailed calcula-
tion of the RVE, e.g., (Ghosh et al. 1995), (Muliana 2008). This latter approach recognizes 
changes in the macrostructural geometries and interaction between components during de-
formation. However, the micro-macro formulations are, in general, computationally expen-
sive, especially when material nonlinearity is also incorporated (Muliana & Haj-Ali 2008). 
Therefore, an alternative theory that represents this complexity is required, without giving up 
the advantages of the continuum modeling. One possible way, is to resort to the multifield 
theory. Thus, it is possible to study a body with some sort of substructure in the context of 
multifield theory by using a model of continuum with microstructure instead of the classical 
internal variable scheme. It preserves the well established advantages accruing from the 
classical scheme of the continuum, and, by introducing morphological descriptors, makes 
possible the description of the material with a micromorphic structure. The introduction of 
morphological descriptors, so as to characterize the observed microstructure, follows the 
general axioms and properties of the theory developed by Capriz (Capriz 1989). 

The starting point of the material multifield theory is around 1909, when the brothers E. 
and F. Cosserat presented a theory of elasticity, in which each element was considered as a 
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small rigid body that was able to rotate freely with respect to the neighboring material. Later 
on, J.L. Ericksen and C.A. Truesdell extended Cosserat’s ideas, in order to construct models 
in elastic structures (Ericksen 1974).  In 1964, Mindlin (Mindlin 1964) introduced the idea 
that the material element deforms independently of other body parts. Thus, he developed a 
more relevant elastic theory in a linear setting. Materials described by both Cosserat and 
Mindlin’ proposals required morphological descriptors, or order parameters, to include the 
“internal” substructure. Thus, many applications were presented in a variety of situations, 
such as ferroelectric materials, micromagnetic materials, etc, which used order parameters of 
different natures (i.e. tensors, vectors) to describe the microstructure.  

In the 70’s, the interest of researchers was directed toward unifying the existing multi-
field models. This task was initiated by Capriz in the late of 1980’s (Capriz 1989). His work 
deals with the construction of a general model-building framework, which is able to describe 
the influence of the substructural changes in the complex materials. Recently, new contribu-
tions deal with the application of the complex bodies’ theory in computational mechanics for 
different materials, among others (Svendsen 2001), (Mariano & Stazi 2005), (Trovalusci & 
Masiani 2005), (Mariano 2008a), (Mariano 2008b), (Mariano 2007), (Mosconi 2005), etc. 

Therefore, a formulation based on the continuum with microstructure is presented in this 
chapter, in order to provide the HPFRC composite with an “internal” morphology. The moti-
vation of a formulation inspired in this theory is the fact that, in the micro level of these 
composites, takes place several micro processes. The most relevant one is the pullout of the 
fiber, which produces “bridging effect” in the presence of microcracks. The morphological 
descriptor equips the fiber-matrix interface with a slipping property that is defined as the 
ability to transfer the stresses through the fiber-matrix interfacial transition zone and to resist 
against slip between fiber and matrix. Thus, the model is thought to be able to transmit the 
micromechanical effects of the fiber into the general response of the composite.  

The material model captures geometrical details and the distinct material behaviors, ex-
isting in the structural member. It should also be able to capture localized macrocracks, 
which occur in these composites after its hardening capacity is exhausted (Kabele 2007a).   

2.2. General elements of the multifield theory 

A material with a micromorphic structure is such that its substructure, from nano to meso-
level, influences dramatically its gross behavior and, in which, interactions due to substruc-
tural changes are prominent. Therefore, we expect that, in the model used for such material, 
the substructural interacting mechanisms modify the mechanical response of the body. The 
mechanics of micromorphic materials is a theoretical framework to construct material mod-
els with substructures (Mariano & Stazi 2005) and incorporate morphological descriptors 
into the continuum formulation. In consequence, we can use this framework to create a mod-
el that represents the HPFRC composite. It has to be understood as a continua with different 
material levels. In general, one or more microstructural levels are presented, which are cha-
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racterized by the presence of additional descriptors. However, only one morphological de-
scriptor will be included in our model, that accounts for the fiber-matrix sliding mechanism. 

The only objective that we pursue in the following sections is to introduce the necessary 
ingredients providing the background for the posterior development of the HPFRC two-scale 
material model. Delicate additional details of this theory can be found in the mentioned pa-
pers of Mariano and Capriz. 

 

2.2.1. The concept of a body according with the continuum mechanics and with 
continua with microstructure 

In (Holzapfel 2000), it is presented the classical definition of a body according to the conti-
nuum mechanics, as follows. 

“A body is a collection of material elements whose morphology is identified just by 
their place in the space, such that a material element is represented as a material 
point”. 

In this way, the geometrical description of the body skips details about the minute substruc-
ture. Moreover, in most of the analysis in continuum mechanics, a further assumption about 
the nature of the material is made, namely, that it is homogeneous.  

However, in a real body, a material element is not properly a simple point, rather a sys-
tem of interacting substructures. Thus, according to the mechanics of continua with micro-
structure’s definition, a material element is a continuum endowed with some sort of local 
microscopic order. 

 

Micromorphic solids are continuum mechanics models, which take into account, in some 
sense, the microstructure of the considered real material. The characteristic property of such 
continua is that the state functions depend, besides the classical deformation of the macros-
copic material body, also upon the deformation of the microcontinuum modeling the micro-
structure, and its gradient with respect to the space occupied by the material body 
(Grammenoudis & Tsakmakis 2009).  

 
Then, Capriz has noted that it is needed to associate, to each material element, a number 

of “order parameters” to describe the morphology of this microscopic system (Capriz & 
Mariano 2001). In the works of Mariano ((Mariano 2007), (Mariano & Stazi 2005)), these 
order parameters are presented as morphological descriptors. This enables the classical 
scheme of the continuum to include the effect of the microstructure. 

Regarding the continuum theory, the fundamental assumption establishes that a body, 
denoted byB , may be viewed having a continuous distribution of matter, in space and time. 
The body is imagined as being a composition of a set of particles, X , as indicated in Figure 
2.1. On the other hand, in order to characterize the observed microstructure in the multifield 
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model, each particle is associated to a certain number (i.e., m ) of “order parameters” 
 1,2,...,m   . 

2.2.2. Configuration space and motion  

Let us consider a body B with a reference placement 0B  in the three dimensional Eucli-
dean space, as indicated in Figure 2.1, undergoing a quasi-static loading process given by a 
set of generalized external forces, which are going to be defined in the following. Parameter 
t  represents a pseudo-time defining the sequence of increasing external loads.  

In this theory, it is defined a right-handed reference frame, rectangular coordinate axes at 
fixed origin O  with orthogonal basic vectors. In the classical approach,  

   0, , 0,t t t    x x X X B
. (2.1) 

 
 

 
Figure 2.1. Configuration space during the body motion defined  in the context of a multi-

field theory. Spatial placement is described by the map  x , while the micromorphic field β  

provides additional information about the material point mesostructural state. 

The map x , specifying the place x , is called the motion of the body. Nevertheless, The 
key idea of a material multifield theory is to assign to each material point X , of 0B , the 
pair ( , )x β  that completely defines the configuration space of the body. The first element of 
the pair, x , specifies the placement in the Euclidean space of the material particle X  for all 
t , and the second one, β , is a morphological descriptor providing information about the 
microstructure configuration. 
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In the micromorphic materials’ theory, the morphological descriptor β a  can be inter-
preted as coordinates (in a local chart of an atlas) of an element β  in an appropriate mani-
fold   of dimension m . Different physical circumstances may require different descrip-
tors, of different mathematical natures. Moreover, for the same material substructure, differ-
ent morphological descriptors can be chosen. Thus, often the chosen manifold   has a 
physical meaning, for instance, it could be a scalar field representing the void fraction in a 
continuum or a unit vector characterizing the orientation in liquid crystals (Mariano 2008b).  

 The pair ( , )x β  is sketched in Figure 2.1. For the micromorphic material theory, the re-
presentation of motion also includes the morphological description map: β . Thus, in our 
picture, the motion is given by  

     0, , , 0,t t t T      x x X X u X X B  

( ) [ ]0, , 0,t t Tβ β X X B= " Î " Î  
(2.2) 

where the vector field β  specifies the values of the morphological descriptor at time t . u  
represents the displacement of the particle X and T  the final pseudo-time where the analy-
sis ends. 

 The micromorphic material theory also requires that the morphological descriptor β  be 
an element of a differentiable manifold. During the motion, the velocity x  and the rate of 
change of the microstructureβ  (also called, micro-velocity) are given by, 

 ,
d

t
dt


x

x X


 
(2.3) 

( ),
d

t
dt

β
β X=


 

Hence, the spatial field of the morphological description is 1
aβ β x-=   , such that 

( ),a a tβ β x= . Besides, the spatial counterparts of the material rates x  and β , are 
( ),t=v v x  and ( ),tu u= x , respectively. 

In classical continuum mechanics, the material tangent vectors map into spatial tangent 
vectors via the deformation gradient F . The microstructure requires also a gradient Grad β , 
in order to map material tangent vectors at X   into tangent vectors at β  (βÎ ). The 
spatial gradient is denoted β  and by the chain rule, it is ( ) 1Gradβ β F- = . 

2.3. Balances equations 

An additional and relevant aspect of the theory is to consider the possible bulk and contact 
forces representing interactions of the morphological descriptor β . These interactions pro-
duce an explicit power through the action of microforces ζ  acting on particles having the 
rate β , in a similar way as the conventional body forces b (per unit of volume) produce 
power through their action on particles with velocities x . Additionally to the power ex-
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pended by the generalized forces b and ζ , it shall be considered those terms taking into 
account the power expended by the conventional surface tractions *  t σ ν  acting on the 
boundary   of B , and the power expended by microstructural surface tractions: S ν, due 
to microstresses  S , acting on the boundary S  of B . In both cases, ν is the outward nor-
mal vector to the body boundary. Thus, the general expression of the external power extP , 
according to the micromorphic material theory is,  

     *,
S

extP d dA dA
 

           x β b x ζ β t x S ν β    
B  

(2.4) 

The consequence of considering the interactions of the morphological descriptors in 
(2.4)  through ζ  and S  is that additional, non-conventional, balance equations arise in the 
model. They are derived from the external power extP  by considering the invariance of (2.4) 
under arbitrary observer changes. It is shown by Mariano (Mariano & Stazi 2005) that this 
equation has the following form, 

0

   
    

 
σ b 0

S z ζ 0
X B

 
(2.5) 

 In equation  (2.5)-a, σ  is the conventional Cauchy stress tensor. Then, local balance eq-
uation (2.5)-a is the classical Cauchy equation, when inertial forces are neglected. Equation 
(2.5)-b is the local balance of the substructural actions, this equation is called Capriz bal-
ance.  

A new object z arises in (2.5)-b, which can be interpreted as a continuously distributed 
micromorphic force. An additional balance equation, which can be seen as a generalized 
angular momentum balance, connecting the skew part of σ  with S  and z  is derived in the 
theory. In Appendix I, we show that, after considering the HPFRC model that shall be pre-
sented in the following Section, this equation trivially prescribes the symmetry of the stress 
tensor σ . 

 The use of the Green theorem and the balance equations (2.5) in extP  establishes the 
following identity: 

  int: :ext sP = d P       σ u z β S β 
B

 (2.6) 

where the right part of  (2.6) represents the total internal power: 
intP . Note that z and S  

play the role of generalized forces conjugate to β and β , respectively.  

2.3.1. Constitutive constraints  

The materials described using this theory must satisfy the laws of thermodynamics, in partic-
ular the second one. Furthermore, we consider the material free energy density 

( , , , )s  u β β α , where for simplicity, the analysis is restricted to isothermal case. The 
variable α  denotes the possible dependence of the constitutive response with a set of inter-
nal variables.  

The isothermal version of the second law of thermodynamics prescribes, for any arbi-
trary deformation path, the verification of the following inequality: 
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 int : : 0 .sP         σ u z β S β    (2.7) 

For admissible (arbitrary) choices of s u , β  and β . Equation (2.7) establishes the 
following identities for every one of the generalized forces: 

; ;
s

    
  

 
σ S z

β βu
 
 

(2.8) 

in fact,  these identities are considered as constitutive constraints in the material model for-
mulation. 

2.3.2. The morphological descriptor β as fiber-matrix slip during the debonding 
process 

Let us take a closer look at the composite material and restrict our attention to the phenome-
non sketched in Figure 2.2, that represents a block of HPFRC composite undergoing a load-
ing process described by the force P . One plausible description of the mesostructure con-
siders a cell containing a fiber, the surrounding matrix material and the interfacial transition 
zone (ITZ) between the two compounds, as illustrated in the Figure 2.2-b. The ITZ is unders-
tood as a shell with zero thickness. The mechanical description, taking place in this simpli-
fied mesostructural cell, can be imagined as follows: the fiber is subjected to an axial stress 

f , and a bond shear stress f  arises in the interfacial transition zone (ITZ). The last ac-
tion has the effect of interconnecting the concrete-fiber mechanical response and it is not null 
only if a relative displacement, slip motion, between fiber and concrete happens. Therefore, 
the mesostructure is defined by the processes occurring in the fiber and the interfacial zone. 

In order to take into consideration this mesoscopic phenomenon, we introduce a conti-
nuous microfield, β , representing the relative displacement between fiber and matrix, i.e. the 
bond slip mechanism. In the context of a multifield theory, β  represents a morphological 
descriptor and it is a new variable that must be determined. 

2.3.3. Hypothesis of the model 

The heterogeneity of the HPFRC composite entails a large number of variables because of 
the random nature of the fiber distribution. In general, the fibers in HPFRC composites are 
randomly oriented in the bulk material. Nevertheless, it could be inappropriate to model each 
fiber separately. Some researchers have concluded, by experimental results, that both, pullout 
and bond-slip, relations are sensitive to the fiber orientation ((Laranjeira et al. 2010), (Leung 
& Geng 1998)). Additional investigations pointed out that the peak pullout load of an in-
clined fiber is almost as high as that of an aligned one. However, the work required to com-
pletely remove an inclined fiber is higher, if compared with the aligned one ((Naaman A. E 
1976), (Cunha et al. 2007)).   
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Figure 2.2. The HPFRC composite. (a) The HPFRCC and (b) the idealized mesostructure. 

In addition, the number of fibers per unit volume of composite is a random parameter 
that affects the tensile strength behavior, and frequently is assumed as a probability distribu-
tion function to designate the number of fibers in an elemental point. Nevertheless, we as-
sume that this component could be well represented by a discrete number of fiber bundles; 
each bundle being oriented in a specific direction and representing the set of fibers which are 
almost parallel to the fiber bundle. Then, the contribution of each bundle to the total response 
is given by their volumetric participation. The unit vectors ifibr  and ifibs  are associated to a 
given bundle orientation as is shown in Figure 2.3. 

 
Figure 2.3. Kinematics at microstructural level. 

In order to do the model feasible, we introduce some basic assumptions, as follows:  

(i) Even when the equations are written in a three-dimensional format, the numeri-
cal analysis is reduced to plane strain and stress cases. Small deformation theory 
and static loading process are assumed. Furthermore, the matrix, fibers, external 
forces and external displacements are contained in the plane 0z  . The real vo-
lume fraction of the fibers in the section of interest is obtained by affecting it 
with the orientation number, which is defined as the average length of the pro-
jection on the longitudinal axis of all fibers crossing a section, divided by the fi-
ber length (Dupont & Vandewalle 2005). 

dr

(b) Mesostructure

f

ITZ
Matrix

(a) Continuum

f

P

P

ifibs
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(ii) Any point of the HPFRC composite behaves as a micromorphic material. The 
continuum (HPFRC composite) at every point has an associated microstructure 
(fiber and the surrounding matrix), which is represented by the Capriz balance 
equation.  

(iii) The composite is defined as a homogeneous continuum in which each infinite-
simal volume is occupied simultaneously by all the constituents, including fibers 
bundles in all direction exiting in the composite at the point, in a proportion giv-
en by the volume fraction of the component. 

(iv) Several families of short fibers, or fiber bundles, are considered in the formula-
tion. Each family is oriented an angle   respect to the global x -axis. We as-
sume that the fiber random orientation is well represented by these fiber bundles, 
without underestimating or over sizing the problem. Each fiber does not interact 
with the neighboring fibers, nor, one bundle, in a given direction, interacts with 
another in a different direction. 

(v) after initiation of concrete cracking, the dowel effect induced by the fiber is neg-
lected; 

(vi) The analysis of the continuum with microstructure is restricted to the isothermal 
case. 

The first assumption ignores the spatial distribution of the composite material, which af-
fects specially the fiber effectiveness in the case of short steel fibers composites. This as-
sumption may be too coarse for adequately capture the mechanical behavior of the material. 
In fact, experimental research has shown that there is a high degree of proportionality be-
tween the toughness and the fibers crossing a section (Dupont & Vandewalle 2005). This 
drawback motives the use of an orientation factor, as defined in (Dupont & Vandewalle 
2005). The orientation factor is the average length of the projection on the longitudinal axis 
of all fibers crossing a section. It is claimed in (Dupont & Vandewalle 2005) that the applica-
tion of this simplification provides results which agrees well with the real cases.  

2.3.4. Configurational space and kinematical description of the composite 

Let us consider a single fiber undergoing a tensile loading process, as depicted in Figure 2.4-
(a).  Also, let us consider a local cartesian system, ( , , )r s t , with the r-axis being parallel to 
the fiber. The present model assumes one local cartesian system for every fiber bundle in the  
material.  

Figure 2.4 (b-c) depicts the deformation mechanism of fiber and matrix, in a given Sec-
tion A-A' parallel to the plane ( , )s t . During the initial loading stage, Figure 2.4-(b), it is 
supposed that both components, the matrix and the fiber, are perfectly joined, there is not slip 
between both components. Thus, the same displacement u  describes the kinematics of the 
composite. Specifically, the r-component of the displacement vector: ru  , is identical for both 
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components. In this Figure, the dashed lines is used to indicate the initial (undeformed) posi-
tion of the Section A-A', while the solid line shown the deformed position. 

As the tensile stress increases, the bond shear strength is reached. Then, a second stage is 
observed, as shown in Figure 2.4-(c), in which the pull out mechanism activates the  progres-
sive failure in the ITZ, here the transition surface is denoted with  , inducing a relative 
motion (slip) between the two phases.  

 

Figure 2.4. Kinematics at mesostructural level. 

While the matrix undergoes a displacement u , relative to the original position, the fiber 
moves a distance r fu H  in the r -direction, where fH  is the Heaviside’s function 
taking values 0 and 1 for the matrix and fiber domains, respectively. Then, the displacement 
field ( )u x  in the composite domain is defined as follows: 

0 concrete
;

1 fiber      f f


  

u u βH H
 

(2.9) 

The morphological descriptor in the coordinate system ( , , )r s t is characterized by the 
scalar  , which is the r -component of the vector β , and with the remaining components 
equal to zero:  

( , , )r s tβ r  (2.10) 

Without loss of generality, from now on we assume two dimensional problems with 
plane symmetry described in the plane ( , )r s ; the assumed geometry of the reinforcement is 
such that preserves this symmetry. Then, β  is given by: 

, ,( ) ( )r s     β r r r s  (2.11) 

where we use  the notation ,( ) ( ) /r d dr    and ,( ) ( ) /s d ds    
The description of the deformation field is derived from equation (2.9). as follows:  

H 

r

f f

ru

f
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(2.12) 

where, the supra-index ( )s refers to the symmetric part of the corresponding second order 
tensor. The second term in the right hand side is obtained after using the generalized gra-
dient: f   sH , with   being the Dirac delta function placed in  (the ITZ surface). 
Thus, the strain in the matrix (where 0f H ) is: 

;s
m  ε u  (2.13) 

while the fiber strain results: 

 , ,( ) ( )s s s
f f r s      ε u r r r sH

 
(2.14) 

which depends on both the matrix displacement and the slip in the ITZ. Finally, the remain-
ing term in equation (2.12) is: 

( )s  γ r s  (2.15) 

which can be interpreted as a singular shear strain concentrated in the ITZ surface.  

2.4. Integral expression of the microscopic momentum balance equa-
tion 

From the above free energy expressions, and considering the strains (2.12)-(2.15) and the 
constitutive constraints (2.7); the generalized stresses are given by: 

   , ,( )
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(2.16) 

where we identify mσ  as the conventional concrete stress and fσ  as the (uniaxial) fiber 
stress. The microstress is given by: 

     , ,( )
ef e

f f f f f f f f r r r f f fk k k E u k
 


       
 

S ε r r σ
β β

H H H
 

(2.17) 

where, from (2.17), we recognize that S  coincides with the stress fσ  in the fiber domain 
while being zero in the remaining part of the volume. The micromorphic force results: 

  
e e

f f f f rs

rs

k k k E k


     
    

        
    

z β r r
β β


 

(2.18) 
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where, due to the coefficient  , this term can be identified with the shear stress acting in the 
ITZ. 

Without loss of generality, we are assuming from now on that the external microforce 
ζ 0 .  

To understand more precisely the role played by the microstress balance law (2.5)-b, and 
considering that S  and z  are defined in the fiber and ITZ regions, respectively, it is more 
natural to define an integral expression of this balance equation. Let us integrate this expres-
sion in the body part 

B
P  coinciding with the cylindrical slice of length dr  enclosing a fiber 

and its associated ITZ surface, such as shown in the insert of Figure 2.5. The integral expres-
sion results: 
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(2.19) 

where the second identity is found by replacing equations (2.17) and (2.18) in the left side 
term. As can be seen, the second component of the vectorial equation is trivially equal to 
zero. Thus, the relevant balance equation comes from the first component of (2.19). Note that 
due to the presence of the Heavisde function coefficient in (2.17), the integration domain of 
the first term is restricted to the fiber volume here denoted: f ; while the integration domain 
in the second term corresponds to the ITZ surface due to the Dirac function in (2.18).   

Figure 2.5. Fiber segment with the integration domains and the substructural actions. 

Considering from the previous Section that  0rs   in the fiber, denoting f  the aver-
age value of rr  in a given section of the fiber and f the average shear stress rs  in a cir-
cumferential section of  , expression (2.19) can be alternatively expressed as: 

,( ) 0f f f f rA   
 

(2.20) 

where, fA  and f  are the cross-section area and the perimeter of the fiber, respectively. A 
similar equation describing the relation between the axial stress and the shear stress distribu-
tion at the interface zone was presented by Naaman and coworkers (Naaman et al. 1991). As 
it was mentioned above, there exists one balance equation (2.20) for every fiber bundle 
which is characterized by the direction vector ir .  

The equation (2.20) describes the stress distribution along the fiber in HPFRC compo-
site, specifically, the axial stress and the interfacial shear stress distribution. In this regard, it 
can be distinguished two cases, namely, a debonding process with a no cracked matrix and a 
debonding process with a cracked matrix (Leung & Li 1990). The two cases are depicted in 
figure 2.6. 
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In the first process (Figure 2.6.a.), The failure is initiated by concentration of the shear 
stress in the interfacial zone, causing debonding first at the ends of the fiber and activating 
the slip process (stage 1). After enough slip, the shear bond stress exceeds the maximum 
shear capacity (stage 2). And finally, the ultimate bond strength is reached along the whole 
fiber (stage 3). In this stage, the fiber could either slide out or be removed completely, if 
frictional resistance remains in the ITZ, or any resistance is offered, respectively. In last case, 
the composite action is not achieved. 

