
The 8th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2022

5-–9 June 2022, Oslo, Norway

EVALUATING MULTIGRID-IN-TIME ALGORITHM FOR
LAYER-PARALLEL TRAINING OF RESIDUAL

NETWORKS

Chinmay V. Datar1, Harald Köstler1,2

1 Friedrich-Alexander-Universität Erlangen-Nürnberg
Cauerstr. 11, 91058 Erlangen, Germany

e-mail: chinmay.datar@fau.de

2 Zentrum für Nationales Hochleistungsrechnen Erlangen (NHR@FAU)
Martensstraße 1, 91058 Erlangen, Germany

email: harald.koestler@fau.de

Key words: Residual networks, regression, multigrid reduction in time, layer-parallel, optimal
control, noise

Abstract. Replacing the traditional forward and backward passes in a residual network with
a Multigrid-Reduction-in-Time (MGRIT) algorithm paves the way for exploiting parallelism
across the layer dimension. In this paper, we evaluate the layer-parallel MGRIT algorithm with
respect to convergence, scalability, and performance on regression problems. Specifically, we
demonstrate that a few MGRIT iterations solve the systems of equations corresponding to the
forward and backward passes in ResNets up to reasonable tolerances. We also demonstrate that
the MGRIT algorithm breaks the scalability barrier created by the sequential propagation of
data during the forward and backward passes. Moreover, we show that ResNet training using
the layer-parallel algorithm significantly reduces the training time compared to the layer-serial
algorithm on two non-linear regression tasks.

We observe much more efficient training loss curves using layer-parallel ResNets as compared
to the layer-serial ResNets on two regression tasks. We hypothesize that the error stemming
from approximately solving the forward and backward pass systems using the MGRIT algorithm
helps the optimization algorithm escape flat saddle-point-like plateaus or local minima on the
optimization landscape. We validate this by illustrating that artificially injecting noise in a
typical forward or backward propagation, allows the optimizer to escape a saddle-point-like
plateau at network initialization.

1 INTRODUCTION

From applications in daily life such as web-searching, spam filtering, and image and speech
recognition, to advancing scientific fields like physics, mathematics, chemistry, and material
science, deep learning has revolutionized the world. One of the major factors contributing to
the success of deep neural networks is believed to be an increase in depth, i.e., the number of
layers in the network [1]. However, the benefits of increased depth in neural networks do not
come without a price.

1

Chinmay V. Datar and Harald Köstler

Deep neural networks suffer from the well-known problems of vanishing and exploding gradi-
ents [2]. One of the most cited neural network architectures of the 21st century - the ’Residual
Network’ (ResNet) [1] mitigates this problem by the introduction of short paths termed as ’skip
connections’ that help in carrying the gradient throughout the deep networks.

The second problem with deep neural networks is that the traditional sequential propaga-
tion of data during the forward and backward passes of a neural network creates a barrier to
scalability with respect to layers. The multigrid-reduction-in-time (MGRIT) algorithm [3] has
been proposed in [4] to replace the traditional forward and backward passes, specifically for
the ResNet architecture. This introduces a new dimension of parallelism across layers that was
previously inaccessible. The study of convergence, scalability, and utility of this layer-parallel
MGRIT algorithm is one of the key topics of this paper.

The feasibility of this layer-parallel approach and substantial speed-ups over the layer-serial
algorithm have already been shown on classification tasks in [4]. However, many real-world
regression problems could potentially benefit from this layer-parallel approach. Since the loss
functions, activation functions, and architectures used for regression tasks are different than
those used for classification tasks, convergence behavior needs to be studied separately. Thus,
implementing necessary modifications to incorporate training of layer-parallel ResNets for re-
gression tasks and studying the performance of the algorithm on regression tasks forms another
key part of this paper.

Networks that are far deeper than wider suffer from vanishing gradients at network initializ-
ation [5], even if popular strategies like He initialization [6] or Glorot initialization [7] is used.
The role of noise in escaping saddle points and local minima in non-convex optimization prob-
lems has been empirically observed and studied in numerous works, although the theory is still
largely unknown [8], [9]. An attempt to answer how the layer-parallel algorithm might resolve
this problem of vanishing gradients at initialization has been made in this paper.

