

FIBRESHIP 2ND PUBLIC WORKSHOP La Ciotat (France) – 25TH May 2019

OVERALL DESCRIPTION OF FIBRESHIP PROJECT

ENGINEERING, PRODUCTION AND LIFE CYCLE MANAGEMENT FOR THE COMPLETE CONSTRUCTION OF LARGE LENGTH FIBRE-BASED SHIPS

ALFONSO JURADO FUENTES

MSc. Naval architect and marine engineer
Head of R&D department of TSI S.L.
Coordinator of FIBRESHIP Project – H2020 - GRANT NUMBER 736620
alfonso.jurado@tsisl.es

- 1. MOTIVATIONS OF USING COMPOSITES
- 2. FIBRESHIP PROJECT DESCRIPTION
- 3. POTENTIAL BENEFITS IDENTIFIED
- 4. MAIN OUTCOMES

General view of advantages and disadvantages of using FRP (Fibre-Reinforced Polymers) in marine industry:

Advantages

- High mechanical resistance
- Resistance to corrosion
- Lightness
- Durability
- Flexibility in design and aesthetic aspects
- Dimensional stability
- Dielectric behavior
- Etc.

Disadvantages

- Expensive
- Complex production
- Combustible material
- Restriction from SOLAS in ships over 500 GT (approx. 50m length)
- Etc.

Making the most of the **ADVANTAGES**

Trying to overcome the **DISADVANTAGES**

Large-length vessels (>500GT // >50m)

FIBRESHIP PROJECT DESCRIPTION (1/3)

FIBRESHIP Project

- FIBRESHIP addresses the **feasibility** of using **composite materials** technology for **large-length vessels**, trying to overcome technical challenges and to generate a change in the regulatory framework that will allow the design, building, and operation of this kind of vessels.
- The project consists of:
 - ✓ analyzing the possible impacts in the market of this technology
 - ✓ evaluating innovative composite materials for marine applications
 - developing software tools capable to assess the structural performance of the vessel and validated through experimental testing
 - ✓ creating new design guidelines
 - ✓ generating new production and monitoring methodologies

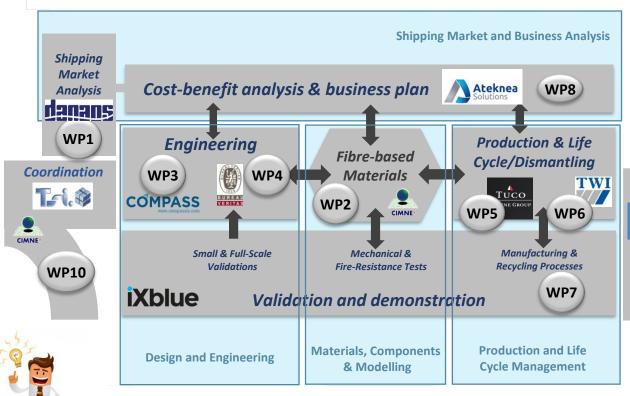
Main particulars of FIBRESHIP Project

Grant Number: 723360

Duration: 36 months (2 periods of 18 months)

✓ Start Date: 1st June 2017 ✓ End Date: 31st May 2020

Estimated Project Budget: 11,041,212.50 €
 Requested EU Contribution: 8,866,322.75 €


TRL: 7-9

 Made up of 18 partners with broad skills and knowledge in different complementary disciplines.

FIBRESHIP PROJECT DESCRIPTION (2/3) – Thematic approach considered

FIBRESHIP PROJECT DESCRIPTION (3/3) — Vessels considered for the project

CATEGORY I Light Commercial Vessels

Vessel selected: **Container Vessel**

Other options:

- RORO vessel
- Car Carrier vessel
- Multi-purpose vessel
- Freezer vessel
- LNG vessel

•

COMPASS

CATEGORY II Passengers Transportation & Leisure Vessels

Vessel selected: **ROPAX**

Other options:

- Ferry
- Passenger vessel
- Megayacht

•

soermar

CATEGORY III Special Services Vessels

Vessel selected: **Fishing Research Vessel**

Other options:

- Fishing vessel
- Seismic Vessel
- Offshore Supply vessel
- Rescue vessel

Tri. 🕸

Structural Weight reduction

Fuel Consumption Reduction

Reduced Maintenance & Life Cycle Costs

Increase Payload Capacity

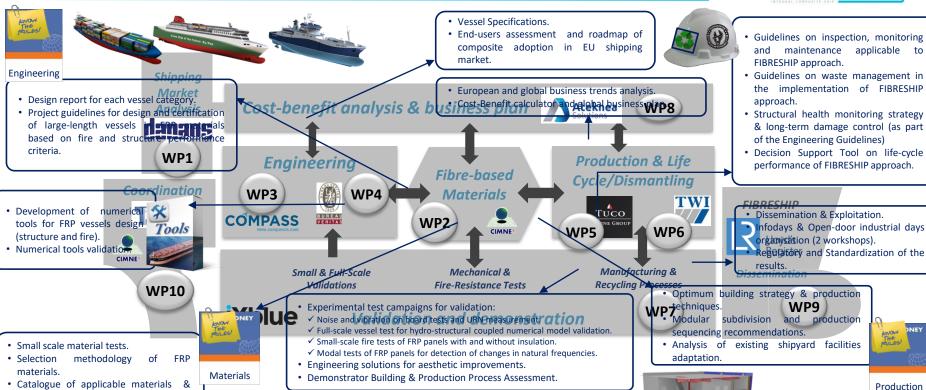
Immune to Corrosion

Underwater Radiated Noise (URN) Reduction

Continuous Structural Health Monitoring

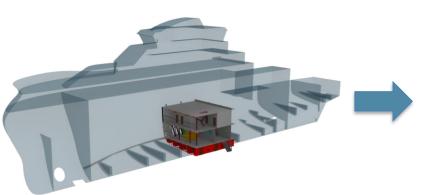
Lower Greenhouse Gas Emissions Possibility of Using Wireless Sensors

Higher Recycling Rate


Aesthetic Improvements

MAIN OUTCOMES (1/3) – Expected Results

joining techniques.



MAIN OUTCOMES (2/3) – Demonstrator

Real-scale demonstrator of a Fishing Research Vessel (FRV) module is being built at iXblue facilities in La

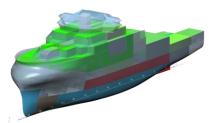
Ciotat (France).

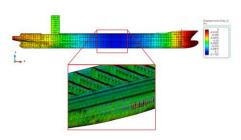
Fishing Research Vessel (FRV) of 85m of length

Demonstrator:

Engine room and other above accommodation spaces.

(Approx.: 11m x 11m x 8.6m)

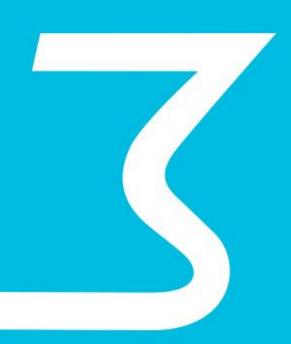

MAIN OUTCOMES (3/3) - Overcome challenges



Summary of expected overcome challenges at the end of the project

- Analyzing the potential **impact in the shipping market** of this technology
- FRP methodology selection and identification of innovative fiber-based materials
- Structural design of large-length vessels (>50m) based on composites according to:
 - ✓ Structural behavior (ULS)
 - ✓ Fatigue behavior (FLS)
 - ✓ Fire behavior
- Development and validation of numerical software tools capable to assess the structural performance of the vessel
- Modular construction of vessels in composite materials
- Identification of new structural connections
- Adaptation of the shipyards to the new construction procedures
- Request of **new regulatory frameworks** to allow the use of FRP in large-length ships
- Structural health monitoring strategy definition of vessels
- **Life cycle assessment** (LCA) of fibre-based vessels
- Building a ship block as a demonstrator of the project advances

Any question?


THANK YOU

www.fibreship.eu

ALFONSO JURADO FUENTES

MSc. Naval architect and marine engineer Head of R&D department of TSI S.L. Coordinator of FIBRESHIP Project alfonso.jurado@tsisl.es

BACK-UP SLIDES

MAIN OUTCOMES (2/5) – Expected Results

- Short Term (0 Years)
- Medium Term (1/3 Years)
- Medium/Long Term (3/5 Years)

- Classification Societies: Standards and Rules
- Owners: specifications & orders
- Shipyards: facilities adaptation
- Designers: design process

Business Opportunity

- Massive application of FRP-materials
- Enhance competitiveness of the European Operators
- Enhance competitiveness of European shipbuilding industry

Relevant advance over the traditional methods, allowing the exploitation of the new solutions and procedures in the existing market

POLICIES

ENVIRONMENTAL

- Fuel safety / Gas Emissions
 - Directive 2012/33/EU
- Life cycle performance & reduced maintenance costs
 - Directive 2013/1257/EU
- Underwater Noise impact
 - Directive 2008/56/EU

Safety SOLAS / IMO / EMSA

- Structural resistance criteria
- Fire safety
- Stability
- etc...