 
 

Figure 2.6. Typical bond shear stress distribution at fiber-matrix interface and axial stress distribu-

tion along the fiber before and after debonding: a) matrix without cracks; b) matrix with a crack. 

The second case is depicted in figure 2.6.b. Before cracking (stage 1), the interfacial 
transition zone is intact and as a consequence, the maximum shear stress concentrates at the 
ends of the fiber while the axial stress at this point is zero and maximum in the middle length 
(Oller 2003). In the post-cracking stage (stage 2), the fibers transfer the stress through the 
interfacial zone and the shear bond stress reaches its maximum value at the crack surface. 
After that, the fiber is pulled out from the matrix, but the maximum shear-bond-stress capaci-
ty, along the ITZ, has not been reached. As soon as it is exceeded, two interfacial zones 
coexist, one that is bonded and other that is debonded (stage 3) (Naaman et al. 1991). In last 
stage (stage 4) the total fiber length is debonded and the shear bond stress reaches a constant 
value whether a perfect elastic-plastic relationship is assumed between the shear stress and 
the slip. In the same figure, axial stress distributions along the fiber length, in all stages, are 
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shown. In the present model, it is noted that the fiber end interfaces have not any mechanical 
effect.  

2.5. Constitutive models and homogenization of the equations by the 
rule of mixtures theory 

A general constitutive equation can be obtained for the whole composite, disregarding the 
complexity that exists at lower scales. In several works, macroscale phenomenological mod-
els have been developed and used to describe the HPFRC composite behavior (see, for in-
stance (Coto Roquet 2007), (Kulla 1998), (Wittel et al.) and (Sirijaroonchai 2009)). Never-
theless, they may produce an inadequate answer of the material behavior, if the microstruc-
ture has an important effect in the composite response.  

In the HPFRC composites, the combined effects of the compounds control the mechani-
cal response under an applied stress. From the mathematical point of view, this composite 
shows a very marked non-linear response being the main sources of nonlinearities fundamen-
tally due to the material non-linear behavior of the compounds. Additionally, several para-
meters and mechanisms, including fracture toughness of the composite, fiber pull-out beha-
vior, fiber parameters, and bridging effect, should be taken into account (Fischer 2006). 
Therefore, the constitutive equation that is required to describe the material response must 
depend on the properties of the matrix, the fiber and the interfacial transition zone.  

The methodology adopted herein, for the constitutive analysis of the composite material, 
uses the hypothesis of homogeneous strain that is often referred to as the Taylor assumption, 
but it is also known as the so-called rule of mixtures theory (Trusdell and Toupin (1960)). 
Although the rule of mixtures theory does not take into account the microstructural interac-
tions between the composite components, the use of the multifield theory allow us to include 
the microstructure of the fiber and the interfacial transition zone. 

One of the purpose of th e following sections is to furnish the model of the HPFRC 
composite with an adequate constitute law; it may be able to approximate the physical beha-
vior of the real material. Another aim of the chapter is to present the model of each compo-
nent, as well as the computational issues involved.  

Once the deformation tensor has been determined at each point of the composite, the 
next step, in the mathematical description of the composite as a micromorphic material, is to 
select an appropriate set of independent scalar and tensorial fields to determine uniquely the 
stress field. Following the thermodynamic analysis and according with the hypothesis of the 
Subsection 2.3.3, the composite free energy is derived from the mixture theory hypothesis. 
Instead of characterizing the whole composite performance, the mixture theory centers its 
efforts in modeling each compound and how the results obtained from the constituents can 
be used to predict the composite response. The classical mixture theory has been modified 
since its apparition in 1960 (Trusdell & Toupin 1960a), in order to include the constitutive 
non-linearities presented in the compounds ((Oller et al. 1996) and (Car et al. 2002)). 
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2.5.1. Matrix constitutive model   

In controlled uniaxial tests, the macroscopic mechanical behavior of quasi-brittle materials 
like concrete shows a softening branch after reaching a maximum load (Hariri 2001). Conse-
quently, the constitutive model that conveniently describes its behavior is usually the conti-
nuum damage one, in which homogenized material parameters at the macroscale are used.  

The damage theory was presented by Kachanov in 1958, and further elaborated upon 
Kachanov, Lemaître and Chaboche (1985). The key point in the isotropic model is to find the 
value of the damage scalar variable, ,md at any time of the deformation process. In this 
theory, the damage was defined as the degradation of the elastic properties, caused by the 
area reduction that transfers the internal forces. This is produced by the appearance and sub-
sequent growth of microcavities and coalescence of microcracks (Maugin 1992). In the con-
text of continuum mechanics, these phenomena can be taken into account by introducing an 
internal variable; this characterizes the degradation level of the material and transforms the 
real stress tensor into an effective stress tensor  (Simo & Ju 1987)  

1 :σ σ , (2.21) 

where,   is the fourth order tensor for the anisotropic damage model. In the case of the 
isotropic damage model, the degradation process is assumed uniformly distributed in all 
directions. Therefore, the damage is represented by a scalar variable d , so that, the tensor 
  is substituted by  1 md    and the stress tensor takes the following form,  

 1 md



σ

σ

 

(2.22) 

where σ  is the Cauchy stress tensor and σ  is the effective stress tensor, measured in the 
non-damage space. The damage variable gives a quantitative measure of the stiffness loss 
and takes values in the scale of 0 to 1, indicating the limits, no degraded and completely 
degraded material, respectively. The effective stress was defined by Lemaître-Chaboche, in 
1978 and it is referred to the surface that really transmits the internal forces (Maugin 1992), 
see Figure 2.7.  

Figure 2.7 . Element under tension. Shape of the constitutive equation. 
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The matrix constitutive behavior is represented by means of a non-symmetric ten-
sile/compressive strength isotropic damage model, which was originally developed by Simo 
and Ju (Simo & Ju 1987), and further elaborated by Oliver et al  (Oliver et al. 1990). 

2.5.2.  Tensile/compressive damage model 

Once a free energy function was specified (Helmholtz energy, see equation (2.23)),  Simo 
and Ju (Simo & Ju 1987) had obtained the basic ingredients of the model. Then, the constitu-
tive equation for the stress tensor was derived along with the evolution laws, damage crite-
rion and loading/unloading conditions. The density of Heltmholz’s free energy of the matrix 

m  is given by, 

      

     

0

0

, 1

1
1 : :

2

m m m m m m

m m

m m m m m

m

d

q
with d and

   


 



 

  

ε ε

ε ε ε �
, 

(2.23) 

where  ,m tε x is the strain tensor, m  and mq  stand for the strain-like and stress-like inter-
nal variables, respectively. The 0  term, in this model, is the elastic energy for the (unda-
maged) material. m  is the Hooke’s elastic constitutive tensor, whose expression is, 

  2m    1 1 
, (2.24) 

where   and   are the lame’s parameters, 1  and   are the identity second and four order 
tensor, respectively. The Î [0,1]md , is the conventional continuum isotropic damage 
variable describing the elastic degradation: = 0md  

represents the virgin material and 
= 1md  the completely degraded material.  

 

Constitutive equation: 
:m m

m m m

m m

q



 


σ ε
ε

 �
 

(2.25) 

Flow rule: 
0,m m m m    
 (2.26) 

Softening law:   0 0 0, 0 ,m m m m m m m mq H q q      
 (2.27) 

Damage criterion:  , 0m m m mf     ε
 (2.28) 

Complementary condi-
tions and consistency 
condition: 

0; 0; 0m m m mf f      

     0 0m m mf f  
 

(2.29) 

Box 2.1. Tension/compressive isotropic damage model. 

The evolution equation for md  is presented in equation (2.23)-b as the ratio of two 
thermodynamically conjugate internal variables of the model, i.e. m  and 

mq . The formula-
tion presented in this work uses the damage model, which is summarized in Box 2.1 
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Equation (2.25) is the strain-stress relationship and equations (2.26) and (2.27) are the 
evolution laws of the strain-like and stress-like internal variables, respectively. The stress-
like variable mq  in equation (2.27) evolves according to the softening law, which is ruled by 
the softening/hardening parameter mH . The damage criterion in (2.28) is expressed in terms 
of the matrix effective stress field, which corresponds to, 

:m m mσ ε �  (2.30) 

The damage function in (2.28) is expressed in terms of the strain norm, or the so-called 
equivalent strain,  , for the tensile/compressive damage model, which is used to compare 
different states of deformation, 
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(2.31) 

where ,
 
denotes the Mac-Auley bracket, uc ut

m mn    is the ratio
 
between the compres-

sive, uc

m , and tensile, ut

m , ultimate strengths. The expression (2.31) also uses the effective 
stress tensor, in principal direction, m

iσ , 1,2,3i  . 
Damage occurs whether the strain norm exceeds the current value of the threshold (ma-

terial strength), given by the following condition 

 
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(2.32) 

This equation identifies the strain-like internal variable evolution. In equation (2.32), mE  is  
the Young’ modulus of the matrix material. 
 

Rate form of the constitutive equation:  

 2
:m m m m

m m m m m

m m

q H q


 


 σ ε σ 
 

(2.33) 

Constitutive equation – Unloading case:  

m
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(2.34) 

Constitutive equation – loading case:  
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(2.35) 

Box 2.2. Tensile/compressive isotropic tangent matrix of the constitutive operators. 

Time differentiation of the equation (2.25) allows us to find the constitutive tangent ten-
sor, both loading and unloading cases. The constitutive equation in elastic regime (also un-
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loading case) is obtained, setting 0m  and for loading case 0m  . The characterization 
of the loading/unloading conditions is provided in Box 2.2. The tangent operator in unload-
ing and loading cases correspond to equations (2.34) and (2.35) respectively. More additional 
details are provided in (Linero 2006), where the expression of   has been derived.  

2.5.3. Fiber and debonding constitutive model 

Typically, a uniaxial tensile test is chosen to estimate the parameters, which characterize 
the steel fibers response curve (Figure 2.8(a)), that are frequently used as reinforcement of 
HPFRC composites. The most important phenomenological properties in the uniaxial re-
sponse of steel fibers can be identified as follows (De Souza Neto et al. 2008): i. The exis-
tence of an elastic domain, i.e., a range of stresses within the behavior of the material can be 
considered as purely elastic and without permanent (plastic) strains. ii. A yield stress and 
plastic yielding (or plastic flow). And, iii. The evolution of the plastic strain and evolution of 
the yield stress itself; this phenomenon is known as hardening. The aforementioned characte-
ristics allow us to formulate a simple mathematical model containing all these essential fea-
tures.  

 
Figure 2.8. Unidimensional fiber plasticity model. 

2.5.4. Plastic behavior in uniaxial tension 

In the one dimensional plastic model, the uniaxial stress, corresponding to the total strain, 
,f  additively splits into an elastic part ,e

f  assigned to the spring with constant fE
 
(Young 

modulus of the fiber), and a plastic strain part ,p

f  on the friction device (Simo & Hughes 
1998), that is  
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. (2.36) 

Equation (2.36) is the main hypotheses underlying in the small strain theory of plasticity. 
The total strain, 

f , is the sum of an elastic, e

f  and a plastic, as follows: 
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 p

f f f fE   
. (2.37) 

The additional ingredients of the constitutive relation connecting the uniaxial fiber 
stress: σ : ( )f fs = Är r  with the uniaxial fiber strain: ε , ,: ( ) ( )f f r r rue b= Ä = +r r , 
where ε f  is  defined in equation (2.14) are here presented. To connect both magnitudes, it is 
proposed a uniaxial standard elasto-plastic stress-strain model as it is presented in Box 2.3. 

 

Free energy      21
, , ( );

2
s p h

f f f f f f f fE        ε u β α (2.38) 

Elastic stress-strain rela-
tionship: 

 p
f f f fE   

 
(2.39) 

Plastic flow rule:  p

f f fsign  
 

(2.40) 

Internal variable evolu-
tion: f f 

 (2.41) 

Yield condition:    , y

f f f f f ff q     
 (2.42) 

Hardening law:  f f f fq H   
 

(2.43) 

Kuhn-Tucker comple-
mentary conditions and 
consistency condition: 

0; 0; 0f f f ff f   
  

 0 0f f ff f  
  

(2.44) 

Box 2.3. One dimensional rate independent plasticity model for the fiber tensile behavior with 

isotropic hardening. 

In Box 2.3, we have introduced the yield function,  

   , .y

f f f f f ff q     
 

(2.45) 

The yield criterion for this simple model reads, 
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(2.46) 

where p  is the plastic strain rate. The plastic flow rule for the uniaxial model corresponds 
to  

 sign ,p

f f f  
 (2.47) 

where  sign   stands for the sign function and f  for the plastic multiplier. Finally, the 
hardening law is defined as, 
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  .f f f fq H   
 

(2.48) 

Equation (2.48) completes the characterization of the uniaxial model.  
The model is summarized in Box 2.3, in which Equation (2.41) represents the internal 

variable evolution and the Equation (2.43) stands for the hardening law. The harden-
ing/softening evolution is characterized by the hardening/softening modulus, ,fH and the 
strain-like variable f , is  the conjugate of the stress-like variable fq . 

 
The rate form of the elastic relationship (2.39) along with the Kuhn-Tucker complemen-

tary conditions and consistency condition in (2.44), yields the elastoplastic tangent modulus: 
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(2.49) 

 

2.5.5. Shear stress vs. slip relationship of the fiber matrix bond 

In this section is introduced an expression for shear stress-slip relationship of the fiber-matrix 
bond in order to represent its mechanical behavior. Some researchers argue that the shear 
stress-slip relationship is of local nature. That is, this relationship is not unique but also de-
pends on the location (Nammur 1989). Nevertheless, it is currently assumed that it is a ma-
terial property, and hence, location independent. In the framework of the present model is 
assumed that the shear stress-slip relationship is a property of the material.  

The shear stress-slip relationship, for a rebar in a concrete matrix, has been experimen-
tally derived in association with pullout experimental results. In consequence, the primal 
problem is to predict a complete pullout load versus slip curve from an assumed bond stress 
versus slip relationship and, a dual problem, i.e., the bond stress versus slip is obtained from 
an experimental pullout curve (Naaman A. E & Alwan J.A 1993). Detailed analytical studies 
on bond, in fiber-reinforced cement composites, includes (Naaman et al. 1991), (Shannag et 
al. 1999), (Fantilli & Vallini 2007) and (Li & Stang 1997). 

Recent contributions to the optimization of the geometrical properties of the fiber have 
been addressed by (Naaman 2003). These studies concluded that an increase of the lateral 
fiber surface area, for the same cross-section area, increases the frictional and adhesive bond 
resistance along the fiber length; in turn, the larger the lateral surface, the higher the pullout 
resistance is, and, therefore, the efficiency of the fiber. 

According to Naaman (Naaman 2003) the fiber maximum pullout load maxP , in cement 
matrices, can be written as in equation (2.50),: 

max sec
f e

e

d L Circular fiber
P

L any cross tional shape









    

(2.50) 
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where   is the perimeter of the circular fiber and fd is the diameter,  is the perimeter in a 
fiber with any other cross-sectional shape, eL  the embedded length of the fiber and   is the 
average bond strength. Extensive tests have been carried out to correlate this pullout load and 
the bond stress, from which typical bond stress-slip relationship have been obtained, depend-
ing on the fiber geometrical and mechanical properties. In Figure 2.9 (a) and (b), the general 
relationship between the local bond stress and slip, for two types of rebars, is illustrated. In 
the case of smooth fiber, Fantilli and Vallini (Fantilli & Vallini 2007)  provided expression 
for a model with exponential decay, after the maximum bond stress; some values of parame-
ters are suggested taking into account the properties of the concrete matrix. Although, the 
matrix-fiber interface is generally, weak, inviscid and non-plastic, the properties of the inter-
facial zone are assumed, characterized by a plastic bond stress versus slip response. There-
fore, a simple 1D plasticity model can be assumed to model the bond stress-slip relationship, 
in the interfacial transition zone.  
 

Figure 2.9. Bond shear stress versus slip relationship. (a) Smooth fiber, (b) Hook end fiber. 

It is noted that the interfacial bond properties depend on many factors such as, strength 
on the matrix, fineness of the sand, and types of additives. As far as the value of the maxi-
mum bond stress, it is assumed to represent an average value. For the hooked end and other 
deformed fibers, an equivalent bond strength or average value can be determined by means 
of pullout tests. These values for smooth, hooked end and twisted fiber are given in (Kim et 
al. 2009).  

Given the main features of the interfacial zone, the 1D plasticity model that represents 
the debonding process, basically contains the same ingredients of the plastic model used for 
the mechanical action of the fiber. The model in Box 2.4 basically consist of a linear-elastic 
response between the elastic component of the slip b  defined as: peb b b= -  and the 
average bond strength rs , applied on the fiber matrix interface surface, where b  is the total 
slip, pb  is the plastic component. eb  and rs  are related with an elastic modulus: GG ; and; 
up to reach the point where the stress is:  , which marks, for the virgin material, the onset 
of the plastic process. After crossing this point, the bond-slip response follows a plastic har-
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dening/softening rule. Thus, the evolution of the plastic component: pb  is given by the flow 
law (2.54) where lG  represents the plastic multiplier. The hardening/softening rule is de-
fined by the expressions (2.55) and (2.57), where the term: HG  represents the instantaneous 
hardening/softening modulus. The plasticity criterion is given by equation: 0fG = , with 
fG  defined in (2.56). And the loading-unloading conditions by (2.58). 

The rate form of the elastic relationship (2.53) along with the complementary conditions 
in (2.58) yields the elastoplastic tangent modulus:   /tg      , which is given by: 

( );tg GG G= Är r
 

( );tg G

G H
G

G
G G

= Ä
+

r r
 

(2.51) 

 

Specific free energy: 1
( , ) ( );

2
e e e hGy b a b b y aG G G G G= ⋅ ⋅ +

 

(2.52) 

Elastic stress-strain 
relationship: 

 p
rs G   

 
(2.53) 

Flow rule:  p
rssign  

 
(2.54) 

Isotropic hardening law:   
 

(2.55) 

Yield condition:    , u
rs rsf q        

 
(2.56) 

Isotropic hardening law:  q H      
 

(2.57) 

Complementary condi-
tions: 

0; 0; 0f f        

  0 0f if f   
 

(2.58) 

Box 2.4.  One dimensional rate independent plasticity for the interface zone (IZ) 

2.5.6. Homogenized composite free energy according with the rule of mixtures with a 
unique bundle of fibers 

In the multifield theory, the composite uses the same concepts of the standard continuum 
mechanics, but the presence of the fiber forces us to homogenize the stress field. Using the 
classical Taylor or homogeneous microscopic strain model, commonly known as the rule of 
mixtures, and assuming isothermal case, we can define the Helmotz free energy of the com-
posite, as the addition of the free energies of all components, weighted by their volumetric 
participation factor. Let us first consider a unique fiber bundle oriented in the direction r . In 
the next subsection we generalize the model including multiples fiber bundles oriented in 
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several directions. We denote fk  the volume fraction of the fiber and mk the volume frac-
tion of the cement, such that: 1f mk k  . 

The free energy of the composite is defined as follows: 

     ( , , , ) , , , ( , );s s s
m m m m f f f f fk k k           u β β α ε u α ε u β α β α (2.59) 

where m , f  and    are the matrix, fiber and ITZ free energies assigned to each compo-
nent and defined in previous sections. Note that each of these three components has their 
own set of internal variables, mα , fα  and α . 

2.6. Extension to HPFRC Composites having a random distribution of 
fiber directions 

Composites with randomly distributed fibers are often both heterogeneous and anisotropic, 
thereby, their mechanical properties vary from point to point inside the material. The coupl-
ing effect in such materials, between deformation modes and loading conditions, causes 
difficulties in simulation, modeling and analysis, which are not easily to overcome. Consi-
dering the HPFRC composite response, two problems arise; first, how to include the consti-
tutive behavior of each fiber, interfacial zone and the matrix in the material response and, 
second, how to detect the instant, in which localizes the response of the composite material. 
In fact, some compounds could fail, but the whole material could exhibit a non-localized 
response.  

In previous sections, the stress-strain relationships of each compound were defined, 
however, in order to combine such models is invoked a homogenization methodology. One 
way is to resort a multiscale solid constitutive model. Within a general kinematical variation-
al formulation De Souza et al (De Souza Neto et al. 2008), presented four classes of these 
models. We follow the hypothesis of homogeneous strain over the generally heterogeneous 
microstructure. This assumption is referred in De Souza’s work as the Taylor model or ho-
mogeneous micro-cell strain model. This model is also referred, in the literature, to as the so-
called rule of mixtures.  

2.6.1. Rule of mixtures theory  

The classical rule of mixtures has been modified in order to include the existing constitutive 
non linearities, presented in the constituents ((Oller et al. 1996), (Car et al. 2002)). These 
modifications were made in the light of the themodynamical description of the compounds 
and provided a constitutive equation manager, as described by Martínez (Martínez 2008). 
The results obtained from the constituents can thus be used to predict the composite constitu-
tive response. This idea is crucial in developing constitutive models by linear combination of 
the volume fractions and individual material properties.  

According to (de Souza Neto & Feijóo 2010), one important limitation of the Taylor ap-
proximation is the fact that it does not consider mechanical interaction among the solid phas-
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es. Moreover, the constitutive material model requires the connection between the strain of 
the compounds and the total strain, and also, between the stresses. 
 

In the Taylor model, the following assumptions are considered: 
1. All the components undergo the same strains, 
2. Each component contribution, to the global behavior of the composite, is propor-

tional to its volumetric participation. 
From the second assumption, the homogenized stress is obtained using the stress of the 

compounds,  

m m f fk k σ σ σ
 (2.60) 

The recomposition of total stress tensor uses the volumetric participation, which is de-
fined by the relation between the volume occupied by each component, cV , and the total 
volume of the composite, V : 

c
c

V
k

V


 
(2.61) 

The mechanical model of a HPRFC having a fiber bundle in one direction, presented in 
section 2.5, can be generalized to account for a statistical distribution of fibers. In this case, 

fn  discrete directions are selected in the plane of analysis forming angles (with respect to 
the horizontal direction) that are regularly distributed in the interval pé ùë û0, , These fn  fiber 
bundles with identical volume fractions represent a random fiber distribution. Then, as a 
generalization of the model, we extend it to consider fn  fiber bundles arbitrarily oriented. 

Let us consider fn fiber bundles. The i-th bundle, characterized with the super-index I (
1,..., fI n= ), has assigned one volume fraction I

fk , one direction vector Ir  and one 
micromorphic field β ( , )I I Ir sb= r (no summation on the index I). Inclusion of new mi-
cromorphic fields implies that new associated microstresses IS  and microforces Iz arise for 
every considered index I. Also, it is required the fulfillment of additional balance equations 
(2.5)-b, for every index I.  

Using the mixture theory, the free energy of the HPFRC is the linear combination of free 
energies of all the components weighted by their corresponding fraction volume. Then, the 
stress equation (2.60), in a composite with nf  fiber bundles, results:  

( ) ( )σ σ ε σ ε β
1

; ( , );fn I I I I I
m m m m f f f fi
k ka a

=
= +å u  (2.62) 

Figure 2.10 shows a schematic decomposition of the stresses at any point of the HPFRC 
composite. The total stress tensor in global axis is the transformation of the scalar contribu-
tion of the microstructural axial stress, ,I

f  

    ,,

e
I I I I

f f r rr
E u   σ r r  (2.63) 

where I

fσ  corresponds to the I-th fiber stress, which expression is given by the last term in 
(2.63) along the direction Ir .   

we denote: 
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 ˆ , , , , σ σ u β β α
 

(2.64) 

the expression representing the complete set of the composite model constitutive equations. 
In this context, it is understood that the notation β  and β  stand for the complete set of 
micromorphic fields, with indices: 1,...,I nf .  