2 CONNECTION OF RESIDUAL NETWORKS TO MULTIGRID-IN-TIME

The forward propagation of data in an N-layered ResNet from layer ’n’ to layer ’n+1’ is
described as follows:

𝑥0 = 𝑥𝑖𝑛 (1)

𝑥𝑛+1 = 𝑥𝑛 + 𝛽𝐹 (𝑥𝑛,𝑊𝑛)︸ ︷︷ ︸
:=Φ(𝑥𝑛 ,𝑊𝑛)

for n = 0, 1, ... , N-1 (2)

where, the function 𝐹 (𝑥𝑛,𝑊𝑛) is defined as follows:

𝐹 (𝑥𝑛,𝑊𝑛) = 𝑓𝑎 (𝜔𝑛𝑥𝑛 + 𝑏𝑛) (3)

𝑥𝑖𝑛 is the input to the ResNet at layer 0. 𝑥𝑛 is the state/output of the layer n. 𝑊𝑛 = [𝜔𝑛, 𝑏𝑛]
contains the trainable parameters including the weights matrix 𝜔𝑛 and the bias vector 𝑏𝑛. 𝛽 is a
scalar, generally chosen between [0, 1]. The operator Φ : (𝑥𝑛,𝑊𝑛) → (𝑥𝑛+1) is defined as shown
in equation (2). 𝑓𝑎 is the activation function. The ReLU (Rectified Linear Unit) activation
function defined as: 𝑓𝑎 (𝑥) = max(𝑥, 0) is used in this work.

2

Chinmay V. Datar and Harald Köstler

The link between ResNets and layer-parallelism comes from optimal control. Consider the
following initial value problem:

𝜕𝑥(𝑡)
𝜕𝑡

= 𝐹 (𝑥𝑡 ,𝑊 𝑡) 𝑡 ∈ [0, 𝑇] (4)

𝑥(0) = 𝑥𝑖𝑛 (5)

where, 𝑡 represents time, 𝑥(𝑡) represents the solution at time 𝑡, starting with an initial value
at 𝑡 = 0 given by 𝑥𝑖𝑛. 𝑇 is the final time. The dynamical systems representation describes
the evolution of the solution continuously starting from an initial value at 𝑡 = 0. A crucial
observation is that the forward propagation of the ResNet defined by equations (2), (1) could be
interpreted as a forward Euler discretization in time of the initial value problem corresponding
to equations (4) and (5). From the neural network perspective, x(t) represents the output or
state of the neural network at layer 𝑡. Here, the network transforms the output/state 𝑥(𝑡) in
discrete time-steps corresponding to successive layers.

This observation leads the ResNet training to be formulated as a discrete optimal control
problem, which is then solved using the parallel-in-time algorithm [4]. Solving for the state,
adjoint and design equations corresponds to executing forward pass, backward pass, and weights
update steps of the ResNet training, respectively. The state and adjoint equations are then solved
using the MGRIT algorithm. For instance, the state equations (forward pass) of the residual
network can be formulated as a system of equations:

©«
𝑥0

𝑥1 −Φ(𝑥0,𝑊0)
...

𝑥𝑁 −Φ(𝑥𝑁−1,𝑊𝑁−1)

ª®®®®¬
=

©«
𝑥𝑖𝑛
0
...

0

ª®®®®¬
(6)

where, block row 𝑘 of this forward pass system represents the forward pass for layer 𝑘, starting
with block row 0, which contains the input to the network. Instead of solving this state-space
system sequentially for one layer at a time, it is solved using a parallel MGRIT algorithm which
breaks the scalability barrier created by the sequential propagation of data across the layers.
This facilitates parallelism across the layer dimension. Similarly, the MGRIT algorithm is also
used to solve the adjoint system (backward pass) so that the gradients are propagated backwards
in a layer-parallel manner.