 

 

Figure 2.10 . Decomposition of the stresses in a material point of the HPFRC composite 

2.6.2. Tangent constitutive operator 

In a nonlinear analysis, the tangent stiffness tensor provides the relation between an incre-
ment of stresses and an increment of strains, in the same way that it does the stiffness matrix 
in a linear analysis (Martínez 2008). In the Taylor model, the homogenized tangent operator 
is defined as the volume average of the microscopic constitutive tangent operators. To de-
termine the constitutive relation, it is necessary to obtain the complete form of the homoge-
nized stress tensor. We accomplish this, substituting the expression (2.63) in equation (2.60). 
Furthermore, the stress rate term equation can then be written as follows,   

1
.

nfib I I

m m f fifib
k k


 σ σ σ    (2.65) 

The strain rate and the stress rate tensors are related by the constitutive model, discussed 
previously, which are tg

m m m  σ ε , tg
f f f  σ ε  and tg

f      for the matrix, 
fiber and the ITZ respectively.  

Box 2.5 summarizes the constitutive relations between the stresses and strains in rate 
form. Under the compatibility of the strains between the components, the tangent constitutive 
equation of the composite can be written as: 

: ,tgσ ε   (2.66) 

where the tangent constitutive tensor tg is evaluated substituting the set of equations in Box 
2.5 into equation (2.66), yielding, 

= +
ifibr

ifibs

x

y
σ mσ

' f

ifib

' f

ifib

y
x

Matrix fiber iComposite
material
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stress-strain rate relationship for matrix:      :tg

m m mσ ε   (2.68) 

stress-strain rate relationship for axial mechanical fiber action:      I tg I

f f fσ ε   (2.69) 

stress-strain rate relationship for debonding fiber action:     tg        (2.70) 

Box 2.5. One dimensional rate independent plasticity for the fiber tensile behavior with isotropic 
hardening 

2.7. Summary of the balance equations 

The balance equations (2.5)-a, (2.20) jointly with the constitutive equations (2.64) and the 
conventional boundary terms in tractions: * σ n t , defined in  , or displacements: 

*u u  , defined in u , jointly with the prescription β 0  in the    boundary (with 

u       ), define the  boundary value problem in strong form. These equations, 
that are written in terms of the macro-displacements u  and the microslip β , are summa-
rized in Box 2.6.  

It is remarked that the coupling between both macro- und mesostructure, is done via the 
morphological descriptor (or slip in the interfacial transition zone). The solution of the equa-
tion set provides the displacements u  and the slip β  in the whole domain. It is worth men-
tioning that a periodic structure is not required by the solution scheme.  

In summary, following the framework of continuum with microstructure and the prin-
ciples of thermodynamics, it was possible to link two objects of distinct nature, which are 
interacting and operate at different scales. The resulting set of partial differential equations 
models the composite material in terms of the macro- and microfields and the interaction 
between them by means of the morphological descriptor field defined at the interface. The 
model makes possible to represent the two different scales, without resorting to a complex 
formulation.  

In general, in the macro-constitutive models, the balance equation for the mesostructure 
and the morphological descriptor associated to the matrix-fiber slip phenomena do not ap-
pear in a natural manner unlike in the continuum with microstructure theory. Additionally, in 
the model developed by means of the multifield theory arises the interaction force (i.e. the 
micromorfic force) at substructural level that accounts for direct action on the underlying 
substructure, and which is not accounted in a macrocostitutive approach. 

 
 

( ) ( )( ) 
=

= + Ä Ä Äå
( )

1

Ifntg tg I tg I I I I
m m f fi
k k E r r r r  (2.67) 
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Continuum with microstructure 

Find: , u  

 

Fulfilling:    

    σ b 0 x  
Macroscopic momentum balance 
equation 

(2.71) 

,( ) 0,

( 1,..., )

fi i
f f

f
r

A

i nf

    




x B

  

Mesotructural momentum balance (2.72) 

*
   σ n t x ;   Natural boundary condition (2.73) 

*
u  u u x ; Essential boundary condition (2.74) 

0 ( 1,..., )i i nf   β x   (2.75) 

 ˆ , , , . σ σ u β β α
 

Composite constitutive equation (2.76) 

Box 2.6. Boundary value problem definition for the HPFRC composite. 

 
Finally, note that equations in Box 2.5 are not limited by the specific nature of the inter-

facial transition zone and, therefore, it is expected that they can represent the mechanical 
behavior of the composites for interfacial transition zones with different properties. Thus, the 
model is general for abroad class of short fiber composites under some minor physical re-
quirements. 

 





 

 
 

Chapter 3                                  
Variational approach and finite element 

formulations 

3.1. Introduction 

So far, we have dealt with the theoretical issues of HPFC composites as the governing equa-
tion of the behavior of the HPFRC composite including the micromechanics and the material 
constitutive relationships. In this chapter, we introduce a finite element formulation, as also 
its numerical implementation, to deal with this kind of theoretical model.  

The finite element formulation of the HPFRC composite boundary value problem re-
quires: 1) a finite element discretization that comprises a finite element approximation of the 
variational BVP presented in Chapter 2 and 2) a time discretization of the underlying consti-
tutive initial value problem defined by the constitutive equations. After introducing both 
approximations, the original variational BVP is reduced to a set of (in general nonlinear) 
algebraic equations, which typically, can be solved by means of a Newton Raphson algo-
rithm.  

Explicit or implicit time integration algorithms can be selected for integration of the ma-
terial model.  Each integration scheme has advantages and disadvantages, which are summa-
rized in (Oliver et al. 2008). However, the classical implicit (backward-Euler) integration 
scheme is usually chosen for nonlinear solid materials. An implicit/explicit integration 
scheme (IMPL-EX scheme) for nonlinear constitutive models was presented by (Oliver et al. 
2008) which is here employed to perform the integration of the constitutive models. Details 
about these issues are provided along this chapter. 
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3.2. Variational formulation  

In order to derive the variational BVP for the HPFRC composite, the virtual variation of the 
configuration space is defined as follows:  

 
          

0

0

0, ;

0, ; 1, ,

u

I I I I
f

V

V I n

 

  

   

     

u u x

β r β x 
 

(3.1) 

where   stands for boundary surface of the body. Note that the variations of β , one for 
every index I , are considered with a fixed direction. Then, the boundary value problem 
described in Box 2.6 is alternatively formulated using a variation approach:  

 
  0, V       σ b u 0 u

B  
(3.2) 

and 

          0
,

, ; 1, ,fI I I I
f f f

r
f

A
V I n   

 
        

 0  
B

 

(3.3) 

The microstructure variational equation (3.3) comes from admitting arbitrarily scalar 
variations,  I , which are associated with the r  component of  I . Integrating (3.2) and 
(3.3) by parts, using the Green identity and including the boundary conditions (2.74) and 
(2.75), the variational BVP can be summarized as shown in Box 3.1  

 
Continuum with microstructure 

Find:  ,tu x  and  ,tβ x ;   x B , fulfilling,  

*
0: 0;s dV dV dS V



   


         σ u b u t u u
B B  

Momentum ba-
lance equation 

            0
,

0; ; 1, ,
f

I I I I I
f f ff r

A
dV V I n    

 
      

   
B

 

Microstructure 
momentum ba-
lance equation 

Box 3.1. Variational boundary value problem definition for the HPFRC composite. 

3.3. Finite element discretization of the variational formulation 

A  u β  mixed finite element with equal order of interpolation is proposed here. As-
suming a usual form to interpolate the displacement  , tu x , and the microslip  I  for 

1, ,I nf  , such that 
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     
1

ˆ , ,
nodej n

j j
j

t t




 u x N x q  (3.4) 

     
1

ˆ , ,
nodej n

i I

j j
j

t N p t




 x x  (3.5) 

where 
noden  is the number of nodes of the finite element mesh,  jN x  are the standard in-

terpolation functions and  jq  and I

jp  stand for the displacements and i th  micro-slip of the 
node j th , respectively. The corresponding discretization of the variational displacement 
fields q  and Ip  reads, 

   
1

ˆ ,
noden

j j
j

 


 u x N x q  (3.6) 

   
1

ˆ ,
noden

I

j j
j

N p 


 x x  (3.7) 

where, jq  and i

jp  are the corresponding variations associated with the displacement and 
i th  slip of the j th  node, respectively.  

3.3.1. Matrix notation 

Using the Voigt notation, the discretized symmetric gradient in matrix form of the variations 
associated with the displacement and the  i th  slip can be written as, 

 es e e with  q B q
 

1 2, , , , ,
TTe T T T T

n j x y j
and q q            q q q q q   

(3.8) 

in equation (3.8), eB  is the strain-displacement matrix given by  

1 2, , ,e e e e

nnode with   B B B B
  

 
 

   

,

,

, ,

0

0 .j

e

j x

e e

j y

e e

j jy x

N

N

N N

 
 
 
 
 
 

B  
(3.9) 

The nodal shape functions of the variation associated with the i th  slip are 

     ,
eei Ip  N  

   1 2, , , ,
e TI

np p p p      
(3.10) 

where  e
N  are the nodal shape functions arranged as a vector. That is, 
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   1 2, , , .
e

nnodeN N NN   (3.11) 

The corresponding discretized gradient in matrix form can be written as, 

     ,,

eeI I

rr
p p N  (3.12) 

In equation (3.12),  
,

e

r
N are the derivatives of the nodal shape function (respect to the r

coordinate), arranged as a vector. 

3.3.2. Discrete form of the variation BVP 

Being σ̂ , the stress term provided by the constitutive model   σ̂ p,q,α , and similarly, 

 ˆ I

f  and  ˆ I

f  the average fiber stress and the average bond shear stress in the interface 
zone and by substitution of the approximate solution (3.4) and (3.5) and the variational fields 
(3.6) and (3.7), into the variational BVP presented in Box 3.1, yields the discrete form that is 
initially written at element level. 

     ˆ
e

T ee e e ext

u d


  R B σ F  

           
,

ˆ ˆ ; 1, ,
e

e e efI I e

f fr
f

A
d I nf  



 
       
R N N    

(3.13) 

The implementation of the finite element method involves the assembling of the element 
contributions (3.13). Using the assemblage operator   and defining the global vector of 
external forces as extF , the discrete form of the variational BVP is obtained. This is summa-
rized in Box 3.2. 

 
Continuum with microstructure 

Find:  ,tq x  and  ,I tp x ;   1, ,I nf   , fulfilling,  
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   R B σ F  Momentum balance 
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     
,

1

ˆ ˆ ; 1, ,
e

nelem
e efi I e

f fr
e f

A
d I nf  

 

 
       
 R N N    

Microstructure mo-
mentum balance equa-
tion 

Box 3.2. Discrete form of the variational boundary value problem definition for the HPFRC compo-

site. 

From Box 3.2, expressions for the internal forces are expressed as  

   int

1

ˆ ˆ
e

nfib
e Te I I e

m m f f
I

k k d


    
 

F B σ σ  (3.14) 
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where, it was substituted the total stress in terms of the matrix and fiber contributions. The 
second component of the internal forces is given by:  

         int

,
ˆ ˆ

e

e e efI I e
f fr

f

A
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

 
     
f N N   (3.15) 

We define the global residual vector as: 

     
 

int

1 int
, ,

e eext
nelem

I

ee

     
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F F
q p 0

f
R  (3.16) 

3.3.3. Strains and microslips 

The kinematical description obtained for the composite, in which the fiber-matrix displace-
ment was included, is presented in equation (2.12). The matrix representation of the strain 
tensor in any point, using Voigt notation, is given by 

        ,
e

m f f   ε ε ε γH
 

(3.17) 

where the vectors  mε ,  fε ,  γ  stand for matrix, fiber and fiber-matrix interface shear  
strains in the new notation, respectively. The discretized matrix strain vector related with the 
nodal displacement is given by  

  ,e e

m ε B q  

1 2, , , , ,
TTe T T T T

n j x y j
and q q      q q q q q  

(3.18) 

where eB  is the strain-displacement matrix, in equation (3.9)-b, and jq  the displacement at 
j th  node. 

The fiber strain vector for the ith fiber bundle microstructure is decomposed as fol-
lows,  

       , , ,I I I

f m r s   ε ε
 

(3.19) 

where the  mε ,  ,

I

r and  ,

I

s  are the contributions from the matrix displacement and the 
slip-dependent components in the local direction  r,s , respectively. Each of the compo-
nents of the gradient of the slip corresponds to, 
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e TI

np p p p   

(3.20) 

where 1T  and 2T  are the matrix representation of the products  sr r  and  sr s , respec-
tively. 
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Finally, the strain vector for the ith fiber microstructure yields 

     2 ,
eeI Ipγ T N  (3.21) 

which contains the component of the interface slip of the microstructure. 
The total uniaxial strain of the fiber  :f f  ε r r  may be conveniently rewritten as, 

,f f   r ε r  

   1 ,
.

eeT e e I

f r
p  T B q N  

(3.22) 

The equation (3.22)-b is obtained by replacing the value of fε  from equation (2.14) and 
operating algebraically in (3.22)-a, then it is transformed to matrix notation. The strains and 
microstrains are summarized using matrix notation in Box 3.3. 

 

Strains and microstrains  

  e e

m ε B q
 

Matrix strain 
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       1 ,
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f r
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     2
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Strain vector for the ith fiber bundle

Box 3.3. Boundary value problem definition for the HPFRC composite. 

3.3.4. The nonlinear incremental finite element equation 

The equilibrium equation of the body under forces *,b t  and vS  at nt t  , so that the stress 
fields nσ  and   I

f n
 ,  I

f n
 ,  imposes that:  

 , .I
n n q p 0R  (3.23) 

The proportional loading is characterized by body force and surface traction fields given, 
at an arbitrary instant  1nt  , by  

1 1 ,n n b b  

1 1 ,n n t t  
(3.24) 

where 1n   is the prescribed load factor at 1nt   and b  and t  are prescribed constant fields. 
The global external force vector corresponds to  

1 1 1.
ext ext
n n n  F F  (3.25) 
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After the standard finite element discretization presented in Box 3.2, the problem is re-
duced to find: the nodal displacements 1nq , the slip 1

I

np  in the ith fiber, the updated inter-
nal variables of the damage model 1 1 1, ,n n nd   α q , the internal variables of the plastic model 

   
1 1

, ,p

f fn n 
ε α q ,  the internal variables of the interface model  1 11

, ,p

n nn
q   

, the total 
stresses and the microstresses  σ  and  I

f , I

f , at the gauss point, respectively, at the end 
of the time step 1nt  , such that the incremental finite element equilibrium equation, 

   
 

int 1 1

1 1
1

int 1 1

,
, ,

,

e I e
nelem n n extI

n n e Ie
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 

  
 

     
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F q p F
q p 0

f q p
R

 

(3.26) 

is satisfied, where int
eF  and int

ef  are vectors of elemental forces, corresponding to   

    int 1 1 1 1
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f f n n n f f n nrn

f

A
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f N q p p N p 

 

(3.27) 

The residual vector can be rewritten as a function of the global internal vector force , int
ef  

defined as follows, 

   1 1 int1
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e I
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e I
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f
 

 
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  

F q p

f q p
 

(3.28) 

The set of equations (3.26) represents the HPFRC composite BVP problem, discretized 
in time and space, whose balance is established in equation (3.26). The  t  parameter stands 
for the increasing parameter (pseudo time identified as the loading factor or the arc length 
parameter). The equation (3.27) is a nonlinear one, and the source of nonlinearity is located 
in the constitutive functions that define the internal force vectors.  

3.3.5. The incremental solution procedure 

The Newton Raphson algorithm is particularly attractive for solving of the nonlinear in-
cremental equation (3.26). Due to its quadratic rates of asymptotic convergence, this method 
tends to produce generally robust and efficient incremental nonlinear finite element schemes 
(De Souza Neto et al. 2008). Nevertheless, in some cases, lack of robustness in nonlinear 
mechanics problems appears, for instance, as in modeling material failure for brittle mate-
rials. For a further thorough discussion the reader is addressed to (Oliver et al. 2008). Each 
iteration of the Newton Raphson scheme comprises the solution of the linearized version of 
the discrete incremental equilibrium equation (3.26). The linearized problem consists, then, 
in finding the fields  kq  and  kIp  at iteration k  of the Newton Raphson as follows, 
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1,k k
tg

K u = -R  

 
 

,

k

k
kIp

    
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q
u =  

(3.29) 

where we have defined the Jacobian matrix (global tangent stiffness matrix):  

1

,tg
n





R
K

u
 (3.30) 

which is the assembly of the element tangent stiffness matrices. Further details of the form of 
this matrix are presented subsequently. Once the solution ku  of the linear system (3.29) is 
found, we can apply the correction to the global displacement 

1
1 1

k k k
n n


   u u u  (3.31) 

The Newton Raphson iterative procedure is repeated till a convergence criterion is satis-
fied. 

3.3.6. Tangent stiffness matrix  

The external forces in (3.26) do not depend on the current state 1
1

k
n

u , then the expression 

(3.30) is reduced to:  

int
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.tg
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f





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K
u

 (3.32) 

Since the assembly operator is linear  , then:  

1
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e
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K K

K K
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
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where we have defined the submatrices,  
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which stem from equation (3.32), when differentiation is performed respect to eq  and I
ep . 

By using the chain rule, equation (3.14) and equations in Box 3.3  
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(3.35) 

The total stress was substituted by their expression in terms of the concrete and the fiber 
stresses for each fiber bundle. The curly brackets indicate the conversion of the argument to 
matrix notation. The term uK  is given by, 
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(3.36) 

The submatrix uK  corresponds to the following expression, 
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and finally, the term K  is  
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(3.38) 

Equations (3.35) to (3.38) complete the expressions defining the Jacobian matrix, as also, the 
linear approximation presented in equation (3.29).  

3.3.7. The algorithmic tangent operators 

To complete the algorithmic procedure discussed in previous subsections, it is required to 
derive the expressions of the coefficients:  
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where tg

mC  is referred to as the constitutive tangent operator in matrix form. i.e. the fourth 
order tensor presented in Box 3.2, which is rewritten as a 3x3 matrix for plane stress and 
strain cases. In general, the matrix tangent operator for 2D problems is represented as, 
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The ith fiber tangent constitutive operator has the following form, 
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(3.42) 

and the interface zone tangent constitutive operator is 
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3.4. Linear triangular and quadrangular elements with three degrees 
of freedom per node  

The mixed formulation discussed in the preceding sections for the continuum with micro-
structure based-model summarized in Box 3.2, is implemented by means of two types of 
linear finite elements, triangular and quadrangular elements. The triangular element with 
linear displacement interpolation is depicted in Figure 3.1-a, which has three degrees of 
freedom per node. According to the Gauss-Legendre quadrature rule, linear functions can be 
integrated exactly with one gauss point. Additional Lobatto integration scheme is also in-
cluded to evaluate the kernel related with the bond shear stress term in the tangent stiffness 
matrix K , which is a like-mass term, as is shown later. The quadrilateral element is pre-
sented in Figure 3.1-b.  

  

(a) (b) 

Figure 3.1. Linear triangular and linear quadrilateral elements. 

3.4.1. Internal force vector computation using triangular elements 

As it can be observed in Box 3.4, the computational implementation of the force vector in the 
monolithic formulation, which is explained in the following section, has basically three steps.  
Note that the Lobatto integration rule is required by the mass-like term. Therefore, the pro-
cedure is divided in two integration steps. In step (iii) the integration with one gauss point is 
carried out to integrate the terms of equation (3.27) except the one associated with the mass-
like term, and in step (iv) the term associated with the mass-like term is integrated using the 
Lobatto quadrature.  

3.4.2. Internal force vector computation using quadrilateral elements 

The developed expressions for nodal forces and the residual vector also can be evaluated 
using quadrilateral elements as the one shown in Figure 3.1-b. The difference respect to the 
triangular element is the use of a four Gauss point quadrature, so that the Lobatto rule is not 
necessary in the calculation of the mass-like term. 

 

 1 1,u

 2 2,u

 3 3,u

Gauss quadrature
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Lobatto quadrature
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 1 1,u
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 3 3,u

Gauss quadrature
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Internal force vector computation for triangular element.  

i. Compute the standard  eB  matrix (at the Gauss points  ) 

Compute test function  eN matrix (at the lobatto points  ) 

Compute test function  ,
e

r
N  matrix (at the Gauss points  ) 

ii. Set Gauss point coordinates i , and weights iw , and Jacobian determinants ij  

iii.  DO 1,gauss gaussi n   

      : ,m m
m m σ ε , compute matrix stresses vector  

  DO 1,fib fibi n  

      : ,I f I I
f f f σ ε , compute global fiber stresses 

 END DO  

      
1

nfib
I I

m m f f
I

k k


   σ σ σ
 

Calculate the element internal force vector 

       int int:
ee e T

i iw j F F B σ
 

        int int 1,
:

f
ee e I

i i ff r

A
w j 


f f N T σ  

  END DO  

iv. Integrate of the mass term at the Lobatto points 
lobI  

  DO 1,lob lobI n   

   ˆ: ,I I
f   p , compute fiber stress  

       loint int:
lob b f

ee e I
I Iw j  f f N  

  END DO  

  

Box 3.4. Procedure for the internal force vector computation (triangular element). 
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3.4.3. Computation of triangular and quadrilateral elemental matrices 

For the triangular element, the computation of the element matrices follows the procedure 
given in Box 3.5. The operations at Gauss point level involve the total evaluation of the  e

uuK , 
 e

uK  and  e
uK  terms. The  e

K  contribution is partially evaluated at Gauss point level in step 
(iv) and in step (v) the mass-like term is computed using the Lobatto quadrature rule.  

 

Elemental tangent stiffness matrix computation for triangular element.  

i. Compute the standard  eB  matrix (at the Gauss points  ) 

Compute test function  eN matrix (at the Lobatto points  ) 

Compute test function  ,
e

r
N matrix (at the Gauss points  ) 

ii. Set Gauss point coordinates i , and weights iw , and Jacobian determinants ij  

iii.  DO 1,gauss gaussi n   

  DO 1, fibI n   

    I
tgE , I

tgG   compute fiber and interface zone tangent constitutive operator, 

respectively. Equations (3.41) and (3.43) 

 END DO  

 Calculate element matrix  e

uuK ,   e

uK  ,  e
K  according to equations (3.35) 

to (3.38) 

  END DO  

iv. Calculate the integrant of the mass term the Lobatto points I  

v.  DO 1,lobatto lobattoI n   

  I
tgG , compute fiber stress 

Calculate element matrix   e

K
 

       
1

lob lob

nf
e e I

tg I I
I

G w j 


 K K N N  

 

  END DO  

Box 3.5. Procedure for elemental tangent stiffness matrix computation for triangular elements 
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The implementation of the quadrilateral element involves slight differences respect to 
the triangular element case. All the contributions to the tangent stiffness matrix are computed 
using the Gauss quadrature rule. 

3.4.4. Evolution of the mass-like term of the triangular element 

In order to compute adequately the internal force vector, the proposed scheme requires the 
integration of the mass-like by means of the Lobatto quadrature rule. The first term of equa-
tion (3.15) is given by, 

   
   

2
1 1 2 1 2

2
2 1 2

2
3

e e

e eifib ifib
tg tg

N N N N N

G dV G N N N dV

Sym N 

 
    
  

 N N , (3.44) 

a lumped, diagonal mass-like matrix can be obtained by the Lobatto integration rule, with the 
quadrature points coinciding with the nodes 

 
  1

lobatto

lob lob lob lob
e lob

n
e ifib e ifib

tg tg I I I I
I

G dV G N N w j


   N N I . (3.45) 

3.5. Time integration scheme 

The selection of the time integration methods depends, among other aspects, on: the type of 
partial differential equations and the smoothness of the data and the response of interest. 
However, for general coupled problems, two strategies are available: monolithic and frac-
tional step methods (also known as staggered techniques) (Patrick et al. 1993). The first 
approach consists of solving simultaneously all the fields involved in the problem. This pro-
cedure usually involves a very large system of equations. In the second approach, the system 
is partitioned in several smaller and simpler subsystems that take advantage of the physical 
nature of the problem. In some specific cases, this strategy leads to a much lower computa-
tional cost and modularity in the implementation that allows efficient combination of me-
thods. 

The discrete problem in time and space, equation (3.26), corresponds to the coupled 
model for the HPFRC composite. As shown there, in this system, there exist a clear depen-
dence between the unknown variables q  and Ip , which suggests an integration algorithm 
that solves simultaneously both fields. However, we will show that this system of equations 
can alternatively be integrated using a staggered solution procedure, which originates as 
many partitions as families of fibers are consider in the analysis plus one ( 1nf  ). This 
procedure will be explained in more detail in section 3.5.2.  
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3.5.1. Monolithic scheme 

A single discretization method is applied to the coupled system, using the space-time finite 
elements in equation (3.26) in the case of the monolithic scheme. The whole problem is 
treated as a monolithic entity, and all components advanced simultaneously in time. The 
Newton Raphson scheme for the solution of the residual equation (3.26) is shown in Box 3.6. 

 

Small strain, small displacement formulation for the triangular and quadrangular element, 
Newton-Raphson loop 

 : 0k  , set the initial guess and the residual  

i. Compute the consistent tangent matrices 

  , ' ' , 'm m m f f f f f f
tg tg tgE G           σ ε   

ii. Compute the elemental matrix contributions  e

uuK ,  e

uK ,  e

uK ,  e

K  and the assembly 

in the global matrix 
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
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iii. Solve the linearised equation for q  and q  

  
   

 

 
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iv. Apply Newton-Raphson correction to the nodal displacement vector 

     

   

1

1

k k

k k





  
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v. Compute the elemental internal forces and assemble in the global vector 

  
 

 

 
  int int

int int1
int

,
eleme

n
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f f f


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f
 

 

vi. Compute the residual vector      int extf f R  

vii. Check convergence. If  tolєR  then accept   k  as the solution and exit. Else, set 

: 1k k   and GOTO (i) 

Box 3.6. Monolithic scheme 
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The procedure in Box 3.6 is presented as the monolithic scheme because both equations 
in (3.26) are solved simultaneously for q  and Ip ,. The main part of the procedure is the 
calculation of the nodal internal forces and the tangent matrix, which follows the procedures 
explained in Box 3.4 and Box 3.5 for the triangular element and quadrangular element, re-
spectively. 

3.5.2. Staggered scheme 

In the staggered scheme, the coupled system of equations written as an incremental finite 
element problem (3.26) can be partitioned into 1nf   field model, where nf  is the num-
bers of fiber bundles considered, and it is computationally treated as isolated entities that are 
separately stepped in time. Interaction effects are viewed as forcing effects that are commu-
nicated between the individual components using prediction and substitution techniques 
(Felippa et al. 2001). Partitioning of the set of equations can be represented as in Figure 3.2, 
in which the 1nf   different fields q  and  1, ,I I nf p   are the solutions of the parti-
tioned system. 

Figure 3.2. Staggered scheme for solving the coupled equation system. 

The partitioned solution procedure is obtained by substituting the integration scheme by 
the following, 
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where the prediction of the slip,  
1

PI

n
p , is given by,  

    1

1
.

PI I I n

n n
n

t

t





  


p p p  (3.47) 

where, Ip is the increment of the solution of Ip  in the previous step. Here, the linear extra-
polation of the slip  I

n
p  of the fiber bundle I  is  

1

PI

n
p . This value is chosen as the predic-

tor and it keeps the stability of the algorithm.  
After substituting (3.46), the set of equations (3.30) becomes, 
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In the first set of equation (3.48), the only unknown is q , i.e. 

     1
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uu u u n nn n
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
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      q K R K p p q q q  (3.49) 

Then, the value of 1

k

np  is obtained by freezing the value of 1

k

nq and solving the second equa-
tion in (3.48), as follows: 

  1

1

k

u n n  


    p K R K q q  (3.50) 

The solution of the equation system (3.48) is therefore accomplished following the basic 
steps that are displayed in Box 3.7.  
 

Basic steps 

1. Prediction :   
    1
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PI I I n
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t
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(3.51) 

2. Advance:        1

1

Pk I I

uu u u n n




    q K R K p p  

(3.52) 

3. Substitute: 
1 1

k k

n n n   q q q  (3.53) 

4. Advance:       1

1

kI k

u n n  



    p K R K q q  (3.54) 

Box 3.7. Basic steps of the staggered solution 

The main achievement is that the set of equations in (3.48) can be solved now in tandem. 
A graphical representation of the proposed scheme, with time along the horizontal axis, is 
shown in Figure 3.3. 
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Figure 3.3. Staggered solution. Time stepping diagram. 

In the staggered approach, the equations are solved first for q  and based on this, equa-
tions are computed for the slip Ip  at each fiber bundle. The overall algorithm for the inte-
gration of the staggered scheme is listed in Box 3.8. This algorithm is divided in 1nf   parti-
tions; the first partition is computed once, while the partition solving the second equation in 
(3.54) is repeated as many times as fiber bundles are considered in the analysis.  

This scheme has two main advantages with respect to the monolithic one: i) the stag-
gered scheme is based on a simpler implementation when the number of fiber bundles 
change; also, ii) the staggered scheme provides a reduction in the size of matrices involved in 
the solution of each subsystem. Therefore, a significant saving in computational cost can be 
expected, being more important when the number of fiber bundles increases.  

 
Figure 3.4. Linear triangular and linear quadrangular elements. 

The staggered scheme implies that the value of  Ip  is frozen in the first partition and the 
value of q  is frozen in the partition 2  to partitionn . The application of the strategy summa-
rized in Box 3.8 showed that staggering does not harm stability if the predictor is used as the 
extrapolation of the I

np , otherwise, it was observed instability in the results. This effect can 
be seen in Figure 3.4, which represents the response of the beam in example 5 when the 
effect of the interface zone vanishes. It seems that the use of  

I
np  as a predictor generates a 

spurious strength. However, the use of the predicted value of Ip as the linear extrapolation of 
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I
np  (equation (3.47)), instead of I

np  reduces the amplification of the error and improves the 
performance or the staggered approach. 

Steps of staggered scheme procedure. 

 LOOP over time steps: 1n   

i. 
Prediction:   set   1

1 1, ,
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n n

t
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t
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ii.      Advance : .  
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
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k
n

q , Compute the nodal displacement vector 1nq  

       Apply Newton Raphson for solving the linearised equation for q   
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iii.      Substitution:  

      Set  1 1

k k

n n n   q q q  

iv.      Advance:   

     Given 1
1

k
n

q ,   1
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kI
n



p , Compute the nodal displacement vector 1
I
np  

          DO 1, , fI n   

            Apply Newton Raphson for solving the linearised equation for Ip  
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1

I I I
n n   p p p   

          END DO 

      END WHILE 

 END LOOP over time steps 

Box 3.8. Staggered scheme procedure. 
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When using the staggered scheme, accuracy is usually degraded with respect to that at-
tainable by the monolithic scheme. In order to recover the accuracy of the monolithic 
scheme, one global iteration at the same step to find new values of 1

I
np  and 1nq  can also be 

performed, once the fields are substituted in the initial residual equation (3.26). 

3.5.3. IMPL-EX scheme 

Implicit integration schemes using the Newton-Raphson procedure often show lack of ro-
bustness when material failure problems are addressed. In (Oliver et al. 2008) the IMPLEX 
algorithm was presented based on two general families of constitutive models, namely, con-
tinuum damage and elasto-plasticity. A typical material non-linear solid mechanics problem 
can be written in the form presented in Box 3.9 after the selection of the discretization 
scheme and the time marching algorithm.  

 

Find: 
1 1 1; ;n n n  σu  (3.55) 

Such that:   

 Equilibrium equations      int 1 1 1 1 1 1 1, , , ,n n n ext n n n nf t f t t        σ R σ 0u u  (3.56) 

 Internal variable evolu-
tion equations 

 1 1 1 1, , , 0n n n ng t     σ  (3.57) 

 Constitutive equation 
    1
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

   



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
σ σ
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Box 3.9. Typical material non-linear solid mechanics model. 

where 1nu  are the nodal displacement at the end of the step 1n  , 1n   stands for strain 
like variables and 1nσ  for the stresses at the sampling point. Here is considered a typical 
step over the time interval  1,n nt t  . According to the proposed methodology considered in 
the IMPL-EX algorithm, the integration can be written as a fractional step method for the 
integration of a global time evolution problem. The first step constitutes the explicit stage of 
the IMPL-EX scheme and the non linear system of equations has to be iteratively solved to 
find the value of 1nu . However, it was shown by Oliver et al (Oliver et al. 2008) that for the 
damage model and for the linear plastic flow cases, it becomes a linear system of equations. 
The second step corresponds to the IMPL-EX implicit stage. Then, the value 1nu  remains 
frozen and the implicit integration of the constitutive model is done. In Box 3.10 is summa-
rized the IMPL-EX integration scheme for the global time evolution problem.  

In the explicit step, equation (3.60) constitutes an explicit extrapolation of the internal 
variable ,  , at the time step 1nt  , in terms of the implicit variables obtained in the previous 
time steps n  and 1n  .   is the increment of the internal variable determined implicitly in 
the previous steps n  and 1n  ; 1n n      . Then, the stresses are computed, in equation 
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(3.49), using backward-Euler integration scheme and finally the balance equation (3.59) is 
solved to find 1nu . 

 

IMPLEX scheme  

Explicit stage: 1nu  

    int 1 1 1 1, ,n n n ext nf t f t    σ 0u  (3.59) 
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Implicit stage: 1 1,n n  σ  

 
1 0n u  (3.62) 

  1 1 1, , 0n n ng t    σ
 

(3.63) 

     1 1
1 1 1 1

1

, ,n n n
n n n n

nt
 

   



  


σ d σ

σ ε σ u  
(3.64) 

Box 3.10.  Implex scheme 

Since the constitutive equation of the composite material and the compounds are path-
dependent, i.e., they depend on the history of the strains to which the solid has been sub-
jected, the stresses are the solution of a constitutive initial value problem. Therefore, an ap-
propriate numerical algorithm is an essential requirement for the integration of the rate con-
stitutive equation. In general, algorithms for the integration of the rate constitutive equations 
are obtained by adopting some kind of time discretization. Here, it is considered the time 
increment  1,n nt t   and Backward Euler scheme. In this time interval, given the sets 

   , ,n f nn
    of internal variables at nt  and strains    1 1

, ,m fn n


 
ε ε  at time 1nt   

must be determined the stresses     1 1
,m fn n 

σ σ  and  1n   uniquely through the integra-
tion algorithm. The incremental constitutive functions ˆ ˆˆ , ,m f σ σ   are 

      1 1
ˆ , ,m m m mn n n


 
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      
1 1
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 
σ σ ε  

  1 1
ˆ , .n f nn

        

(3.65) 

The solution procedure of the nonlinear incremental equation (3.65) requires two fundamen-
tal operations: 
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1. The state update procedure, which gives the stresses    1 1
,m fn n 

σ σ  and 1n   , 
and the internal variables. The stresses delivered by the incremental constitutive 
function are used to assemble the elemental incremental force vector. 

2. The computation of the associated constitutive tangent modulus to be used to eva-
luate the tangent stiffness matrix. 

Denoting the IMPL-EX variables at time 1n 
 
with the symbol    and the implicit 

ones without a specific symbol, then the IMPL-EX, strain-like internal variable can be de-
termined as follows: 

  1
1 1 1 1; n

n n n n n n

n

t

t
      

   


     


    (3.66) 

And the stress-like variables are:  

 1 1n n n nq q H        (3.67) 

After replacing these IMPL-EX internal variables in the constitutive equation, Boxes 
(2.1), (2.3) and (2.4) The incremental (rate) stress term, 1n  

 
is determined from these 

equations, and the IMPL-EX stress at time 1n   is given by: 

1 1n n n        (3.68) 

It can be shown (see (Oliver et al. 2006a)) that, even during the material softening re-
gime, the consistent tangent matrices, arising from this integration algorithm, are constant 
and positive definite. Thus, it is introduced the IMPL-EX stress 1n   into the equilibrium 
equations of Box 3.2 in order to find the displacement solution of the corresponding discrete 
problem.  

The tangent operator is required for the evaluation of the new stiffness tangent matrix. 
They are calculated using expressions (3.40) to (3.45) in the implicit case. However, in the 
context of nonlinear solid problems, the tangent operators are positive definite at initial stag-
es of the analysis and loose this character at those points where material failure occurs 
(Oliver et al. 2008). In consequence, eventually, the global tangent stiffness matrix may be 
close to singular, (the condition number of the global stiffness matrix is close to zero), and 
the convergence could fail. Results of using of the IMPL-EX algorithm showed that it pro-
vides tangent matrices which are in all cases symmetric and semi-positive definite. There-
fore, the condition number of the resulting algorithmic stiffness matrix remains positive all 
along the analysis. This feature of the IMPL-EX integration scheme remedies dramatically 
the problems associated with loose of positive definiteness and provides robustness of the 
numerical simulations. The computation of the tangent stiffness matrix in the IMPLEX 
scheme requires the evaluation of the IMPL-EX algorithmic tangent operator corresponding 
to  

lg 1
1

1

a n
n

n


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
σ

C
ε

 . (3.69) 

which is symmetric in all cases and semi-positive definite. Additionally, it is constant for the 
damage model and the elasto-plastic model for the linear plastic flow. Further detailed dis-
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cussion about this topic is addressed in the work presented by Oliver and coworkers (Oliver 
et al. 2008). 





 

 
 

Chapter 4                                  
Modeling material failure of HPFRC 

composites 

4.1. Introduction 

In HPFRC composites, three typical deformation stages are associated with the uniaxial 
tensile response, namely, elastic deformation, multiple cracking and damage localization. 
Physically, the damage progression sequence begins with initial flaws or microcracks that are 
always presented in the cementitious composite, as illustrated Figure 4.1. 

When load is first applied to the HPFRC composite, areas of stress concentration devel-
op at the tips of the initial cracks. With additional loading, microcracks form, grow and coa-
lesce into macrocracks (Kim et al. 2002). However, the energy needed to open a critical 
crack exceeds the energy that is necessary to form new microcracks, provoking multiple 
cracking before crack localization, as a direct effect of the presence of the fibers. The fibers 
retard the strain localization by means of the “bridging effect”. In fact, a bridged crack can 
absorb more or less energy depending on their bond characteristics. The energy absorption, 
during multicracking, also depends on the fiber deformation during pullout, which contri-
butes directly to the total deformation of the composite (Suwannakarn 2009). This explains 
the ductility properties of the HPFRC composite. The failure process is completed, when the 
microcracking reaches a saturated level, and their coalescence triggers the formation of a 
macrocrack, then it propagates rapidly causing failure. 
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     (a)                                                 (b) 

Figure 4.1. (a) Crack configuration prior to coalescence and, (b) after coalescence, adapted from 

(Lange-Kornbak & Karihaloo 1997) 

Different criteria have been formulated and used to predict the initiation of macroscopic 
material failure under various loading conditions, which are usually characterized by using 
local concepts. The physical foundation for these failure criteria might be different, and the 
individual validity may be restricted to specific types of material and structural problems (Li 
2001). For steel fiber reinforced concrete composite materials, the difficulties imposed by the 
macro- and micromechanical heterogeneities and the complexity of the failure mechanism, 
limit the use of the failure criteria available. Some of these models appear in (Beghini et al. 
2007) and (Hu et al. 2003). In the present chapter, the fracture model adopted for the predic-
tion of the mechanical failure of the HPFRC composite is described, as well as the imple-
mentation issues.  

4.1.1. Continuum approach to material failure  

In computational failure mechanics, the global material failure under quasi-static loads 
for ductile and quasi-brittle material is characterized, from the macroscopical point of view, 
by the onset and propagation of failure lines (in 2D) or failure surfaces (in 3D) (Oliver & 
Huespe 2004b). Continuum approaches based on the classical continuum (strain localization, 
smeared cracking, or the enriched continuum) aim at modeling the concentration of the strain 
in narrow bands, via the introduction of constitutive strain softening, whose propagation 
makes eventually the structure to fail (Oliver & Huespe 2004a). The use of standard finite 
elements and classical continuum stress-strain constitutive models equipped with strain sof-
tening, suffers from classical spurious mesh size and mesh-bias dependence. Mesh size effect 
is overcome by using an appropriate regularization of the softening modulus value based on 
fracture energy concepts. However, in the classical approach the spurious mesh-bias depen-
dence is not easily removed and it is required some additional sophistication. Due to the poor 
kinematical representation of the standard finite elements, (Simo et al. 1993) and (Simo & 
Oliver 1994) proposed a methodology based on the concept of strong discontinuity. In the 
strong discontinuity approach (SDA), the real discontinuity in the displacement field is 
aimed at being modeled and captured via an appropriate mechanical theory and different 

σ

Microcrack

Stress 
concentration 

zones
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families of standard finite elements enriched by discontinuous deformation modes (Dias 
2012). The proposed methodology in this work includes: 

1. The softening modulus regularization: On the pure mechanical grounds, the 
post peak softening of the material cannot depend on the assumed discretiza-
tion, in other words, it would completely depend on the number of elements or 
the element size. This theoretical difficulty was detected and described by 
Bažant as a not objective property (Bažant & Planas 1998). Therefore, soften-
ing modulus regularization is required to achieve mesh size objectivity. 

2. The prediction of the instant at which the localization process onsets. It re-
quires the bifurcation analysis. 

3. The injection of constant strain localization modes via mixed finite element 
formulations to the injection domain, which will be defined in the following 
sections. 

The material failure model is based on the approach presented by (Dias 2012), in which 
the strain localization methods are combined with the injection of constant strain modes and 
elemental strong discontinuity modes. However, in the fracture model adopted for the 
HPFRC composite, only elemental enrichment with constant strain modes is performed to 
remove the spurious mesh orientation. This is considered sufficient to provide enough infor-
mation on the involved phenomena for the purposes of assessment of the proposed micro-
morphic approach. 

4.1.2. Strain localization  

Strain localization is a feature that naturally occurs to materials displaying softening. The 
phenomenon manifests in the form of localization bands that are narrow zones of intense 
straining. Let us consider a bar, which material displays strain softening, under axial stret-
ching, as is sketched in Figure 4.2.  

Figure 4.2. Bar with a strain softening material under axial stretching.  

The bar of length L  and cross section A  has elastic behavior, which is defined by the 
elastic modulus ,E  up to the tensile strength y . For simplicity, let us consider that the bar 
has a discrete number of segments which can be subjected to softening, while the remaining 
part of the bar stays elastic. The load versus horizontal displacement   solutions consider-
ing 1, 2, 3, and 4 segments of the bar in softening are plotted in Figure 4.3. Depending on the 
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number of these segments, it can be obtained infinite solutions in the post peak branch. All 
these solutions satisfy the equilibrium, compatibility, and constitutive equations at any point 
of the domain, as also, in all boundary conditions. 

 

Figure 4.3. Stretching of a 1-D bar with different negative slopes. 

We can assume, without loss of generality, that there is a narrow central band in the bar, 
,a  with width, al , coinciding with one segment of the above mentioned discrete ones, 

which has a lower value of the tensile strength than the surrounding material b   a b

y y  . 
Therefore, the specimen exhibits a uniform strain distribution up to a

y  and after yielding, 
softening onsets in the band. Under the increase of prescribed displacement, the stress is the 
same for two different points inside and outside the band ( a  and b , respectively), due to 
equilibrium of stress, but the points undergo different strain levels ( a b  ). The material in 
the region a  is under loading conditions, while the surrounding material (in b ) is in un-
loading condition. The zone, where strain concentration arises is known as strain localization 
band ch . 

The width of the localization band is a central issue in localization phenomena. When 
choosing a particular spatial discretization, one of these solutions is obtained. This strong 
dependence of the structural solution with the size of the localized band can be alleviated by 
reinterpreting the role of the continuum softening modulus, ,H  in the formulation of the 
constitutive model (Hernández 2008), as will be discussed in the following subsection.  

4.1.3. Definition of an intrinsic softening modulus 

As commented above, constitutive equations considering strain softening induce strain loca-
lization and non-objectivity with respect to the size of the finite element mesh. To overcome 
the problem and achieve objectivity, the constitutive law can be modified according with an 
energetic procedure. Let us consider the dissipated energy, ,W which is divided by the cross 
section area of the bar, A . This term is denoted fracture energy fG  and can be considered, 
with good approximation, a constant material parameter. Then, from the bar test and taking a 
softening segment of length al , it could be found that: 
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where H  represents the softening modulus of the material. This equation suggests that, by 
adopting the material parameter fG , the softening parameter could be redefined as a function 
of energy and the localization bandwith al , as follows, 

2
1

2
y

a a

f

H l H H l
G

 
    
   

(4.2) 

This so called “softening modulus regularization” allows overcoming the bandwidth depen-
dence of the results commented above  (Oliver 1989). 

4.2. Concrete fracture model 

A realistic representation of the crack process would require some additional sophistication 
in terms of the model capturing the discontinuity. In a recent work of (Dias et al. 2011a), it 
was proposed the use of a localized strain injection via mixed formulations, in order to re-
move the flaws of the classical numerical methods to capture strain localization. The classic-
al strain localization concept is brought to the approach, so that, no strong discontinuity 
enrichment is made and standard constitutive models are used in a classical strain localiza-
tion settings. Then, in order to remove the spurious mesh orientation dependence, constants 
strain localization modes are injected, via mixed finite elements formulations (Dias et al. 
2011b).  

4.2.1. Bifurcation analysis of the material composite 

From the mechanical point of view, strain localization is connected with bifurcation and 
stability analysis. In fact, material instabilities are classically associated with the loss of 
ellipticity of the governing set of partial differential equations.  