3 EVALUATION OF THE MGRIT ALGORITHM

Two regression problems defined by non-linear analytical functions are used to evaluate the
performance of the residual network with a layer-parallel approach. Both non-linear functions
𝑓1(𝑥), 𝑓2(𝑥) are maps from R6 → R1. The entries of the input vector (𝑥𝑖)i=1,..,6 are sampled
uniformly randomly from [0, 4]. The two non-linear functions 𝑓1(𝑥) and 𝑓2(𝑥) are defined as
follows:

𝑓1(𝑥) =
{ ∑6

𝑖=1(𝑥𝑖)𝑖 if
∑6

𝑖=1(𝑥𝑖)𝑖 < 400

400 if 400 ≤ ∑6
𝑖=1(𝑥𝑖)𝑖

(7)

3

Chinmay V. Datar and Harald Köstler

𝑓2(𝑥) =

∑6
𝑖=1(𝑥𝑖)𝑖 if

∑6
𝑖=1(𝑥𝑖)𝑖 < 400

400 if 400 ≤ ∑6
𝑖=1(𝑥𝑖)𝑖 < 800

800 if 800 ≤ ∑6
𝑖=1(𝑥𝑖)𝑖

(8)

A deep residual network(ResNet) architecture with fully connected/dense layers is used in
this study. The scaling factor 𝛽 in equation (2) is crucial for the stability of training. The ReLU
activation function has been shown to alleviate the problem of vanishing gradients [10] and is
thus adopted in this study. The Xbraid package [11] has been used for the scalable parallel-
in-time implementation of the multigrid-in-time algorithm. Moreover, the layer-parallel code
developed in [4] has been modified and used in this work. Now we evaluate the layer-parallel
MGRIT algorithm on regression tasks with respect to convergence, scalability, and accuracy.

3.1 Convergence

So first, we ask the question: Can the MGRIT algorithm solve state and adjoint equation
systems up to an acceptable tolerance? To this end, the convergence history of state and adjoint
equations is plotted in figure 1 for ResNets with gradually increasing depth (fixed width = 16)
and for ResNets with gradually increasing width (fixed depth = 40). The relative residual for
iteration 𝑘 is defined as : | |𝑟𝑘 | |/| |𝑟1 | |, where | |.| | represents the 𝑙2-norm and | |𝑟𝑘 | |, | |𝑟1 | | are the
absolute residuals at iteration 𝑘 and 1 respectively. In all the cases, we observed that the first
iteration of the MGRIT algorithm yields | |𝑟1 | | < 1. F-cycle MGRIT with 1 relaxation sweep on
each time-grid level was used in this study. We represent the number of layers (depth) by 𝐷

and the number of neurons per layer (width) of the network by 𝑊 .

2 4 6 8

Iterations

10−20

10−15

10−10

10−5

100

R
el
at
iv
e
R
es
id
u
al

D=160 state
D=160 adj
D=2560 state
D=2560 adj
D=10240 state
D=10240 adj

(a) Varying depth 𝐷

2 4 6 8

Iterations

10−17

10−13

10−9

10−5

10−1

R
el
at
iv
e
R
es
id
u
al

W=10 state
W=10 adj
W=100 state
W=100 adj
W=1000 state
W=1000 adj

(b) Varying width 𝑊

Figure 1: Convergence history of state equations (forward pass) and adjoint equations (backward
pass) using MGRIT algorithm used to achieve layer-parallelism across ResNets

We observe that the layer-parallel MGRIT algorithm reduces the residuals of the state and
adjoint equations rapidly and up to an acceptable tolerance, irrespective of the depth and the
width. More details on the values of acceptable tolerances for the state and adjoint equations
are discussed later. However, it is important to emphasize that higher accuracy of forward
and backward passes does not necessarily translate into higher accuracy of training on a given

4

Chinmay V. Datar and Harald Köstler

classification or regression task. In practice, especially in deep learning, an accuracy to machine
precision is often not desired.

Secondly, only 1-2 more iterations are required for the ResNet with 10240 layers to produce a
relative residual of the same order of magnitude as compared with the ResNet with 160 layers,
though the problem size is bigger by a factor of 64. The same holds true for increasingly wider
networks. The network dimensions in consideration are much larger than the ones used in
practice. Thus, the convergence results demonstrate that the MGRIT algorithm can be used in
most of the practical ResNets.