Let us consider the body in Figure 4.4, where the discontinuity of the displacement field 
occurs at the discontinuity line S . Restricting the analysis to small deformation settings, the 
development of a localized band entails the following kinematical condition  

 /

s

S S   ε ε m n   (4.3) 

where Sε  and /Sε  are the symmetric strain rates inside and outside the band, respectively, 
n  is the unit normal vector to the localized band and m is the vector defining the direction 
of the displacement jump. By equilibrium condition, the traction vector continuity across S  
must be imposed, yielding: 

 /S S

 
     t t 0 n σ σ 0   

 
(4.4) 
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Figure 4.4.Discontinuity line S and injection zone inj . (Oliver et al. 2010a) 

The constitutive response at localization is not necessarily continuous. This is the case of 
the discontinuous bifurcation (Rice & Rudnicki 1980). Using the constitutive equation de-
fined in the expression (2.72), the following expression is obtained, 

   ,tg

Bt   n n m 0  (4.5) 

which can be written in term of the localization tensor 
tg

loc   n n  , as follows,  

 , 0.loc Bt  n m  (4.6) 

Thus, equation (4.6) imposes the singularity of loc , or equivalently, the null value of 
one of its eigenvalues that is a necessary and sufficient condition for the material bifurcation 
at point x  at time Bt  (Oliver et al. 2010b). Therefore, a necessary condition for appearance 
of localization, for n , is that  

  det , 0.loc Bt n  (4.7) 

This is known as Rice’s criterion and it characterizes the onset of the bifurcation. Refreshing 
this equation in terms of the constitutive tensor ,tg  in equation (2.72), yields, 

    2

1
.

nfibm i i i i i tg

loc m loc f fi
k k E


    n r r r   (4.8) 

where, m

loc  is the localization tensor of the matrix, which was presented in (Linero 2006) for 
the tensile/compressive damage model. The analytical solution of the bifurcation problem, 
for specific non-linear material models, has been an issue of great concern. However, the 
numerical resolution of the discontinuous material bifurcation problem can be solved in an 
effective and accurate way, using a numerical algorithm, based on the iterative resolution of 
a coupled eigenvalue problem in terms of the localization tensor. This algorithm was pre-
sented by Oliver et al (Oliver et al. 2010b).  
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4.2.2. Injection domain 

The structural strength of HPFRC composites is highly dependent on the crack evolution 
across the meso and macro-structure. The non-linear response displayed by this material 
takes place during the cement cracking stage and the complete response depends dramatical-
ly on the strong interaction between concrete cracks and the fiber-matrix bond slip mechan-
ism, which model was presented in the previous chapter. Thus, besides considering the bond-
slip mechanisms, it is necessary to account for the concrete crack phenomena to establish a 
satisfactory constitutive model of the composite material. 

There have been numerous approaches in the literature for modeling concrete fracture 
problems. Some contributions in this field, following the strong discontinuity approach, are 
presented in Oliver et al. (Oliver et al. 2002), (Oliver & Huespe 2004b) and Sánchez et al. 
(P.J. Sánchez & Sonzogni). A book, with an up to date description of different techniques 
and models addressed to this problems, has been recently published by Hofstetter and 
Meschke (Hofstetter & Meschke 2011). 

In order to remove the flaws of the classical strain localization methods (stress-locking 
and mesh bias dependence) an injection of constant strain localization modes into the finite 
element mesh discretizing the body was proposed (Oliver et al. 2010a). Likewise, the spu-
rious mesh orientation dependence is partially alleviated. This additional strain mode is in-
jected via a mixed finite element formulation.  

4.2.3. Strain injection techniques for computational modeling of material failure 

Let us consider standard irreducible quadrilateral finite elements that will be termed as the 
underlying elements. In order to remove the well-known flaws of this classical element for 
capturing and simulating evolution of cracks, constant strain localization modes are injected 
to the path of elements that are going to capture the cracks. The technique is mathematically 
consistent and is based on an (assumed strain) mixed variational formulation. This procedure 
is adopted because it has been shown that mixed formulations, in general, have better abili-
ties to capture and propagate localizations modes if compared to irreducible formulations. 
Even though, stress locking effects may still remain in mixed formulations. The next items 
describe in details the implementation of both procedures. 

4.2.4. Assumed strain mixed formulation: the injection domain 

The material bifurcation analysis is based on the acoustic tensor singularity presented in 
equation (4.7), where  tg

Bt  is the constitutive tangent tensor of the overall response given 
by equation (2.72). Equation (4.7) provides the bifurcation time Bt , as well as, the normal 
vector n  to the possible crack surface. 

After the criterion (4.7) has been satisfied in a given finite element, we equip the element 
with an assumed strain model that is formulated in the context of a mixed two-field  u   
variational approach. In this case, the interpolated displacement field remains the same as 
that of the irreducible quadrilateral finite element model presented at the beginning of the 
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finite element formulation, see equations (3.4) to (3.7). While, the strain field, m , is interpo-
lated with functions taken from V , where V  is the space of element-wise constant func-
tions. Then, strains m  are associated with displacements through the following variational 
equation: 

  : 0 ;s

m u d V  


       (4.9) 

From where, the strain matrix (3.18)-a in the element e  can be written as: 

  1
; 0

e

e e e e e e

m e
B q B B d


   

   (4.10) 

and equation (3.19) is consequently evaluated by using the modified strain-displacement 
matrix eB  instead of eB . 

The variational equilibrium expression of the momentum of balance in Box 3.1, is re-
written as follows: 

  *

0
ˆ : 0 ; ;e dV b u dV t u dS u V u V


      


          B B

 (4.11) 

and after replacing the interpolation of displacement and strain fields and changing the ma-
trix eB  by: eB , this equation can be identically written to the expression in Box 3.2. 

The domain where the constant strain mode is injected, is defined as the geometrical lo-
cus of the points satisfying: 

      : | ; , 0inj B mt x t t x r x t      (4.12) 

where the last condition   , 0mr x t   means that the matrix component of the composite 
should be evolving in a loading condition. 

4.3. Strain injection methodology  

This methodology presented by Dias et al. (Dias et al. 2011a) injects a constant strain mode 
by mean of a mixed finite element formulation. This injected mode is applied to the finite 
elements that are going to capture the crack. According to (Oliver et al. 2010a) the injection 
procedure requires the following steps, (i) Determination of the injection domain, and (ii) 
Injection of the specific deformation mode.  

4.3.1. Step 1. Determination of the injection domain. 

The discontinuous bifurcation analysis is used to identify the onset and the propagation di-
rection of the weak discontinuity. The time of the crack onset is associated with the bifurca-
tion time bift  at a given point of the material. Consequently, the bifurcation analysis should 
be performed at every time step, and for that, the localization tensor has to be computed in 
terms of the tangent constitutive operator  ,tg

Btx , which stems from the chosen constitu-
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tive method. This analysis is carried out as the first step of the procedure summarized in Box 
4.2. The problem consists of finding the bifurcation time bift  corresponding to the instant 
that it is produced a non trivial solution for the normal to the weak discontinuity n .  

During this step is also defined the injection zone, this was defined in section 4.2.4 and 
corresponds to those in-loading bifurcated points. Into this region of the continuum, the spe-
cific strain mode will be applied in the second step. 

4.3.2. Elemental constant strain mode 

For the numerical implementation of the injection procedure, it was selected the four node 
quadrilateral element with four Gauss points (Figure 3.1-b) and with a central additional 
point. The bifurcation time is characterized in terms of the calculations in the central point. 
In the second step, as soon as a given finite element fulfills the condition described in Step 1, 
i.e. falls over the region of bifurcated elements, a constant strain mode is injected via a mixed 
u-ε  formulation as illustrated in Figure 4.5, where mixed  is the injection domain. The use 
of the mixed formulation is motivated by the better performance of the mixed formulation 
compared to the irreducible standard one. In fact, as discussed in (Dias et al. 2011a) there 
exists a better kinematic flexibility deriving from the weakly enforcement of the compatibili-
ty equation and it exhibits remarkable properties for the correct propagation of the strain 
localization in initial stages. 

 

Figure 4.5.Discontinuity line S and injection zone inj . Adapted from (Dias 2012). 

The injection of the constant strain mode is restricted to the injection domain inj ; there-
fore, the variational boundary value problem in Box 3.1 is rewritten as follows, 

   
\

ˆ ˆ: : 0
e

injinj

e
s s s s
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e

dV dV  

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         
  u σ u u σ u F u  (4.13) 
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where inj  indicates the injection domain and inj \  indicates the remained domain. The 
values of the injections correspond to the solution of the weak form of the deformation com-
patibility. This reads as follows, 

   : 0
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e s e
injdV e
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e e e
injdV e 
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    φ

 

(4.15) 

where eμ , eη  and  eφ  stand for the element-wise constant weighting function, eε ,  e
fε  and 

e  are the element-wise constant injected strain. The substitution of these element-wise 
constant strain fields yields equations (4.24) and (4.25). The reader could observe that, the 
strain field 

e
s u , 

e
f  and  e  are injected in the elements that belong to the injection zone 

inj . For simplicity in the notation, we will express ˆ
e

e s   
 

σ σ u ,    ef f f     and 
   ef f   

 
as the stress fields associated with the injected constant strain fields.  

4.3.3. Step 2. Injection of elemental constant strain mode 

In the work of (Dias et al. 2011a), the equilibrium equations were presented in rate form, 
which is used in the implementation of the continuum with microstructure based model de-
veloped as well. This is convenient to avoid sudden changes in the total stiffness. The incre-
mental strategy is based in evaluation of the increment of the total stress as follows: 
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(4.16) 

For the axial fiber stress, it is obtained by  
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and the increment of the interfacial stress is 
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Box 4.1 summarizes the incremental strategy, in which the incremental values of the 
stresses (4.16) to (4.18) are substituted. The procedure in Box 4.1 is applicable to the mono-
lithic integration scheme described in subsection 3.5.1 and the procedure of Box 4.2 is appli-
cable for the staggered integration one. 
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Injection of the constant strain and slip in the fiber and the interface 
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 Injection of  the constant slip in the interface e e   
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Injection of  the constant strain in the fiber    eef f   
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Box 4.1. Injection methodology in incremental form for the monolithic integration scheme. 
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Step 2 Partition 1partitioni  , injection of the elemental constant mode  
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 Partition 2partition partitioni n   , injection of the elemental constant mode 
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Box 4.2. Injection procedure in incremental form for staggered scheme. 



 

 
 

Chapter 5                                  
Representative numerical simulations 

5.1. Introduction 

The fundamental equations, the numerical components of the algorithm and the addi-
tional techniques required for the numerical simulation of the mechanical behavior of the 
HPFRC composites have been presented in the preceding chapters. Following the framework 
of the continua with microstructure, a model has been introduced to represent the mechanical 
behavior of the HPFRC composite, which incorporates two substructural actions: the fiber 
axial stress and the fiber-matrix interface debonding. So far, the set of governing equations in 
strong form, the corresponding weak form and the variational ones were deduced. They were 
appropriately implemented in an in-house finite element code in order to reproduce experi-
mental tests. In order to ascertain the suitability of the proposed formulation on describing 
the structural composite response, a selected set of experimental results is taken from litera-
ture. Elastic, hardening and localization stages are examined. The main concern in this chap-
ter is to examine the model predictive ability. The aim is to find suitable experimental results 
and compare them with the results obtained from simulations, with a view towards validating 
the present model.  

Tests used to monitor and characterize the entire mechanical behavior of HPFRC com-
posites are: 1) the direct uniaxial test, 2) the wedge-splitting test and 3) the bending test. 
Post-cracking behavior properties (e.g. flexural toughness, energy absorption capacity, and 
fracture mechanisms) can be estimated by using the results of these tests. Nevertheless, in the 
practice, to measure the toughness, the flexural test is commonly used, because it reproduces 
more realistically the conditions occurring in many real situations and, additionally, it is 
simpler to conduct than the tensile test.  
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Several factors contribute to improve ductility and toughness of concrete. As mentioned 
throughout this monography, a variety of fracture process mechanisms associated with the 
presence of fibers operates to produce changes in the composite properties. In brittle ma-
trix/ductile-fiber-reinforced composite systems, such as cement matrix/steel-short-fiber, the 
interface could control the cracking propagation and the subsequent failure. The continuum 
with microstructure-based approach for the HPFRC composites, proposed in this research, 
aim at reproducing two relevant and influential mechanisms, namely, the fiber pullout phe-
nomenon and the subsequently fiber plastification. In order to show these model features, 
some tests are particularly addressed in the following sections.  

Physical observations show that failure patterns of HPFRC composite depend upon the 
distribution of the fiber, the fiber contents and the type of fiber within the specimen. By 
numerical simulation, we want to verify the validity of this assertion by using the proposed 
model. For this, comparison between the simulated and experimental crack patterns will be 
carried out, expecting that the model might replicate the microcracking pattern, prior to strain 
localization, as well as the strain localization representing the macrocracks. 

5.2. Test 1: Notched strip under uniaxial loading. 

Numerical evaluation of a small specimen, such as shown in Figure 5.1, is taken into ac-
count to examine several features of the model. We consider the specimen subjected to a 
simple unidirectional uniaxial load. In this simple case, the imposition of a uniform stress 
state is a key element in the determination of the stiffness and strength characteristics of the 
concrete composite. The presence of the microfibers introduces coupled effects between 
actions in the mesoscale and the macroscale, which we aim at analyzing in this section. 

 

Figure 5.1. Set-up of notched strip under uniaxial loading test.  

The notched strip is clamped at its left end and pulled at the right end. The notches are 
situated in the middle of the specimen to ensure damage localization in this area. The region 
of concern is the area close to the notches, where the pullout process is expected. This exam-
ple addresses three main issues: 1) the pullout behavior of the specimen with aligned fibers 
respect to the loading condition, 2) the pullout behavior of the specimen with inclined fibers 
and 3) the effect that the finite element formulation has on the mechanical response, confin-
ing our attention principally to effects on capturing the strain localization phenomena.  

2
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4m
m

76.2mm
, P

, P
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5.2.1. Pullout behavior of a specimen with aligned steel fibers 

In order to investigate the sensitivity of the proposed model to the bond shear strength 
properties, the simplest case of aligned fibers respect to the loading direction is considered. 
Numerical simulations with identical mechanical and geometrical characteristics are carried 
out, but varying the bonding properties of the fiber-matrix interface. The set of parameters is 
summarized in Box  5.1. Note that six different ultimate bond shear stress values are adopted 
and only one bundle fiber, longitudinal oriented, is considered. This fiber bundle is horizon-
tally oriented. 

 
Matrix Fiber Interface zone 
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Box  5.1. Mechanical properties of the compounds in the notched strip un-
der uniaxial loading test. 

From experiments, we recall that the HPFRC composite response in tension shows three 
stages: linear elastic (which ends once the first point of the structure begins the cracking 
process), multicracking or hardening stage (which ends at structural peak load), and a final 
localization stage. Also in order to discuss the results, it is important to recall that the main 
difference in the tensile load-displacement response between the HPFRC composite and 
conventional FRC is the multicracking stage, which may not exist in the conventional FRC.  

Figure 5.2 compares the load versus displacement response of the composite material for 
the selected set of values of the ultimate bond shear stress u . These numerical results show 
that the load-displacement curve can generally be subdivided in two different behaviors: 
ascending and descending branches. The ascending behavior consists, as we will explain 
later, of perfectly bonded state between fibers and matrix and partially debonded state. Then, 
the hardening behavior is related to the fiber-matrix debonding process. 

The numerical results show, as expected, brittle behavior of the plain material. The re-
sponse for the smallest value of the ultimate bond shear stress ( 1 3f

u e Mpa   ) considered 
in this example, closely resembles the curve reached by the plain concrete case. After cross-
ing the peak load, the material softens almost in a brittle mode. The absence of hardening 
stage can be caused by rapid loss of bonding strength.  
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Figure 5.2. Notched strip under uniaxial loading test: Comparison between different load P 

versus displacement curves at different ultimate bond shear stresses.  

The load displacement curves for other values of f

u , display a hardening response, as 
also, higher values of the peak load as the f

u  value increases. The increase of the bond 
strength, f

u , leads to a direct increase of the postcracking strength, toughness and energy 
absorption capacity. The higher the value of f

u , the larger the hardening stage. However, if 
the value of the ultimate bond shear strength exceeds  5f

u MPa  , the response of the ma-
terial does not vary significantly. As the value of the bond strength beyond 5MPa  the me-
chanical behavior is not altered and we could assert, for this particular case, that this value 
represents a limit.  

The final damage distributions observed in the matrix, for different cases of f

u , are de-
picted by means of iso-color maps in Figure 5.3. For plain concrete limit, the damage distri-
bution in Figure 5.3 (a) shows damage concentration around the notch. As f

u  increases, 
according with Figure 5.3 (b-f), the zone affected by damage grows, suggesting that more 
fibers develop pullout forces and, in consequence, the material toughness increases. 

For the identical time steps, sequential portraits of fiber yielding, matrix damage and de-
bonding of the matrix-fiber interface distributions can be superimposed to visualize the fail-
ure characteristics of each compound. The analysis of the microstructural level reveals vari-
ous failure mechanisms whose synergistic interaction accounts for the larger strength and 
higher toughness properties. The analysis is undertaken with three values of  

 1 3, 0.6, 50 .f

u e MPa   We classify these three cases, depending on the debonding failure 
mechanisms, as fully debonded, partially debonded and fully bonded  
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(a)Without fibers (b) 1 3f

u e    (c) 0.1f

u   (d) 0.6f

u   

 

(d) 1f

u   (e) 5f

u   (f) 50f

u    

Figure 5.3. Set-up of notched strip under uniaxial loading test. Iso-color maps indicating the damage 

distribution of cement matrix with different matrix-fiber bond strength parameters.  

. 

5.2.1.1. Fully debonded case 

Weak interfaces between fiber and matrix are generally associated to a low fracture 
toughness of the composite. In the composite, a weak interface produces poor stress transfer 
abilities between matrix and fibers and, therefore, fibers are not fully utilized. According to 
the results in Figure 5.2, low ductility can be associated with 1.0 3f

u e MPa   . This value 
can be considered as a weak interface. Under tensile loads, the model shows a sudden de-
bonding in the whole domain, as it is observed in the debonding distribution of Figure 5.4 
and consequently, deactivation of the composite effect. In this case, we verify that for 
enough small values of the ultimate bond strength, the model is able to represent weak fiber-
matrix interfaces. In fact, this is a consequence of the Capriz balance equation, which go-
verns the microstructural behavior. When using 0.0f

u  , the fiber bond strain also ap-
proaches to zero and, therefore, the fiber is pulled out immediately after the load is applied. 
This also implies that the slip can take any value, when the bond strength is exhausted. Cer-
tainly, the value of the slip is of the same order of the x-displacement, as shown in Figure 
5.5(b), where the slip and x-displacement are plotted along the length of the strip in different 
stages of the loading curve as indicated in Figure 5.5(a). The concentration of the damage in 
the notched section is due to the inability of the fiber-matrix interface to transfer the stresses. 
Figure 5.4 illustrates the plasticity, damage and debonding in the specimen. For the plasticity 
and debonding, the darker blue color represents that the element is in elastic regime and the 
darker red color indicates that the element is in inelastic loading one. In accordance with the 
damage and debonding results (Figure 5.4), small axial strain in the fibers is developed due 
to the sudden debonding and consequently yielding is not achieved, as confirmed in the plas-
ticity distribution.   
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Figure 5.4. Results for 1.0 3f

u e MPa   . Portraits of plasticity in the fiber, 

debonding in the IZ and damage in the matrix in the end of the load-

displacement curve. For plasticity and debonding, darker blue indicates ele-

ments in elastic regime and darker red, elements in inelastic regime. 

 

 

(a) 

 
(b) 

Figure 5.5. (a) Load-displacement curve for 1.0 3f

u e MPa   . (b) Evolution of the slip and the 

x-displacement in the middle section of the strip for the stages in (a) marked with the numbers 

from 1 to 4 in the load vs. displacement curve. 
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5.2.1.2. Partially debonded case 

Steel fibers possess some kind of bonding properties resulting from chemical reactions dur-
ing cement hydration or from mechanical anchorage. If this chemical or mechanical adhesion 
is not very strong, the scenario presented during the fracture process encompasses a lot of 
possible situations, in which the combination of the micro-mechanisms is addressed by the 
fiber matrix interface properties. Then, we could say that the material behavior is characte-
rized by partial debonding. In the case simulated with 0.6f

u MPa  , which in accordance 
with the Figure 5.2 displays semi-ductile behavior, represents a partially debonded example. 
The results obtained in this case are shown in two different instants indicated in Figure 5.6: 
The first instant represents a stage during the initial softening process. The second instant 
represents a stage at the end of the localization process. 

 

Figure 5.6. Load vs displacement curve for 0.6f

u MPa  .  

The assumed perfect plastic material behavior adopted for the matrix-fiber bond shear-
slip relationship gives rise to slip when the ultimate bond shear strength is reached, and sub-
sequently the shear deformation is increased. In the first considered instant (Figure 5.7 (a)), it 
is noticeable that fiber-matrix interface debonding evolves as a consequence of the increase 
in the slip. Fiber-matrix interface debonding and matrix damage may be triggered because of 
their weakness to resist shear stresses. This behavior indicates that the matrix damage and 
sliding frictional resistance of fiber pullout largely determine the composite toughness and 
the hardening properties (Beyerlein & Phoenix 1996). Inspection of the plots for damage and 
plasticity in Figure 5.7 (b) (second stage) indicates that the crack opening in the notch, due to 
cumulative damage, is accompanied with loss of adhesive bond in the matrix-fiber interface 
and plastic strain in fibers. Not surprisingly, only few more points in the specimen achieve 
the ultimate bond shear strength when the final state is reached and the debonding distribu-
tion scarcely changes, as indicated in Figure 5.7.  
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(a) (b) 

Figure 5.7. Results for 0.6f

u MPa  . Portraits of plasticity in the fiber, debonding in the IZ and 
damage in the matrix in the end of the load-displacement curve. (a) Instant (1) (depicted in Figure 

5.6) during the hardening process. (b) Instant (2) (depicted in Figure 5.6) during in the end of the 

loading process. 

5.2.1.3. Fully bonded case 

High adhesive interfaces can be achieved by improving, at microstructural level, the proper-
ties of fiber surface. However, a strong interface may result in lower toughness, because this 
effect does not allow interfacial debonding, which is one of the main mechanisms to relieve 
stress concentrations produced by the oncoming crack (Jiang et al. 2000). With a view to-
wards investigating this possibility, simulations were performed for 5.0f

u MPa   and 
50.0f

u MPa  .  
Observing the load displacement curves for 5.0f

u MPa   and 50.0f

u MPa   in Figure 
5.2, they suggest that for high values of f

u , the model predicts similar structural responses. 
The reason of this behavior is not clear. Even more remarkable is the fact that plasticity and 
damage exhibit similar distribution patterns as the end of the loading process. It seems rea-
sonable to propose, based on these results, that in both situations, the dominant failure meso-
mechanism at the mesoscale is the fiber plasticity. Although the debonding distribution is 
distinctively different, this effect does not seem to affect significantly the structural response.  

Experimental results corroborate that if the fiber matrix interface strength is much higher 
than the matrix strength in shear, then, the matrix damage will occur instead of fiber matrix 
debonding. This experimental fact is also supported through numerical simulation by observ-
ing results for 50.0f

u MPa   in Figure 5.8. Although the matrix multicracking is much 
more significant in this case, fibers plastic deformation occurs in the path of the critical 
crack. In summary, the pullout process, and in consequence the failure mechanism for high 
adhesives interfaces, involve essentially matrix damage and plasticity.  
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Figure 5.8. Results for 5.0f

u MPa   and 50.0f

u MPa  . Portraits of plasticity in the fiber, 

debonding in the IZ and damage in the matrix in the end of the load-displacement curve. (a) 

Instant in the end of the loading process for 5.0f

u MPa  . (b) Instant in the end of the loading 

process 50.0f

u MPa  .  