3.2 Scalability

A strong scaling study allows evaluating how speed-up over a fixed problem size scales with

the number of processors. The speed-up in this context is defined as S𝐿𝑆 =
𝑇1
𝐿𝑆

𝑇
∥
𝐿𝑃

, where, 𝑇1
𝐿𝑆

is

the time required by a single CPU using a layer-serial algorithm and 𝑇
∥
𝐿𝑃

is the time required
by 𝑃 processors using the layer-parallel MGRIT algorithm to execute one forward pass and one
backward pass for one batch of examples.

To this end, the figure 2a demonstrates how speed-up scales with the processor count for
ResNets with a depth of 20, 320, and 5120, respectively. The width is fixed at 16. The horizontal
solid blue line indicates the threshold beyond which the layer-parallel algorithm is faster.

1 5 20 80 320 1280

Processors

0.0625

0.25

1

4

16

64

256

S
p
ee
d
-u
p
(S

𝐿
𝑆
)

20 layers

320 layers

5120 layers

(a) Strong scaling

160 320 640 1280

Cores

0

10

20

30

T
im

e
(s
)

Layer-parallel
Layer-serial

640 1280 2560 5120

Layers

(b) Weak scaling

Figure 2: Evaluation of the MGRIT algorithm with respect to parallel scalability

We observe that the deeper the network, the higher the potential for parallelism across the
layers and the greater the speed-ups. Using fewer layers restricts parallelism by restricting the
maximum number of processors. Moreover, parallel efficiency is much higher for deeper networks
as more processors can be exploited efficiently.

Secondly, we see that increasing the number of processors beyond a particular point does not
increase the speed-up further owing to the barrier imposed by the serial fraction of the code.

The computational costs of the layer-parallel MGRIT algorithm and the layer-serial algorithm
scale linearly with respect to the number of layers. On the one hand, the MGRIT algorithm

5

Chinmay V. Datar and Harald Köstler

requires more work (floating-point operations) per iteration as compared to the layer-serial
algorithm. On the other hand, the MGRIT algorithm has a much higher parallel workload
as compared to the layer-serial algorithm. Thus, the MGRIT algorithm trades parallelism for
additional computational work. This explains why the MGRIT algorithm achieves speed-ups
over the layer-serial algorithm by exploiting at least around 5-20 processors depending on the
problem size.

In weak scaling, the workload increases with the processor count, unlike in strong scaling.
Figure 2b shows the weak scaling behavior of the multigrid-in-time algorithm. The number of
layers distributed per processor has been fixed to 4. The number of compute cores and the
number of layers are doubled progressively from 80 to 1280 (bottom x-axis) and from 320 to
5120 (top x-axis) respectively. The blue curve indicates that the runtime for the layer-serial
algorithm scales linearly with respect to the number of layers using a single CPU (the bottom x-
axis is irrelevant for the blue curve). Whereas, a multigrid-in-time algorithm facilitates exploiting
parallelism across the layers, thereby, breaking the scalability barrier with respect to the number
of layers. The slight increase in run times for the parallel algorithm with an increasing number
of resources is mainly due to the communication overhead between the processors.

3.3 Performance

The goal of this section is to try to answer the following questions: How do the training
losses obtained using layer-serial and layer-parallel algorithms compare? Does the layer-parallel
algorithm outperform the layer-serial algorithm in terms of total training time, and if yes, what
are the speed-up factors? Can one circumvent the problem of vanishing gradients at initialization
using a layer-parallel algorithm?