5.2.2. Assessment of the crack prediction considering different finite element 
formulations  

In order to analyze the role played by the element formulation during the localization 
process, the reinforced concrete notched strip under uniaxial tensile stress of section 1.2 and 
shown in Figure 5.1, is discretized by using three different element formulations. The me-
chanical properties of the components are summarized in Box  5.2. 
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Box  5.2. Compound mechanical properties notched strip under uniaxial loading 
test. 

Two families of fibers oriented at 0º and 45º respect to the loading direction are consi-
dered. Three finite element formulations are contemplated: i) the standard triangular, ii) the 
standard quadrilateral element and iii) the injection of an elemental constant strain mode in 
the quadrilateral element. In the preliminary study presented by (Dias et al. 2011a), the effec-
tiveness of the localized strain injection was assessed in capturing strain localization in sim-
ple material. We demonstrate in the example that the formulation, based on strain injection, 
provides results which are mesh independent also in the simulation of composite materials.  
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The load vs displacement curves, for the three numerical alternatives are compared in 
Figure 5.9. Loading of the strip in tension causes damage in the matrix and subsequently 
hardening due to the pull out effect of the fibers. It may be noted that the homogenization 
method for which the rule of mixtures, also known as Taylor assumption, is considered, has 
the ability to incorporate ductility due to the combined effects of the materials. Hence, the 
load does not drop abruptly as in tensile test of simple concrete. It is apparent in the plot that 
the numerical results prior the peak load, does not seem to be influenced by the element 
formulation. Conversely, it is noted that the post peak response is affected by the finite ele-
ment approach. This fact is evident in the iso displacement plots presented in Figure 5.10.  

 

 
Figure 5.9. Load as a function of displacement of a fiber reinforced cement strip under un-

iaxial tensile stress state for the three different approaches.  

Figure 5.9 (a-c) shows iso-displacement contours representing the strain localization pat-
terns, corresponding to each of the alternatives. The stress locking is not very noticeable in 
Figure 5.9. However, in Figure 5.10, it can be noted that the triangular approach exhibits 
stress-locking (spurious stress transfer across a widely open crack), which is caused by a 
poor kinematical representation of the discontinuous displacement field around the macros-
copic crack in the central part of the specimen. Alternatively, the quadrilateral element does 
not display this deficient response. Even more, the quadrilateral element with the injection of 
a constant mode on the same element exhibits an improvement respect to the triangular for-
mulation. 
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(a) (b) (c) 

Figure 5.10. Localization patterns depicted through iso-displacement curves with different 

approaches for the notched strip under uniaxial tensile, (a) triangular elements (b) standard 

quadrilateral elements (c) injection of a constant strain mode.  

Application of the strain injection methodology requires the solution of the disconti-
nuous material bifurcation problem, proceeding the time for the weak discontinuity onset, in 
order to determine the injection domain. The evolution of the injection domain is depicted in 
Figure 5.11, along different times of analysis. It can be observed the progress of the injection 
domain (defined in eq. (3.15)); the bifurcated elements are injected with a constant strain 
mode while they remain in loading. As soon as a finite element is detected to belong to the 
injection domain, it is approached with a constant strain field. During the initial injection 
stage (t = 1,2), the material bifurcation is detected in those elements close to the notch. In 
posterior stages, (t = 3, 4), soon later, most of the bifurcated elements unload, leave the injec-
tion domain and recover the standard formulation. In the final stage, (t=6), only a single band 
is further injected, where strain remains localizing.  

 
1t  2t  3t  

 
4t  5t  6t  

Figure 5.11. Evolution of the injection domain for different times of the analysis. Injected finite 

elements are depicted in black.  
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5.3. Test 2: Beam with horizontally oriented fibers 

We consider now, the test reported by Jiang and co-workers (Jiang et al. 2000). The four-
point bending test evaluates the feasibility of using bone-shaped short BSS steel wires for 
improving the toughness in concrete. The test was motivated from experimental observation 
on (BSS) fibers composites, made of glass, polymer, and steel, which reveled a substantially 
higher toughness, and more crack resistance than conventional straight short (CSS) steel–
wire-reinforced cement. From experimental results, they observed that problems, in short 
fiber composites, have largely to do with the fiber-matrix interface. Particularly, for a short 
fiber, a strong interface is desired to effectively transfer the load from matrix to fiber. On the 
other hand, for ductile BSS fiber reinforced composites, a weak interface can reduce signifi-
cantly stress concentration and the toughness will improve since the fibers can effectively 
bridge cracks without premature fracture. With this information in hand, the test was ad-
dressed to simultaneously improve both the strength and the toughness of short-fiber compo-
sites by modifying the geometry of short fibers instead of the fiber/matrix interface.  

From the experimental point of view, there are considerable difficulties to manufacture a 
unidirectional specimen with short fibers; however, it is advantageous in judging the results.  
Therefore, this example, although simple, is ideal and may bring us a step closer to under-
standing of crack initiation and propagation phenomena in cement composites.  

5.3.1. Specimen description  

Three types of four-point bending test specimens were manufactured: i) unreinforced ce-
ment, ii) CSS-steel-wire-reinforced cement, and iii) BSS-steel-wire-reinforced cement. The 
reinforcement wires are commercial grade utility steel with yield strength of 260 MPa, and a 
failure strain of 12.6%. Both, BSS wires and CSS short wires, have a diameter of 0.84 mm 
and a length of 25 mm. The BSS steel wires have been obtained by cutting the wire into a 
length of 28 mm, and then, melting both ends with a torch, resulting in enlarged wire ends 
with an average diameter of 1.6 mm (see Figure 5.12 (a) and (c)). The properties indicated in 
Box  5.3 are kept constant for the simulation of the specimens, except for the value of the 
volumetric fraction of fibers, selected as 0.86% and 1% for the CSS- and BSS-wire-
reinforced specimen, respectively. The template used for manually laying the steel wires is 
depicted schematically in Figure 5.12 (c).  

The mesh, assuming a 2-D plane stress model, is made of triangular elements, with three 
degrees of freedom at each node (associated to the fields xu , yu ,   respectively). It is 
shown in Figure 5.12(b). In the absence of experimental estimations of the ultimate bond 
stress value f

u , for this specific case, the purpose of the simulation is to find a value, such 
that, it satisfactorily predict the mechanical composite response. Therefore, tuning of the 
fiber-matrix interface ultimate bond strength parameter is needed to achieve the best fit. In 
this respect and based on our experience with the model, the range of values 

 0,7.5f

u MPa  , should be enough.  
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(a) 

  
(b) 

 

(c) (d) 

Figure 5.12. Schematic illustration of the four point bending test. (a)Set-up of bending test 
(Jiang et al. 2000). (b) Fiber geometries. (c) Fiber layout. (d) Finite element mesh 

 

Matrix Fiber Interface zone 

' 4.0cf MPa  260f

u MPa    0,7.5f

u MPa 
 

21mE GPa  180fE GPa  1 8dE e GPa   

0.2m   700fH MPa  100dH MPa  

100fG N m
 

0º   

0.84f   

0.86%fV 
 

Box  5.3. Bending test: mechanical properties of each compound. 

 
In our model, the geometry of fiber ends is not explicitly considered as a user defined 

parameter in the micro-model, but translated to the numerical model through an increase of 
the fiber matrix bond strength. 

5.3.2. Influence of the ultimate bond shear strength on the flexural response of the 
HPFRC composite 

For different values of ultimate bond shear strength f

u , the application of the model pro-
duces the numerical results as indicated in Figure 5.13. It compares the load P  versus cross-
head displacement response during the test for the reinforced CSS- and BSS-wire-reinforced 
specimens along with the numerical results for the values of f

u  considered. Typically, the 
beam performance is governed mainly by the combined contribution of fiber and matrix 
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during the ascending elastic branch of the equilibrium curve. Note that, however, after the 
first crack initiation (or deviation from linearity), the micromechanics dominate the mechan-
ical response and different values of the ultimate bond strength trigger two clearly distinct 
types of failure processes: (1) deflection-softening and (2) deflection-hardening.  

Figure 5.13. Beam test. Load as a function of cross head displacement steel-wire-reinforced 
cement specimens.  

By comparing the experimental results with the simulated ones, as shown Figure 5.13, 
the BSS-wire reinforced specimen and the numerical response for 7.5f

u MPa   are in good 
agreement, as also, CSS-wire reinforced test result and the curve for 2.5f

u MPa  . This 
preliminary comparison is an attempt to recognize the possible values that the ultimate bond 
strength parameter could take for this example. Moreover, further inspection of the crack 
pattern prompts this conjecture.   

The iso-displacement contours in Figure 5.14 (a-d) show the crack patterns in the speci-
men at the different ultimate bond stress levels and the damage patterns in Figure 5.14 (e-h) 
for each case. Figure 5.14 (i) shows the failure mode observed in the experimental test of the 
specimen reinforced with CSS-wires, which fails with a single crack. And Figure 5.14 (j) 
displays the failure mode of the specimen reinforced with BSS-wires, which in contrast, 
presents a distribution of multi-cracks.  

An exam of the numerical results provides some insights on how the value of the ulti-
mate bond strength affects the fracture process. A single opening crack pattern at the central 
part of the specimen, almost perpendicular to the longitudinal direction, can be identified 
from the iso-displacement contours for 2.5f

u MPa  , which reproduces the experimental 
observation with CSS-wires. The single crack pattern repeats for 4.0f

u MPa   and 
5.5f

u MPa   but the cracks propagates horizontally, indicating thereby, that a stronger 
interface arrests the additional development of the crack trough the transverse direction of 
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the specimen. Experimentally, in the CSS-wire reinforced specimen, the crack branched out 
of the transverse plane at the end of the test as in the picture Figure 5.14(i), which coincides 
more with the crack patterns for 4.0f

u MPa   and 5.5f
u MPa  .  

 

(a) 2.5f
u MPa   (e) 2.5f

u MPa   

(b) 4.0f
u MPa   (f) 4.0f

u MPa   

(c) 5.5f
u MPa   (g) 5.5f

u MPa   

(d) 7.5f
u MPa   (h) 7.5f

u MPa   

 
(i) CSS-wire reinforced beam (j) BSS-wire-reinforced beam 

Figure 5.14. CSS- and BSS-wire reinforced beam ( 1%fV  ) of the beam test: (a-d) numeri-
cal (indicated by the displacement contours) and (i-j) experimental crack patterns for different 

values of the ultimate bond shear strength. (e-h) Damage iso-color maps.  

Figure 5.14 (e-h) shows the iso-color maps for the damage parameter: darker colors 
represent more degraded material. According to the results of Figure 5.14 (e-h), the exten-
sion of the damaged area depends on the ultimate bond strength, as far as the considered 
cases are concerned. The damaged area around the main crack is usually small for small 
values of the ultimate bond strength, in other words, the fiber-matrix interface is so weak that 
the matrix strain is not transferred to the fiber. The damaged areas spread gradually as the 
interface strength increases. For 7.5f

u MPa  , damage localization is noticeable and in-
duces propagation of two main cracks. It is apparent, from the preceding discussion and from 
the pictures of the experimental specimens in Figure 5.14 (i-j), that the crack pattern for 
CSS-wire reinforced beam resembles the crack pattern found by numerical simulation with 
small values of f

u  and BSS-wire reinforced beam displays a failure mode that is significant-
ly consistent to that of the simulation response for 7.5f

u MPa  . 
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5.3.2.1. Deflection-softening 

The name deflection-softening performance is adopted for HPFRC composites showing 
a loss of the structural loading carrying capacity after reaching the first cracking point, as 
classified by (Kim et al. 2008). Note that according to the above definition, structural res-
ponses for 2.5f

u MPa  and 4.0f
u MPa   fall into this category. It is apparent that fiber-

matrix bond strength is responsible for the ineffective load transfer between both compounds 
and consequently insufficient stress distribution capability between them. This effect is ob-
served in the damage distributions presented in Figure 5.14 (e-h).  

 
 (a) (b) 

1t  

   

2t  

   

3t  

   

Figure 5.15. (a) Plasticity maps and; (b) debonding maps in the beam with 2.5f
u MPa  . The 

red color indicates elements in inelastic regime. 

Figure 5.15 represents the contour plots of debonding and plasticity in the beam using 
2.5f

u MPa  , as the fiber matrix ultimate bond strength. Inspection of Figure 5.15(a) 
shows that the postcracking failure mechanisms involve plasticity along the crack path. Ac-
cordingly, the experimental observation shows that nearly all CSS-wires are easily pulled out 
without much deformation of the fiber. However, the fibers deforms because of bending at 
crack location during crack opening. On the other hand, the first distinctive feature in the 
plots of Figure 5.15(b) is the sudden increase of the area affected by fiber debonding (t = 1), 
which evolves progressively to neighboring regions, as well as areas under compression (t = 
2 and t = 3). Note that the debonding domain affects the middle third of the beam covering 
not only the macrocrack surrounding but also regions relatively remote from it. Therefore, as 
it may be surmised, low ultimate bond strength reduces the bridging effect (or the capacity to 
transfer stresses between the matrix and the fiber) and directly decreases the interface tough-
ness (pullout energy). In this case, a bridging zone is clearly detectable in the beam center, 
where the fibers are pulled out, as shown in the results in Figure 5.15 (a) and (b). Admittedly, 
bridging force, which are the discrete forces acting on the microcrack when it opens (Radtke 
et al. 2010), must be interpreted to be of continuous nature in the current model, although 
from physical evidence these forces have discrete nature.  
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5.3.2.2. Deflection-hardening response. 

Deflection hardening response is characterized by multiple cracking after the first point 
in the specimen initiates the crack processing, as observed in Figure 5.14 (h). This behavior 
could be attributed to the high pullout resistance and slip capacity originated from the 
straightening of the fiber. In fact, significant damage in the cement matrix occurs for BSS-
steel wires, as a result of the pull out forces. Figure 5.16 (a) and (b) describe the debonding 
and plasticity evolution, respectively, during the fracture process. It is important to remark 
that the red areas show the points, which exceeded the threshold value. These results suggest 
that, in order to be effective in concrete, pullout of fibers should involve plasticity and de-
bonding fracture processes, so as to provide much more ductility and toughness. 

Various failure modes including, among others, damage, plasticity, spalling and debond-
ing are encountered in beam bending tests of HPFRC composites. It is recognized from Fig-
ure 5.16 (a) and (b) that fiber pull-out mainly concentrate at the actual macrocrack surfaces 
as a mechanism to arrest the crack propagation, whereas, in the rest of the specimen, the 
behavior of the composite material remains under complete composite condition. As in expe-
rimental observations, plasticity is predicted around the crack path during pulling out the 
fiber, as in Figure 5.16 (a), which is largely caused by the fiber straightening and bending. In 
the experimental case, straightening implies deformation of the mechanical anchorage owing 
to interlocking between the enlarged end of the BSS-steel wires and the matrix. Therefore, 
well-anchored fibers deform plastically, providing a toughness increase to bending perfor-
mance. In addition, development of plasticity indicated in the beam top is probably promoted 
by buckling in fibers under compression. As depicted in Figure 5.16 (b), a sequence of the 
debonding distribution results display fiber-matrix interface failure in the surrounding ma-
crocrack areas. The beam simulation results show large slip ability during pull out which 
generates much higher pullout energy. 

 
 (a) (b) 

1t  
 

   

2t  
 

   

3t  
 

   

Figure 5.16. (a) Plasticity maps and; (b) debonding maps in the beam with 7.5f
u MPa  . The red 

color indicates elements in inelastic regime.  
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5.4. Test 3: Beam with randomly distributed fibers 

Randomly orientated fibers reinforced composites are frequently the case in the practice. 
This reason motivates to perform a test similar to the one in section 5.3, but for randomly 
distributed fibers. The experimental evaluation of this example was presented by 
(Bencardino et al. 2010). The three point bending test on notched specimen was carried out 
according to the RILEM specification (162-TDF 2002). The beam geometry is described in 
Figure 5.17 (a), the notch is situated in the middle span and it is sufficiently small to avoid 
undesirable effects. Figure 5.17 (b) represents in detail the cross section in which is indicated 
the notch dimension.  

 

 

(a) (b) 
Figure 5.17. Set-up of bending flexural test (Bencardino et al. 2010).  

The beam contains the steel fibers Dramix® of hooked end. In Box  5.4, the mechanical 
properties of the matrix, fiber bundles and interface zone are defined. Nine fiber bundles 
were included in the analysis and it is assumed that this number represents sufficiently well 
the random distribution of the fibers. 

Matrix Fiber Debonding 

' 1.25cf MPa  1050f
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Box  5.4.Bending test with randomly distributed fibers: Compound mechanical 
properties 
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5.4.1. Flexural tensile behavior  

Characteristic brittle behavior is observed in experimental unreinforced specimen, as is 
shown in Figure 5.18. The complete separation of the specimens into two parts occurred in 
the test, as illustrates Figure 5.19-a. Likewise, in the finite element simulation, a single crack 
is observed, as in Figure 5.19-b (The deformed mesh is scaled 15 times to see the crack). The 
simulation parameters are summarized in Box  5.5.   

 

Number of 
nodes 

Number of 
elements 

Type of element Type of formulation 

4032 3938 quadrilateral Standard and injection of a 
strain constant mode 

Box  5.5. Description of the numerical test. 

The load deflection displacement curve of the fiber reinforced concrete specimen with 
1% of fiber volume fraction is presented in Figure 5.18, ((Bencardino et al. 2010)), along 
with the response of the simulated specimen. Experimental and numerical curves agree quite 
well up to the peak load, but after this point, the proposed model slightly overestimates the 
load.  

 

Figure 5.18.  Numerical and experimental load versus deflection in three point 

notched beam test. 

The damage distribution at the end of the loading process is represented in Figure 5.19-c, 
for plain concrete. Not surprisingly, the damage concentrates in the notched region. The 
crack pattern of the reinforced specimen displays a single crack when using the approach 
presented in this work. This is represented in Figure 5.20-a. The corresponding experimental 
crack pattern also presents a single crack (see Figure 5.20-b). However, the specimen does 
not split abruptly in two parts as for the unreinforced beam. The deformed configuration of 



106    Chapter 5 Representative numerical simulations
 

 

the beam after loading is scaled by 10 in Figure 5.20-c. Comparing Figure 5.20-c and Figure 
5.19-b is evident that the deformation of the reinforced beam is much larger than the unrein-
forced one. 

 

 
(a)  

 
(b)  

 

(c) 

Figure 5.19.  Numerical and experimental load versus deflection in three point 

notched unreinforced beam test (a) Experimental crack pattern (b) Simulation 

result, deformed and crack pattern for the beam. Deformed factor =15. (c) Dam-

age iso color map. 

5.4.2. Mesostructural behavior  

It is noticeable the manner in which the introduction of the balance equation of the mesome-
chanic allows the model to represent the ductility of the material response (Figure 5.18). The 
coupled effect of the fiber matrix interface debonding and the axial plastic strain in the fiber 
affect the composite behavior in such a manner that the brittleness of the unreinforced ma-
terial is removed. The three linear response of the fiber reinforced composite is now clearly 
associated with an extensive cracking process. Figure 5.21 and Figure 5.22 display the evolu-
tion of the simultaneous loss of adhesion in the IZ and the plastic strain of fibers, respective-
ly. For easy understanding, three bundle fibers and different representative states along the 
load deflection curve were chosen to be analyzed. According to these results, both processes 
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concentrate in the region near to the notch, where is expected to occur the crack propagation. 
The attention is addressed initially to analysis of the debonding distribution of the fiber bun-
dles oriented 0º and 45º respect to the longitudinal direction (Figure 5.21(a) and (b) respec-
tively). These results suggest that the loss of the adhesion in the interfacial zone happens 
from initial loading stages. However, for the bundle fiber oriented 90º, (Figure 5.21(c)), the 
distribution displays that the process begins later and it does not affect the area located near 
to the notch.  

 

 
(a) (b) 

(c)  

Figure 5.20.  Numerical and experimental load versus deflection in three point 

notched beam test with reinforcement. (a) Iso displacement contours. (b) Expe-
rimental crack pattern. (c) Deformed beam, numerical result, deformed factor = 

10. 

 

 

 (a) 0º (b) 45º (c) 90º 
Figure 5.21. Numerical evolution of the debonding process in the notched beam test. The 

magenta color indicates elements in inelastic regime. 
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The distribution of yielding represented in Figure 5.22 shows that fibers located along 
the crack path yield as a consequence of the crack opening when they are oriented at 0º and 
45º (Figure 5.22(a) and (b), respectively). However, for the bundle fiber oriented in the per-
pendicular direction respect to the longitudinal beam axis, the areas showing yielding (Figure 
5.22(c)) is much smaller than those in fiber bundles oriented in other directions (in this par-
ticular case 0º and 45º). This result suggests that the smaller the inclination angle of the fiber 
bundle the more is the amount of the yielding generated. 

 

 
 (a) 0º (b) 45º (c) 90º 

Figure 5.22.  Numerical evolution of the plasticity in three point notched beam test with 
reinforcement. The red color indicates elements in inelastic regime. 

5.4.3. Damage evolution and localization process  

Microcracking in the cement matrix occurs simultaneously with debonding and yielding 
during the fracture process. Figure 5.23 displays the load versus displacement curve, in 
which seven points were tagged with numbers throughout the curve indicating different stag-
es of the damage evolution in the beam. On the right side of the curve, the corresponding 
damage iso color maps are shown. 

In the stages 1 and 2, few elements around the notch are damaged. As loading 
progresses, the damage region spreads over beyond the notch section. In the stage 3, some 
elements in the bottom part of the beam begin to damage. From stage 3, the damaged region 
covers the middle third and remains almost unaltered until the end of the loading process. 
Darker red color stands for completed damage material. According to the iso color map in 
the stage 7, severe degraded material is presented in the notch proximity and in the symme-
trical region around it. However, comparing this result and the iso displacement contours in 
Figure 5.20(a) only a single macrocrack is developed in the notch, in other words, no mul-
tiple cracks are shown in this case. It is remarkable in the iso-color maps Figure 5.23 in that 
the white areas show undamaged material. From this result and Figure 5.21 and Figure 5.22, 
it follows that a good part of the material remains elastic and it behaves as a composite dur-
ing the complete loading process 
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Figure 5.23.  Numerical and experimental load versus deflection and damage evolu-

tion in three point notched beam test. 

The evolution of the injection of the constant strain mode in the bifurcated domain is il-
lustrated in Figure 5.24. Dark blue coloured areas display the elements injected in the beam 
for different stages indicated with the tagged points in the load versus deflection curve. Dur-
ing the hardening loading part of the curve, stages 1 to 5, the bifurcation domain resembles 
the damage evolution presented in Figure 5.23 with slightly differences. However, the in-
jected domain changes suddenly and it is reduced to a line of element where the localization 
of deformation concentrates (stages 6 and 7).  

Figure 5.24.  Numerical and experimental load versus deflection in three point notched 

beam test with the tagged points, where the analysis of the injection of the strain con-

stant mode is applied. The elements that belong to the injection domain are indicated in 
the beam with darker blue. 
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Again, it is noticed that the region next to de notch and in the bottom of the beam are in-
itially injected but any crack is formed out of the notch section and thereby in stage (6) and 
during the rest of the loading process any injection is performed these regions. 

5.5. Test 4: Dogbone specimen test 

In general, tensile tests are performed indirectly via bending and split-tensile tests. These 
indirect tests give results that are not strictly comparable with those provided by direct ten-
sile tests, because the existence of a compressive stress component that may be far greater in 
magnitude than the induced tensile stress, and whose influence at failure cannot be consi-
dered (Broch & Franklin 1972). The direct tensile test is seldom used, yet it is one of the best 
methods to characterize the tensile behavior. Although the uniaxial tensile test involves such 
difficulties, the objective of the Suwannakarn’s work (Suwannakarn 2009) was to evaluate 
and model the postcracking behavior of HPFRC composite using it. An extensive experimen-
tal program was carried out using direct tensile tests and stress vs. crack opening displace-
ment tests on notched tensile prisms. Initially, the cementitious matrix specimen was eva-
luated, in order to provide a basis of comparison and for control. Subsequently, the direct 
tensile test using fiber reinforced dog-bones is performed and then the crack opening dis-
placement test using fiber reinforced notched prisms. Due to the scatter of the experimental 
results reported in Suwannakarn’s work, a detailed discussion was dedicated about the ob-
served variability in HPFRC composites response.  

It should be kept in mind, judging the results of HPFRC composites, that the variability 
of their responses is strongly influenced by many factors. In the case of randomly oriented 
fiber composites, the orientation within the matrix bulk depends on the processing details 
such as the method of placing the fiber concrete mix, flow characteristics of the mortar, and 
type of compaction. Other factors that tend to increase the statistical variability include the 
variation of concentration of fibers inside the specimen, variability of the matrix-fiber inter-
face or local concentration of air inside the matrix among others. Further discussion about 
this topic is beyond of the scope of this work and the reader is addressed to (Li & Wang 
2006) and (Wang et al. 1989).  

5.5.1. Dogbone specimen test; Plain mortar material 

Figure 5.25 illustrates a scheme for the tensile testing of a dogbone specimen. The direct 
tensile strength of mortar was tested using dogbone specimens as shown in Figure 5.25 (a). 
The dimensions of the dogbone are given in Figure 5.25 (b) and (c). The finite element mesh, 
shown in Figure 5.26-(a), consists of quadrilateral elements, using a 2D plane stress model.  
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Figure 5.25. Scheme for the hooked end fiber reinforced dogbone specimen used in the 
tensile test (Suwannakarn 2009).  

Under monotonic tensile load, the specimen failed in a brittle manner and only a single 
crack was observed. Experimental results showed that the stress-strain behavior of mortal 
specimens did not exhibit perfect linear behavior. Moreover, the measured elastic modulus 
ranged between 7804 and 26717 MPa with an average of 13886 MPa. The used mortal ap-
pears to have significantly less stiffness than the regular concrete. The cracking strength 
presented a large variability and the average value was estimated to be 1.25MPa.  

To perform the numerical simulation, vertical displacements were imposed in points A 
and B, as presented in Figure 5.25 (a), to stretch the specimen. The vertical reactions in 
points C and D were monitored continuously throughout the simulation. In the experimental 
campaign, the average elongation was obtained from points E and F spacing about 178mm. 
In order to trigger localization of deformation from a homogeneous state, a weak element 
was included in the middle of the specimen, slightly perturbed in terms of its strength (re-
duced 10%). 

Figure 5.27 (a) shows the envelope of the experimental data and the average value. 
Likewise, Figure 5.27(a) compares the stress-strain curve computed using the numerical 
simulation with the one obtained from experiments. As it was expected, a single crack leads 
to the specimen failure (see Figure 5.27(b)).  
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(a)             (b) 

Figure 5.26. Dogbone specimen. (a) Numerical test layout. (b) Finite element mesh.  

 

(a) (b) 

Figure 5.27. Stress versus strain of the unreinforced dogbone specimen: (a) numerical and experimental 

curves (Jiang et al. 2000), (b) crack pattern using the continuum with microstructure based model.  

5.5.2. Dogbone specimen test: HPFRC composite material 

During the specimen preparation, care was taken to prevent clumping of the fiber. There-
fore, the random distribution of the fibers can be considered uniform. Although this fact 
suggests that the model should involve all the possible fiber orientations, for obtaining the 
response of this specimen, we assume that nine fiber bundles, which are regularly separated, 
and we believe that this is a reasonable approximation to the real distribution.   
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Number of 
nodes 

Number of 
elements 

Type of element Type of formulation 

2125 1967 quadrilateral Standard and injection of a 
strain constant mode 

Box  5.6. Description of the numerical test with details of the finite element mesh. 

The matrix mechanical properties, provided by the tensile response of the dogbone with-
out fibers, are used as input data for reinforced specimens. Hooked end fibers, commercially 
known under the trademark “Dramix®”, were used in the experimental study. Fibers with two 
different tensile strengths were used, nonetheless, high strength steel fibers, with circular 
cross-section, were employed to simulate the composite material. Based on previous studies 
(Guerrero Z 1999), the authors reported typical values for the ultimate equivalent bond 
strength. Accordingly, bond strength for high strength steel fibers was estimated at 5.1 MPa. 
Box  5.6 summarizes the set of  simulation parameters and in Box  5.7, the main mechanical 
properties used in the simulation of the HPFRC composite appear, where 'cf , is the ultimate 
concrete tensile strength, mE , is the matrix Young’s modulus, m , is the Poisson ratio, and 

fG , is the fracture energy of the matrix. For the fiber f

u  is the yield stress, fE  is the 
Young’s modulus, fH , is the hardening parameter and fV , is the fiber volume fraction. For 
the matrix-fiber interface (IZ), the parameters include f

u , dE  and dH , which stand for the 
ultimate bond strength, the Young’s modulus and the hardening parameter, respectively. The 
preliminary simulation results achieved with the notched strip have suggested better perfor-
mance of the quadrilateral element; therefore, the simulations for the current example are 
carried out using this element. With a view to comparing the effectiveness of the injection 
procedure, the example is also solved using the standard element and the injection of a strain 
constant mode. 

 

Matrix Fiber Debonding 
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Box  5.7. Dogbone tensile test: mechanical properties of the composite. 
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The tensile stress-strain curves for the test series are represented by the lower and upper 
envelopes, which are given in Figure 5.28. Comparing the numerical (with the injection 
procedure) and experimental results, they compare well and confirm that the model can ap-
proach the mechanical behavior of the HPFRC composite with fibers oriented in several 
directions.  

 
 

Figure 5.28. Comparison of the experimental results of the dogbone specimen and numerical 

curves using quadrilateral finite element and injection of constant strain mode.  

In the numerical response curve, the first crack point, defined as the point at which starts 
the nonlinearity in stress strain curve, is clearly identified. Unlike the unreinforced specimen 
(Figure 5.15 (a)), the response shows hardening after first crack and the combined effect of 
the matrix and the fiber causes stiffness change. Strain hardening effect occurs up to a stress 
value of at least 2.6 MPa. According to the experimental data, the average maximum stress 
value was 2.71 MPa. 

5.5.2.1. Fiber-matrix debonding and fiber pull out  

The developed model allows observing details in the microstructure. During the stret-
ching process, debonding and pullout of the hooked end fibers is expected. The simulation of 
the dogbone specimen leads to a vast amount of results. Let us consider three fiber bundles 
of the nine that originally has the specimen. For simplicity, we analyses the fiber bundles at 
0º, 45º and 90º respect to the loading direction. In Figure 5.29, each row represents one bun-
dle at different stages during the stretching process. The stages are marked according to 
Figure 5.30. 

At stage 3, 4, 5 and 7, couples of pictures are displayed: on the left, the distribution of 
elements that reach the ultimate bond shear stress and, on the right, the distribution of the 
elements that reach the yield stress. The stages (3) and (4), for 0º ,45º , 90º  , belong to the 
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hardening state, between the first crack stress point and the peak stress. During this stage, the 
fibers debond from the matrix and remain in elastic regime.  

 (3) (4) (5) (7) 

 Debonding  Plasticity Debonding  Plasticity Debonding  Plasticity Debonding  Plasticity 

0º 
 

   
     

45º 
 

  
     

90º 
 

  
Figure 5.29. Main stages of the debonding and plastisity during the tensile test simulation for three 

representative bundles of fibers 0º , 45º , 90º  . On the left, marked with red, the distributions of the 

element that reach the ultimate bond shear stress. On the right, the distribution of elements that reach 

the yield stress 
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Experimental works indicate that inclined fibers, with small angles respect to the load di-
rection, and aligned fibers contribute more to the improvement in hardening performance. In 
stage (3), we can observe that for the aligned fibers ( 90º  ), more elements reach the de-
bonding condition if compared with the solution obtained using the horizontal ones ( 0º  ). 
Debonding mechanism evolves significantly for aligned fibers in the stage (4), and not so 
much for horizontal ones.  

Stages (5) and (7) represent points in the postcracking regime (with reference to curve in 
Figure 5.29). The horizontal fiber ( 0º  ) remains elastic, while the inclined and aligned 
fibers ( 45º  , 90º  , respectively), reach the yield condition in the elements on the crack 
path. The experimental evidence ((Robins et al. 2002), (Cunha et al. 2007), (Barros et al. 
2005)) reported that the inclined hooked-end fibers present straightening and removal during 
the pullout. Therefore, in presence of a crack, plastic strain can be developed in various loca-
tions of the fiber near to the exit point. Although the hooked end are not explicitly considered 
in the model, the value of the ultimate bond strength reported by (Guerrero Z 1999) takes 
into account the straightening of the fiber during the pullout. This fact explains the plasticity 
is developed in the inclined fibers after occurring strain localization. Inspection of the de-
bonding distributions in stage (5) and (7) suggest that all fibers around the macrocrack 
present debonding, with consequently loss of load-carrying capacity, and therefore a de-
crease of the composite resistance is observed in the stress-strain curve.  

5.5.2.2. Strain localization and effect of the element formulation on the results 

Figure 5.30 illustrates the stress-strain numerical curve, obtained by simulating the dog-
bone specimen presented in Figure 5.25. The mechanical properties are summarized in Box  
5.7. The points tagged with the numbers 1 to 7 along the curve were selected to monitor the 
evolution of the injection domain of the constant strain mode as explained in section 3.3.2, 
when this approach is used in capturing the crack path. This result suggests that the injection 
initiates with the beginning of the hardening stage (Stage (1)). Then, in Stage (4), the injec-
tion domain spreads out to occupy the major part of the specimen and a large number of 
elements are injected. However, the number of elements injected reduces dramatically in the 
stage (5) and at the end of the simulation process, the elements on the failure path remain 
further injected.   

Strain localization in experimental tests occurred without fiber failure, but multicracking 
is reported on the hardening branch. For the numerical simulation, strain localization occurs 
only after the peak stress, which is preceded by multicracking or “smeared damage”. It is 
worth noting that multicracking cannot be captured by standard homogenized models and 
therefore the inclusion of the mesostructure allows the model to obtain multicracking before 
strain localization in a natural way.  

It is remarkable that the use of the strain injection procedure can evaluate successfully 
the crack path, at least for this case, when multiple fiber bundles are considered in the analy-
sis. The approach has proven in the simple example of the notched strip some improvement 
in terms of the localization pattern but in the mentioned case, only one fiber bundle was 
included in the simulation.   
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Figure 5.30.Stress – strain numerical curve of the dogbone specimen reinforced with hooked 

end fibers and injection evolution.  

Unfortunately, direct comparison with experimental crack pattern is not possible in this 
example since no crack pattern is reported in the work of Suwannakarn. As for the numerical 
results, at the end of the tensile direct test, the solution of the localization pattern for the 
standard and the localization mode injection are depicted in Figure 5.31. Only one single 
macrocrack is observed in the specimen by using both alternatives. By restoring the results 
presented in Figure 5.29, it is possible to conclude that the failure process is controlled by the 
pulling out of the fibers.  

 
(a) 

 
(b) 

 
(c) 

Figure 5.31. Iso displacement contours at the end of the analysis of the dogbone specimen 

reinforced with hooked end fibers. (a) Complete specimen showing the macrocrack in the mid-

dle section. (b) Crack pattern for the standard quadrilateral element formulation. (c) Crack 

pattern for the standard quadrilateral element formulation with strain injection procedure.  
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5.5.2.3. Bridging effect caused by fibers and matrix damage 

Figure 5.32 illustrates different stages in the evolution of the damage pattern by means 
of contour fills, which correspond to the points marked in Figure 5.30. It is to be noted that 
no interpolation of the integration point data of damage is performed. Note that the limits 
used to represent this distribution range from 0.95 to 1.0. As expected, high values of dam-
age in concrete matrix are presented in early stages, which are interpreted as microcracking 
(Stage 2). Before strain localization, stages 3 and 4, large areas of the specimen are severely 
degraded. This is evidence of bridging effect, which takes place in the specimen. Although 
the strain localization process is almost completed for stages 5 and 7, the damage distribution 
contour fills show a damage factor increase. In the localization band, the value of the damage 
parameter indicates that the matrix stiffness is completely exhausted; however the stress-
strain curve at stage 7 shows a residual stress due to the remained fiber loading capacity.  

 

 

 
 
 

(2) (3) (4) (5) (7)  

Figure 5.32. Numerical damage evolution during the direct tensile test simulation of the 

dogbone specimen.  

5.5.2.4. On the effect of the fiber volume fraction  

So far, the discussion was dedicated primarily to examine the results for 0.75%fV   , 
however, experimental results for other fiber contents by volume were tested by 
(Suwannakarn 2009). Simulation for 1.0%,1.5%fV   are carried out, so as to obtain stress-
strain curves. In Figure 5.33 are compared the numerical responses with the corresponding 
experimental ones.  
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(a) (b) 

Figure 5.33. Stress – strain numerical curve of the dogbone specimen reinforced with hooked end 
fibers and injection evolution. (a) 1.0%fV  . (b) 1.5%fV   

5.6. Test 6: Crack opening displacement test (COD, Notched prism 
test) 

The dogbone-shaped notched specimen of fiber reinforced concrete is used to control the 
location of the crack position. To ensure adequate propagation path, the specimen has sym-
metrical notches at their middle section. This test setup is ideal to measure some fracture 
properties of this composite and to estimate the size of a pseudo plastic zone, which corres-
ponds to the cracked area of the matrix (Suwannakarn 2009).  

Figure 5.34. Scheme for the tensile testing of a double-notched dogbone specimen 

(Suwannakarn 2009). 
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The geometric details are shown in Figure 5.34. Dimensions are given in Figure 5.34 (b) 
and (c) for the longitudinal- and cross-section, respectively. In the experimental setup, two 
crack gauges were placed one on the left and the other on the right, spanning each notch to 
measure the displacement. On the simulated specimen, displacements were measured in the 
position indicated in Figure 5.35(a) with the letters a-d. During the tensile test, displacements 
were imposed at the top and restricted in the bottom as indicated in Figure 5.35 (a).  

The finite element mesh, shown in Figure 5.35(b), consists of 1639 bilinear quadrilateral 
elements. Note that the mesh was refined locally in the neighboring area of the notches to 
prevent inadequate crack propagation and in order to simulate accurately the crack opening 
process. 

  

 
(a) (b) 

Figure 5.35. Double notched dogbone specimen. (a) Numerical test layout. (b) finite element 

mesh 

 

Number of 
nodes 

Number of 
elements 

Type of element Type of formulation 

1723 1639 quadrilateral Standard and injection of a 
strain constant mode 

Box  5.8. Description of the double notched dogbone numerical test: details of the 
finite element mesh. 

5.6.1. Stress versus crack opening displacement curves 

Figure 5.36 shows the stress versus crack opening displacement curves for the numerical 
simulation and the envelope of the experimental tests. Following the initial elastic response, 
the curve presents strain hardening due to the multiple cracking. As for the numerical result, 
it lies within the experimental envelopes. However, one can immediately see from this result 
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that the post cracking branch of the curve deviates significantly from the experimental data. 
Nevertheless, keeping in mind the large variability reported in experiments and the small 
number of specimens used for this case (only 3). The coefficient of variation (normalized 
measure of dispersion) for the toughness in specimens using hooked end fibers presented 
values over 60.  

 

Figure 5.36.  Numerical and experimental crack pattern in double notched test. 

(a) Numerical curve. (b) Experimental envelopes (Suwannakarn 2009).  

 

5.6.2. Crack propagation in the notched hooked end fiber specimen  

In the problem of crack propagation, details of the crack tip damage mechanisms are com-
plex due to the presence of the fiber bundles system. Under tension, crack propagation be-
gins when the tensile stress in the fibers bundles close to the crack tip exceed their strengths. 
However, subsequent damage of the matrix or interfacial fiber matrix debonding in the fibers 
near to the crack tip can reduce these fiber stress concentrations, and thereby, the tendency 
towards crack propagation. Another consequence of the presence of the fiber is that the dam-
age zone, which surrounds the notch, is larger than the theoretical damage zone developed at 
a crack tip in a typical unreinforced material, and then more possible crack propagation paths 
in the reinforced material can be expected.  
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 (1) (2) (3) 

(a) 

 

(b) 

  

(c) 

  

Figure 5.37. Tensile response in ( -COD) double notched test. (a) Typical crack propagation and 

localization in HPFRC composites (Suwannakarn 2009). (b) Numerical damage distribution          
( 0.98d  ). (c) iso displacement curves displaying the crack evolution. 

 As the specimen is subjected to the tensile loading process, the concentration of damage 
appears mostly at the notches neighborhood, as it is shown in the first stage of Figure 
5.37(b). After initiation, the damage progresses in different directions and the area where 
microcracking occurrs, grows rapidly between the two notches (stage 2 of Figure 5.37(b)). 
During this stage, a larger damage zone is observed when the tensile load increases more, but 
the first crack does not propagate and it is probably arrested by the fibers. According to 
(Suwannakarn 2009), the first crack does not necessarily propagates through the complete 
section, prior to the formation of other cracks. Finally, with further stretching of the speci-
men, it gives rise to damage concentration in zone the between the notches.  

Figure 5.37 (c) shows the iso-displacement contour plots in the three stages considered. 
As it can be clearly seen in the contour plots, the macrocrack propagates from the notches to 
the middle part of the specimen. At the beginning of the fracture process, the stress state is 
such that the crack can find more than one possible path to release the stress concentration at 
the notch; therefore, branching at the notches is observed during the simulation, so that, more 
than one crack competes to form the final macrocrack. This effect was also reflected in the 
visual observations of the direct test. As the stretching process steps forward, a single macro-
crack begins to gradually dominate the failure of the composite. The strain hardening beha-
vior in the stress versus crack opening displacement is characterized by the slow propagation 
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of the main crack from one end of the section to the other end. The macrocrack follows the 
easiest fracture path and finally, it crosses all the transverse section. 

 (1) (2) (3) 

 

 
 (a) Typical crack propagation 

0º   

  
 (b) Debonding  

 
 (c) Plasticity  

90º   

   

 (d) Debonding  

 
 (e) Plasticity  

Figure 5.38. Main stages of debonding and plasticity evolution of the loading process. (a) Typical 

crack propagation and localization in HPFRC composites (Suwannakarn 2009). (b) Debonding 
distribution 0º  . (c) Plasticity distribution 0º  .(d) Debonding distribution 90º  . (e) 

Plasticity distribution 90º  . The red areas represent the element in inelastic regime. 

For further analysis, we turn back to the typical crack propagation scheme, which is re-
peated for convenience in Figure 5.38-(a). Figure 5.38-(b) and (c) compares, at the notched 
zone, the debonding and plasticity evolution in the fiber bundle oriented 0º   respect to the 
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loading direction. Careful inspection of Figure 5.38-(b) and (c) suggests that, as it may be 
surmised, the pull out process involves first, a debonding action, which provides alternative 
paths for the crack to follow and second, fiber plastic deformation, which contributes directly 
to the total deformation of the composite. The debonding action, accordingly, is preceded by 
the formation of a new surface at the fiber matrix interface; therefore, reduction of composite 
strength may be significantly related to the loss of interface resistance.  

Figure 5.38-(e) reveals that plastic deformation is not observed in horizontally placed fi-
ber bundle. However, debonding plots in Figure 5.38-(d) predict loss of adhesive and fric-
tional capacity in the interfacial transition zone for this fiber bundle.  

Iso-displacement contours for total displacements, in Figure 5.39(a), show a single ma-
crocrack between the two symmetrical notches. This crack pattern compares well with the 
experimental cracks, which appear on the right hand side of the Figure 5.39. Despite the 
presence of the notches in the specimen was designed to induce stress concentration in the 
central region and, in turn, an easy predictability of the crack pattern, experimental findings 
show in one case (according to Suwannakarn 2009) a deviated crack path respect to the de-
sired trajectory, as it is observed in the specimen on the right side of the Figure 5.39(b). 

 

(a) (b) 

Figure 5.39.  Numerical and experimental crack pattern in double notched test. (a) Numerical. 

(b) Experimental  (Suwannakarn 2009).  



 

 
 

Chapter 6                                  
Conclusions and recommendations for further 

work 

6.1. Summary and general conclusions 

Based on the multifield theory, a novel formulation to model the HPFRC composite be-
havior has been presented. The formulation provides a framework, in which the principal 
ingredient is the relative displacement (slip) between the concrete matrix and the steel fiber. 
From the point of view of the continuum with microstructure, this slip displacement can be 
interpreted as a micromorphic variable. Moreover, the formulation incorporates some addi-
tional mesostructural mechanisms or interactions such as: 1) the microstress associated with 
the uniaxial fiber stress f  and 2) microforce associated with the shear stress component 
acting on the interface surface between the fiber and the matrix  . The balance equations 
related with these substructural actions stems from a basic axiom of invariance of the power 
with respect to classical changes of observers, as it was established by Mariano (Mariano & 
Stazi 2005). The final expression of the balance equation at the mesoscale is similar to the 
experimental relation between the axial stress and the shear stress acting in the fiber during 
the pullout process presented by (Naaman & Najm 1991). 

The kinematical description of the fiber is based on the analysis of a single specimen 
containing a fiber and undergoing a tensile loading process. Taking into account the failure 
of the matrix fiber interface (IZ) failure allowed us to introduce the morphological descriptor 
as the relative displacement triggered by the external action. As a consequence of the pres-
ence of the new morphology introduced in the kinematical, the composite strain can be writ-
ten in terms of the displacements u , undergone for the matrix, and the relative matrix-fiber 
displacement (slip) β . Emphasis is placed here to the consistency and rigor of the approach. 
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The material multi-field representations must satisfy the laws of thermodynamics, in particu-
lar the second law. Therefore, the HPFRC composite constitutive model is based on a ther-
modynamical framework under the following consideration: the total free energy is parti-
tioned in different terms. Each term is associated with a composite compound, namely, ma-
trix, fiber, and fiber-matrix interface. Therefore, the free energy is expressed in terms of 
every compound’s free energy and its own set of internal variables. The adopted rule of mix-
ture combines the free energy of the compounds proportionally to its volumetric factor. From 
the obtained overall free energy expression and the constitutive constrains arise composite 
stresses, as also microstresses and the microsforces concepts. The use of this framework 
allows developing constitutive models for each of the compounds as well as the overall mod-
el for the composite to represent different responses of the material. Finally, appropriated 
models using damage and plasticity theory are selected to characterize the individual beha-
viors. 