A fully connected ResNet architecture is used for the regression problems under considera-
tion. Convolutional layers are not used to avoid enforcing local connectivity in features when
none is expected. The widths of the input, output, and hidden layers are 6, 1, and 16, respect-
ively, for both regression problems. ResNets with 322 layers and 50 layers are used for the first
and the second regression tasks, respectively. ReLU activation function is used. The scaling
factor 𝛽 = 0.1 in equation 2 is used. The neural network is initialized with random values gener-
ated between [0, 10−3]. For both regression tasks, each successive coarser time grid has 4 times
fewer time points (layers). The MGRIT iterations are continued until 𝑙2-norms of residuals of
forward and backward pass systems are less than the user-defined tolerances for the forward
and backward passes (𝑡 𝑓 , 𝑡𝑏) respectively. The tolerance values in the range [10−2, 10−14] in
steps of 10−2 were included in the hyper-parameter study. The optimal pairs of tolerance values
based on the lowest training loss achieved on the two regression tasks were (10−8, 10−8) and
(10−4, 10−6) respectively. The network is trained in mini-batches using the gradient-based sim-
ultaneous optimization approach - One-shot method [12] that updates optimization parameters
simultaneously while solving for time-dependent network states. Inexact gradient information
is used to accelerate the training process [12], [4].

The compute nodes of the Meggie cluster of the Regional Data Center in Erlangen (RRZE) at
the Friedrich-Alexander University of Erlangen-Nuremberg are used for training neural networks.
The compute nodes are equipped with Intel Xeon E5-2630v4 “Broadwell” chips which have 10
cores per chip. To ensure accurate time measurements and reproducible results, the clock

6

Chinmay V. Datar and Harald Köstler

frequency is fixed to 2.2 GHz and the process affinity is controlled.
To gain insights into the accuracy of predictions and speed-ups based on total training time,

training loss with respect to time is plotted for the layer-serial and layer-parallel algorithms for
both regression tasks in figure 3.

0 2000 4000 6000

Time(s)

10−3

10−2

10−1

T
ra
in
in
g
lo
ss

Layer-parallel

Layer-serial

(a) Non-linear regression task - 1 (eq (7))

0 200 400 600

Time(s)

10−2

10−1

T
ra
in
in
g
lo
ss

Layer-parallel

Layer-serial

(b) Non-linear regression task - 2 (eq (8))

Figure 3: Training loss with respect to time for layer-serial and layer-parallel implementation

The following table compares the lowest losses achieved on training and validation data sets
using the layer-parallel and layer-serial algorithms on both regression tasks. The final losses

Table 1: Lowest losses attained on training and validation data sets

Dataset
Training loss Validation loss

Layer-parallel Layer-serial Layer-parallel Layer-serial

1 2.46 × 10−4 4.53 × 10−4 2.82 × 10−4 5.52 × 10−4

2 2.36 × 10−3 2.84 × 10−3 3.31 × 10−3 3.75 × 10−3

attained by the layer-parallel algorithm on training and validation data sets, on the first and
second regression tasks are slightly lower and slightly higher, respectively, as compared to [13].
Moreover, the losses obtained on validation data sets are quite close to the ones obtained on
training data sets. This confirms that the network generalizes well on unseen examples and that
the network does not over-fit on examples in the training data set.

Approximately solving for forward and backward passes using the MGRIT algorithm yields
slightly lower losses as compared to the exact layer-serial algorithm. Moreover, the loss using
the layer-serial algorithm is observed to stagnate at initialization and midway through training
in brief patches. Whereas, the layer-parallel algorithm demonstrates much more efficient loss
curves - free from the stagnation of losses till the final loss is attained. Our hypothesis explaining
this behavior is discussed later.

Let tser and tpar be the times in seconds required by layer-serial algorithm and layer-parallel
algorithms, respectively, in attaining losses lower than some reference threshold - indicated by

7

Chinmay V. Datar and Harald Köstler

the horizontal lines in the figure 3. The speed-up based on total training times in attaining these
reference losses are defined as: Speeduptraining = tser/tpar.

The following table summarizes the speed-ups on both regression tasks:

Table 2: Speed-up in total training time

Dataset Reference training loss tpar(s) tser(s) Speeduptraining

1 5 × 10−4 718 5233 7.2x
2 6 × 10−3 74 385 5.2x

The substantial speed-ups successfully demonstrate the utility of the layer-parallel algorithm
in reducing the total training time. However, we observe that the speed-ups stemming from the
faster execution of the forward and backward passes using the layer-parallel algorithm only shrink
the total training time by 42% and 70% on the first and second regression tasks respectively.
So, what is responsible for the substantial speed-up factors of 7.2 and 5.2 observed before on
both regression tasks, respectively?

To attempt to answer this question, training loss with respect to iterations is plotted for both
regression tasks in figure 4. The reference loss is indicated by the horizontal solid black lines in
figure 4.

0 2000 4000 6000

Iterations

10−3

10−2

10−1

T
ra
in
in
g
lo
ss

Layer-parallel

Layer-serial

(a) Non-linear regression task - 1 (eq (7))

0 250 500 750 1000

Iterations

10−2

10−1

T
ra
in
in
g
lo
ss

Layer-parallel

Layer-serial

(b) Non-linear regression task - 2 (eq (8))

Figure 4: Training loss using layer-serial and layer-parallel algorithms with respect to iterations

At initialization, the layer-parallel algorithm starts reducing the loss in substantially fewer
iterations as compared to the layer-serial algorithm on both regression tasks. Moreover, for
the same iteration number, the training loss attained by the layer-parallel algorithm is lower as
compared to the layer-serial algorithm. The following table summarizes the respective number of
iterations required to achieve some reference loss using layer-serial and layer-parallel algorithms,
respectively.

8

Chinmay V. Datar and Harald Köstler

Table 3: Training loss vs optimization iterations

Dataset Training loss Iterparallel(s) Iterserial(s) Iterserial/Iterparallel
1 5 × 10−4 1103 5880 5.3
2 6 × 10−3 159 479 3.01

Factors 5.3 and 3 indicate that a large fraction of the speed-up results from efficient learning
curves of the layer-parallel algorithm. However, this is not always the case. It is important
to note that for different MGRIT tolerance values, the dominant fraction of the total speed-up
stems from the faster execution of forward and backward passes. However, for the examples in
consideration, this led to a decrease in total speed-up.

The stagnation of training loss at network initialization is an artifact of the vanishing gradient
problem for deep neural networks. It is demonstrated in [5], that for networks much deeper than
wider, the entries of gradient, as well as the Hessian of the objective function, get smaller. Ran-
dom independent and identically distributed initialization results, it optimizers being initialized
in a flat plateau, which is especially challenging for the stochastic gradient descent algorithm to
escape [14]. The layer-parallel algorithm appears to be less susceptible to the optimizer getting
the objective function trapped in a flat plateau at initialization as well as in the local minimum.
It is important to stress that this behavior has been observed in both regression cases.

Many studies have shown that adding noise in neural network training using various ap-
proaches, allows the optimization algorithm to escape local minima and saddle-point-like plat-
eaus of the objective function [8], [9]. To explain efficient learning curves using a layer-parallel
algorithm, we hypothesize that the error stemming from the approximation of layer-serial for-
ward and backward passes by an iterative multigrid-in-time algorithm allows the optimization
algorithm to escape from this flat plateau in much fewer iterations and to avoid getting stuck
into a local minimum.

To test this hypothesis, we conducted the following experiments on a traditional ResNet with
layer-serial forward and backward passes. In the first experiment, random noise is artificially
injected into the forward propagation step in the output of each layer. In the second experiment,
random noise is injected in the backward propagation step of each layer. The magnitude of the
noise is governed by the parameter 𝑐. Random numbers are sampled from a uniform distribution
between [-c, c] for each neuron of each hidden layer. With all the other hyper-parameters fixed,
a neural network is then trained on the first data set for different values of ’c’ ranging from
[10−1, 10−2, ..., 10−10].

Adding noise to the output of each layer in the forward pass results in a perturbed output
of each layer, resulting in a perturbed prediction produced by the neural network. Whereas,
adding noise in the backward pass, updates the weights along a direction perturbed from the
steepest descent direction. The resulting training loss with respect to iterations for the first and
second experiments are plotted in figure 5a and figure 5b respectively.