Initially, the proposed model is developed to consider a unique fiber bundle oriented in 
the r  direction. However, aware of the random nature of the distribution of the fibers in the 
bulk material, the model is finally generalized to include multiple fiber bundles oriented in 
several directions, taking care that each of them participates in the overall behavior accord-
ing to its own volume fraction. In this way, the total free energy is redefined to add as many 
new terms as the number of bundle fibers considered. The assumption of considering discrete 
directions regularly distributed with identical volume fraction is, in our opinion, a good re-
presentation of the statistical distribution of the fibers in the real case. However, this assump-
tion, although useful in those cases where the fibers are located predominantly in the plane of 
analysis, does not work satisfactorily in those other cases where the fiber are oriented out of 
the plane. Therefore, we have restored to the orientation number calculated in the manner 
proposed by Dupont et al (Dupont & Vandewalle 2005), in order to account for the fiber out 
of the plane of analysis. We consider that this simplification does not alter the results of the 
fracture analysis because, in the cases subjected to evaluation, the crack pattern does not 
depend strongly on the thickness dimension. 

The model thus obtained from the multifield approach enjoys remarkable features:  
 Provides balance momentum equations that represent the pointwise equilibrium 

of substructural actions. In fact, the fiber pullout and its relation with the slip at 
the interface surface between the matrix and the fiber is a phenomenon that has 
been largely studied. However, the models developed for HPFRC composites 
have not included it explicitly. In our approach, a governing equation of the ac-
tions participating on pullout mechanism arises automatically from the multi-
field framework.  

 Unlike the models using internal variables to describe the same phenomenon, 
by using a continuum microfield to account for the mesoscopic slip displace-
ment, it is possible to write the power of external and internal actions in terms 
of this new variable. Moreover, the redefinition of the power according to the 
continuum with microstructure allows us to identify the microstresses and mi-
croforces.  

 The continuum description of the mesoscopic slip displacement overcomes the 
problems presented in methods that treat fibers as discrete entities, which re-
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quire explicit discretization of every fiber. This kind of approaches can be inef-
ficient and cumbersome, while in our case a less computationally demanding 
scheme has been proposed. 

 The majority of models based on a representative volume element (RVE) make 
the assumption of perfect local periodicity. Unlike these methodologies, the 
proposed model, stemming from the continuum with microstructure, does not 
require it.  

 
The use of the rule of mixtures to calculate the total free energy has the advantage of 

leading to a simple expression for the composite stresses. Moreover, it is this simplicity that 
allows the model to include as many fiber bundles as possible to consider the distribution 
representative of the real statistical one. Additionally, from the implementation point of 
view, the computation of the total composite quantities, i.e. the total stress tensor and the 
total constitutive tensor, becomes structured in a modular way.  

On the other hand, the use of softening continuum constitutive laws leads to loss of uni-
queness of the solution and, thereby, many problems arise in numerical simulations. To 
overcome the pathologies related to the softening, such as mesh dependency, we have re-
sorted to regularization techniques to prevent localization of deformation into a zero volume 
zone. The continuum softening modulus was rewritten as a function of the discrete softening 
parameter, which can be related to material properties as the fracture energy, Young’s mod-
ulus and the uniaxial peak stress.  

A very important mechanisms influencing dramatically the structural behavior of 
HPFRC composites is the cement fracture. For this reason, the model includes additional 
tools to characterize the onset and propagation of cracks. These tools are based on the bifur-
cation analysis and the injection of specific modes of deformation using mixed formulations 
to increase the ability of the finite element formulation capture solutions with strain localiza-
tion modes. The failure modes of the composite material are not as simple as in plain con-
crete. During the onset of the crack evolution, several complicated micromechanisms, that 
involves all the compounds, interact. Again, the rule of mixtures is useful in the failure anal-
ysis because it provides the constitutive tensor of the composite allowing for the bifurcation 
analysis evaluation so as to find the injection domain. The injection, in the finite element 
mesh, of specific localization modes is applied to the elements that belong to injection do-
main. Following this methodology, mesh bias dependence is alleviated. 

The couple system of equation, which describes the HPFRC composite and its mesoscale 
is characterized as a two-field approach. For the computational treatment, a mixed finite 
element formulation is selected to discretize the domain. It is used triangular and quadrangu-
lar elements with linear interpolation functions to represent the displacements u  and the 
relative matrix-fiber displacement (slip) β . As for the numerical resolution, two strategies 
for solving the boundary value problem (BVP) are proposed: a monolithic scheme and a 
staggered one. In the first strategy, the whole problem is treated as a monolithic entity and all 
fields are evaluated simultaneously in time. In the staggered strategy, the fields are computa-
tionally treated in a sequential form, as isolated entities. 

The continuum with microstructure based model for HPFRC composites is finally ap-
plied to simulate the mechanical non linear behavior of a set of selected experimental tests. 
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The mechanical properties of the fiber-matrix interface, the fiber alignment and the fiber 
volume fraction are changed to show the capability of the model to perform simulations of 
HPFRC composites under different conditions. Numerical results are compared and dis-
cussed in every example to remark some characteristics of the model. Special attention is 
paid to the discussion of the microstructural results and their relation with the macrostructur-
al behavior, because they have a strongly influence on the failure process.  

6.2. Concluding remarks on the numerical solution scheme 

The remarkable aspects of the numerical implementation that deserve consideration in-
clude: 1) the regularization of the softening parameter, 2) the strain injection procedure to 
alleviate the mesh bias dependence of the finite element technique, and 3) the monolithic and 
staggered procedures to integrate the meso- and macrostructural coupled problem.   

In the analysis of the HPFRC composite material, particular attention is given to the 
mesh size dependence. This is motivated by the presence of the continuum damage model 
used to characterize the brittle behavior of the concrete, which incorporates strain softening 
behavior to represent the degradation of the material. But, consequently, as it is well known, 
the numerical solution in the finite element analysis becomes dependent of the mesh refine-
ment, resulting in physically unreasonable solutions. Therefore, in order to regularize the 
softening parameter the continuum damage model is based on the smeared crack approach 
using the consistent characteristic length proposed by (Oliver 1989). 

Furthermore, to circumvent the drawback presented in the classical localization methods 
is the mesh bias dependence, we have introduce a technique develop by Dias et al (Dias et al. 
2011b), in which constant strain localization modes are injected via mixed finite elements 
formulations. The technique proved to alleviate the problem and additionally, according with 
these authors, from the point of view of the implementation, the sophistication is reduced in 
comparison with other methods. The technique also shows also benefits when used in the 
solution of the HPFRC composite model.  

The accuracy and stability of the monolithic scheme is given by the characteristic of the 
selected integration scheme. These two properties of the integration algorithm are essentially 
related to the way that the numerical integration error, generated at a given step of the analy-
sis, propagates and amplifies in subsequent time steps. The accuracy of the IMPLEX algo-
rithm has been studied and assessed by Oliver et al (Oliver et al. 2008). They also proved 
that the algorithm is robust enough even in problems where the materials are equipped with 
strain softening.  

The decomposition of the BVP describing the HPFRC composite in many partitions is 
based on physical and computational considerations. Firstly, the microscopic balance equa-
tion and secondly the existence of 1fn   fields and the corresponding microscopic balance 
equations combined by means of the rule of mixture allows us to decouple the system of 
equations. Thus, for the computational treatment, every field can be descritized in space 
using different interpolation function and even non-matched meshes. However, for simplici-



129    Multifield-based modeling of material failure in HPFRC composites 
 

 

ty, we have introduced the same discretization for every field. The aspects that should be 
taken with care in the implementation of the staggered (or partitioned) procedure are: the 
accuracy, the stability, the computational cost and the efficiency. 

The accuracy of the integration scheme is degraded during the application of the stag-
gered strategy, as it was shown in chapter 4. Therefore, the procedure proposed to increase of 
the solution accuracy is based on the prediction of β  during the calculation of the field u . 

The partitioned approach facilitates the computational implementation issues. The BVP 
formed by 1fn   equation showed that following a four-step scheme (prediction of the field 
β , advancing of the field u , substitution, and advancing of β ), the solution maintains the 
accuracy in the same order as the one obtained by using the monolithic scheme.  

6.3. Concluding remarks about the numerical results 

The model validation is performed by selecting a set of examples, which explore the ca-
pability of the model to represent the mechanical behavior of the HPFRC composite. They 
evaluate, not only the macromechanical behavior, but also some prominent substructural 
aspects. The attention, during the evaluation of the model is also focused on the ability of the 
finite element formulation to capture the fracture process and the manner in which it occurs. 

6.3.1. The notched strip uniaxial loading  

In the following, we summarize briefly the obtained results for the notched strip under 
uniaxial loading: 

 The numerical evaluation of a small notched strip was carried out to examine sever-
al features of the model, initially with aligned fibers respect to the loading direction 
and then with inclined fibers. First, in order to investigate the sensitivity of the pro-
posed model to the bond shear strength properties, numerical simulations with iden-
tical mechanical and geometrical characteristics are carried out, but varying the 
bonding properties of the fiber-matrix interface. The analysis of the results gives 
rise to the classification of the mechanical response in three different behaviors, de-
pending on the debonding failure mechanisms, as follows: (a) fully debonded, (b) 
partially debonded and (c) fully bonded.  

 A weak fiber-matrix interface in the composite (or low values of the ultimate bond 
strength) produces a poor stress transfer between both components and, therefore, 
fibers are not fully utilized. The model shows a sudden debonding in the whole do-
main of the notched strip with consequent deactivation of the composite effect. Low 
ductility can be associated with low values of the ultimate bond strength. 

 The results suggest that for high values of ultimate bond strength f

u , the model 
predicts a fully bonded case being characterized, in the load displacement curve, by 
the existence of pseudo strain hardening after the end of the elastic stage.  
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 Intermediate values of ultimate bond strengths display, in the load-displacement 
curve, semi-ductile behavior being associated with partially debonded interfaces. 

 The effect of the fiber orientation on the response of the notched specimen was in-
vestigated for identical ultimate bond strength values. The observed results show 
that the peak load decreases with the inclination of the fiber. The largest peak load 
is obtained when inclination equals 0º, i.e. when the fibers are aligned to the load. 

 In order to analyze the role played by the element formulation during the localiza-
tion process, three finite element formulations have been contemplated: i) the stan-
dard triangle, ii) the standard quadrilateral element and iii) the injection of an ele-
mental constant strain mode in the quadrilateral element. From the so obtained load 
displacement curves, it is noted that the post peak response of the notched strip is 
affected by the finite element approach. The triangular element exhibits stress-
locking (spurious stress transfer across a widely open crack), which is caused by a 
poor kinematical representation of the discontinuous displacement field around the 
macroscopic crack in the central part of the specimen. Alternatively, the quadrila-
teral element does not display a quite marked deficient response. Even more, the 
quadrilateral element with the injection of a constant mode exhibits a clear im-
provement respect to the triangular formulation. 

6.3.2. Beam test with horizontally oriented fibers 

Three types of four-point bending test specimens have been examined: i) plain cement, ii) 
CSS-steel-wire-reinforced cement, and iii) BSS-steel-wire-reinforced cement. In the absence 
of experimental estimations of the ultimate bond stress value f

u , for the fiber-matrix inter-
face, the purpose of the simulation has been to find a value that satisfactorily predict the 
structural mechanical response. This parameter has been tuned this parameter to achieve the 
best structural response fit. The model provides different solutions at different values of the 
fiber-matrix interface parameter, which are listed below, 

 By comparing the experimental results with simulated ones, the BSS-wire rein-
forced specimen and the numerical response for 7.5f

u MPa   are in good agree-
ment, as also, CSS-wire reinforced test result and the curve for 2.5f

u MPa  . 
 From the load displacement curves resulting in this example, it was evident that 

the fiber-local properties (e.g. interfacial bond strength) affect the postcracking 
response, so that, the higher is the interfacial bond strength value, the higher is 
the toughness. This result is due to the redistribution of stresses and proof of 
this assertion is the extended damage region determined for high values of the 
ultimate bond strength, in contrast to solutions displaying strain localization and 
concentration of damage for small values of f

u . 
 According to the micromechanics processes observed in the beam test when the ma-

trix-fiber interface parameter has been varied, the structural response is classified 
into two different types: (a) Deflection softening, and (b) Deflection hardening. In 
the first case, the postcracking failure mechanisms involve plasticity along the crack 
path and the debonding domain affects the middle third of the beam distributed not 
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only to the neighbor points of the macrocrack but also to regions relatively remote 
from it. Therefore, we can conclude that low ultimate bond strength reduces the 
bridging effect (or the capacity to transfer stresses between matrix and fiber) and di-
rectly decreases the interface toughness (pullout energy). In the second case, i.e., 
deflection hardening, the results suggest that pullout of fibers trigger plasticity and 
debonding fracture processes, so the fibers provide much more ductility and tough-
ness to the composite.  

 As for the fracture process, an examination of the numerical results provides some 
insights on how the ultimate bond strength value affects the crack pattern. For low 
values of the matrix-fiber interface parameter, it is observed a single opening crack 
pattern at the central part of the beam, almost perpendicular to the longitudinal di-
rection, which reproduces the experimental observation with CSS-wires. However, 
using high values of the matrix-fiber interface parameter, multiple cracks arise in 
the beam. 

6.3.3. Dogbone test of HPFRC composite under tensile loading 

This example has been used to assess the HPFRC composite material response under tensile 
behavior undergoing cracking and fracturing. The random distribution of the fibers was as-
sumed uniform and well represented by nine fiber bundles, which are regularly separated. 
One value for the ultimate bond shear strength was tested based on typical values for the 
ultimate equivalent bond strength (Guerrero Z 1999).  

 During the stretching process, fiber bundles oriented in different direction showed 
very different debonding and plasticity responses. In the postcracking regime, the 
horizontal fiber ( 0º  ) remains elastic, while the inclined and aligned fibers (

45º  , 90º  , respectively), reach the yield condition in the elements on the crack 
path. On the other hand, debonding distributions showed that all fibers debond 
around the macrocrack, with a consequent loss of load carrying capacity, and there-
fore decrease of the composite resistance is observed in the stress-strain curve. 

 It is remarkable that the use of the injection procedure allows to evaluate successful-
ly the crack path, when multiple fiber bundles are considered in the analysis. Also, 
it is important to note that this method reduces mesh-bias dependence.  

 Very high values of damage in concrete matrix are presented in early stages of the 
loading process, which can be interpreted as microcracking. Besides, large areas of 
the dogbone are severely degraded at the end of loading as effect of the pullout 
process. 

6.3.4. Crack opening displacement test using a notched dogbone 

A fiber reinforced dogbone-shaped notched specimen has been examined to control the loca-
tion of the crack position. To ensure adequate propagation path, the specimen has symme-
trical notches at their middle section. About this example, we can make the following re-
marks:  
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 The numerical result lies within the experimental envelopes. However, some dis-
crepancies between the numerical results and the experimental ones were observed 
for the post cracking branch of the load displacement curve. It is possible that the 
large variability reported in experiments and the small number of specimens used 
for this case (only 3) has something to do with this difference. Moreover, from ex-
perimental results, the coefficient of variation (normalized measure of dispersion) 
for the toughness in specimens using hooked end fibers presented values over 60%. 

 The analysis of the crack propagation in the notched specimen observed in the si-
mulations approaches very well the experimental observations described by 
(Suwannakarn 2009). Typically, three stages characterize the failure process:  (1) 
the onset of the first crack, (2) multiple cracks, associated with strain hardening, and 
(3) the localization, associated with strain softening, which were detected by the 
model. 

 The application of the model on the specimen reveals that the presence of the fibers 
induces more than one possible path to release the stress concentration at the notch; 
and therefore, branching at the notches location is observed, so that, more than one 
crack competes to form the final macrocrack. Finally, one macrocrack follows the 
easiest fracture path during its propagation and crosses all the transverse section 
while the others close. 

6.3.5. Beam with randomly distributed fibers 

The model is applied to a notched beam designed according to the RILEM specification 
(162-TDF 2002). It contains randomly distributed fibers and a notch is situated in the middle 
span, which is sufficiently small to avoid undesirable effects. Results for unreinforced and 
reinforced beam were compared. The numerical results of this example give rise to the fol-
lowing conclusions: 

 Experimental and numerical curves agree quite well up to the peak load, but after 
this point, the proposed model slightly overestimates the load. The crack pattern of 
the unreinforced and the reinforced specimens display a single crack when using the 
approach presented in this work, which agree with the real case. However, the rein-
forced specimen does not split abruptly in two parts and presents larger deformation 
in comparison with the unreinforced beam. 

 The results proved that the coupled effect of the fiber-matrix interface debonding 
and the axial plastic strain in the fiber affect the composite behavior in such a man-
ner that the brittleness of the unreinforced material is removed. 

 According to the iso color map in the end of the loading process, severe degraded 
material is presented in the notch proximity and in the symmetrical region around it. 
However, no multiple cracks are shown in this case. It is remarkable that in this par-
ticular case a good part of the material remains elastic and it behaves as a composite 
during the complete loading process. 
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6.4. Main contributions of this research 

The present work has been devoted to investigate a new model, which describes the non-
linear mechanical response of the HPFRC composite as a structured micromorphic material. 
The main idea in the presented model is to introduce an internal morphological descriptor to 
include the fiber-matrix relative displacement in the structural behavior of the material, all of 
this based on the multifield theory. The essential contributions of the new model are the 
following. 

 The introduction of a new kinematical independent variable, the morphological de-
scriptor, that accounts for the mentioned fiber-matrix sliding mechanism. Addition-
ally, the kinematic that describes the deformation mechanism of the fiber and the 
matrix at the meso-level. 

 The balance equation of the substructural actions derived for this model, connecting 
the micro stresses with the micro forces and which has a physical meaning related 
with the fiber-matrix bond slip mechanism. 

 The application of the mixture theory in order to derive the expression of the com-
posite free energy. Initially, it is applied to a unique fiber bundle oriented in the di-
rection r  and then, it is generalized to include multiple fiber bundles oriented in 
several directions. 

 The extension of the localized strain injection procedure via mixed formulations to 
simulate the fracture problem of the HPFRC composite. 

 The numerical implementation of the finite element formulation and the fracture 
model of the HPFRC composite.  

 Two integration schemes for solving the couple system of equations that describes 
the behavior of ht HPFRC composite. Firstly, a monolithically scheme and second-
ly, a staggered scheme. 

 The model assessment via a selected set of numerical example inspired by experi-
mental cases. The numerical validation illustrates different aspects of the proposed 
methodology. 

6.5. Future research lines 

The main goal of developing a consistent and rigorous approach to the multifield model-
ing of HPFRC composite has only partly achieved in this work. This is realized through the 
further development of the mesoscale model to include not only the fiber-interface but also 
other fields, which participates in the meso-mechanical failure process such as spalling, 
bending and straightening of the fiber, among others. In parallel, the identification and de-
termination of the parameters that are related to these mechanisms. These developments 
should be based on framework of the multifield theory to maintain the consistency and rigo-
rousness of the model. On the other hand, some weaknesses of the proposed model were 
observed and require special attention and further work:  
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 The HPFRC composite is a three dimensional problem. The simulation of the dam-
age and failure of short fiber reinforced composites highly depend on the spatial dis-
tribution and orientation of the fibers. The assumption used in the model that the 
randomly distribution can be represented by a limited number fiber bundles is a 
conservative one.  

 The partitioned procedure for the analysis of the HPFRC composite coupled prob-
lem was implemented in the present study using a sequential strategy. However, this 
methodology could be more efficient when considering a high number of fiber bun-
dles if it is parallelized. 

 The matrix-fiber interface characterization, i.e. the ultimate bond shear strength val-
ues and its fracture energy properties, is a critical point. The model requires this in-
formation to analyze adequately the material behavior. However, a unified method 
to extract the material parameters from experimental test is not yet available.  

 The material modeling of each compound of the composite in this study use simple 
constitutive models to represent their nonlinear behavior. However, the rule of mix-
ture that was considered to combine the individual mechanical behaviors might 
overestimate the composite response. Enhancements in the constitutive model are 
convenient to include other loading modes, which were not studied here in detail, 
such as compression or shear. 

The summarized points above gives rise to two areas that deserve additional attention in 
the modeling of short fiber composites. They are presented in the following subsections  

6.5.1. Multifield modeling  

 The multifield based model can be extended to other composites that present the 
same morphology as the HPFRC composite. Special object of study can be fiber 
reinforced metal composites or polymer composites, which contain high volume 
fractions of fibers and a detailed discretization is unsuitable. Usually, the analysis of 
these materials is done by means of phenomenological approaches that omit in 
many cases the mesostructural influence in the fracture analysis.  

 Some others mesomechanical morphologies can be incorporated to the model to ac-
count for the spalling, straightening of the fibers during pullout, fiber-fiber interac-
tion, or other possible mechanisms that affect the global failure process.   

 The model should be extended to three dimensional cases in order to avoid the as-
sumption about the orientation of the fibers, which implies a reduction of the vo-
lume fraction due to the fibers that are out the plane of analysis in the 2D case pre-
sented.  

 The model was implemented using triangular and quadrilateral elements, and it was 
used the same discretization for the field u  and β . However, different discretiza-
tions can be applied. Thereby, future studies about this topic can be fruitful.  
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6.5.2. Implementation issues  

 Although the staggered scheme for solving the non-linear equation system showed 
stability, it is an important concern to study rigorously this aspect as well as the ac-
curacy of the procedure. 

 In the context of the fracture model, many enhancements to capture better the mi-
crocracking and the macrocrack patterns. Recent studies provide guides in this re-
gard and they can be applied to the model for the HPFRC composite to alleviate 
even more mesh bias dependence and other mesh related pathologies. 





 

 
 

Appendix I 

We show that the angular momentum balance equation arising in the HPFRC model  as de-
rived from the multifield theory ((Mariano & Stazi 2005)), results the classical angular mo-
mentum balance equation of the conventional continuum mechanics specifying the symmetry 
of the stress tensor σ .  

First, we derive the transformation law of β under an observer change. Let us consider 
the expression (2.10), (2.17) and (2.18): 

 ( , , ) ; ( , , ) ; ;rr rr s t r s t z    β r S r r z r  (I.1) 

where rz is the r-component of z . Also, consider that β  is the micromorphic field described 
by the observer 1 and β̂  is the same entity described by the observer 2. Both observers dif-
fering by a time dependent rotation: ( )tQ , where (3)SOQ  is a time dependent second 
order rotation tensor, plus a time dependent translation. Then, given the rate of the micro-
morphic field β  described by the observer 1, the same entity described by the observer 2, 
and denoted β̂


, is: 

 
1

ˆ            Q=Q=Q=
Q=

β Qr Qr Qr Qr β QQ β
    

11
1

 (I.2) 

In this expression, the axial vector, spin, of the instantaneous rotation velocity, of one 
observer respect to other (

1Q=
QQ ), is denoted with q  and the following identity follows:

1
 

Q=
QQ β q β . Introducing the third order permutation tensor e  ( ijke = 1 if (i, j, k) is an 
even permutation of (1,2,3), ijke = -1 if it is an odd permutation, and 0 if any index is re-
peated), such that :  :  q β e q β , in (I.2) we can write: 

1
( )  

Q=
QQ β eβ q q A , 

where the operator:  
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
A=  (I.3) 

Due to the co-linearity of β  and z , it results, for any arbitrary rotation Q , that: 

0;TzA =  (I.4) 

and expressing ( )T SA  in indicial notation, it also result: 

( ) ;T k
ijk jl

l

e S
x


 


S 0A = -  (I.5) 

because the indices (j,l and k) are identical. With (I.4) and (I.5), we conclude that the angular 
momentum balance equation (equation (17) in Mariano et al. (Mariano & Stazi 2005) ): 

( ) ( ) ;T Tskew   σ z S 0A A =  (I.6) 

turns out to be the classical angular momentum balance equation of the conventional conti-
nuum mechanics, form where the symmetry of the conventional stress tensor must be en-
forced. 
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