Loss curves in figure 5 are displayed only for a few selected values of the scaling constant 𝑐

in order to avoid redundancy. The first crucial observation is that for multiple values of scaling
factor 𝑐, the first rapid reduction of loss occurs in much fewer iterations on both data sets. This
behavior has been observed for a wide range of values of 𝑐 between [10−3, 10−9], though not all

9

Chinmay V. Datar and Harald Köstler

0 2500 5000 7500 10000

Iterations

10−2

100

102

T
ra
in
in
g
lo
ss

No noise

c=1e-2

c=1e-4

c=1e-6

c=1e-7

(a) Experiment 1: loss curve for artificially injected
noise in forward pass

0 2500 5000 7500 10000

Iterations

10−3

10−2

10−1

T
ra
in
in
g
lo
ss

No noise

c=1e-2

c=1e-4

c=1e-6

c=1e-9

(b) Experiment 2: loss curve for artificially injected
noise in backward pass

Figure 5: Effect of adding uniformly distributed noise in range [−𝑐, 𝑐] in the outputs of forward
and backward propagation steps of each hidden layer on loss curves

loss curves corresponding to different values of 𝑐 are included in figure 5.
Adding too much noise in both experiments, for instance, for 𝑐 = 10−2 renders the network

incapable of extracting any patterns. For 𝑐 ∈ [10−3, 10−6], the optimization algorithm achieves a
first rapid decline of training loss in much fewer iterations. At the beginning of the training, the
added noise appears to be helping the objective function escape the flat plateau at initialization.
However, once some local minimum is attained, the magnitude of noise starts dominating and
the optimization algorithm fails at reducing the loss further.

These observations support our hypothesis that adding noise in training can lead the optimizer
to escape the flat plateau at initialization. Much more evidence needs to be provided to support
this hypothesis. However, this will be an interesting investigation for future work.

Lastly, the figure 6 demonstrates that layer-parallel ResNet predictions on both non-linear
regression tasks are quite accurate.

4 CONCLUSIONS

We first extend the framework [4] to facilitate training ResNets in a layer-parallel manner
on regression tasks. In this paper, we evaluate the MGRIT algorithm that allows layer-parallel
training of deep residual networks with respect to convergence, scalability, and performance on
regression tasks.

First, we demonstrate that the layer-parallel algorithm can solve systems of equations cor-
responding to the forward and the backward passes respectively, up to a reasonable tolerance
with a few MGRIT iterations. We demonstrate this for networks ranging from very deep (with
up to 10,000 layers) to very wide (with up to 1000 neurons per layer). We recommend using 1
relaxation sweep on each time-grid level in V and F cycles, as additional relaxation sweeps do
not increase the convergence rate significantly.

In our experiments, we see that the number of processors required by the layer-parallel

10

Chinmay V. Datar and Harald Köstler

(a) Non-linear regression task - 1 (eq (7))

(b) Non-linear regression task - 2 (eq (8))

Figure 6: Layer-parallel ResNet prediction Vs ground truth on 200 instances from the test data
for data sets 1 and 2

algorithm to outperform the layer-serial algorithm lies between 5 to 20 depending on the network
depth and tolerance. We recommend performing a hyper-parameter search for finding optimal
tolerances for forward and backward propagation systems, as these influence the run time of
the layer-parallel algorithm. Secondly, we demonstrate that the layer-parallel algorithm breaks
the scalability barrier with respect to the depth of the network on regression tasks. Moreover,
deeper networks have higher parallel efficiency and exhibit higher speed-ups over the layer-serial
algorithm.

In our experiments, the ResNet training with a layer-parallel algorithm was able to attain a
lower loss and much faster (roughly 7.2x and 5.2x faster) as compared to the ResNet trained
using a layer-serial algorithm.

Lastly, we demonstrate that adding noise to a layer-serial forward or a backward pass helps the
optimizer escape the flat saddle-point-like plateau at initialization. This supports our hypothesis
that the noise induced in the training by approximately solving the forward and backward pass
systems helps the optimization algorithm to escape a flat plateau at initialization and local
minima. However, much more evidence and theoretical studies are needed to bolster these
empirical results.

11

Chinmay V. Datar and Harald Köstler

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–
778, 2016.

[2] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen,” Diploma, Technische
Universität München, vol. 91, no. 1, 1991.

[3] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder, “Parallel
time integration with multigrid,” SIAM Journal on Scientific Computing, vol. 36, no. 6,
pp. C635–C661, 2014.

[4] S. Gunther, L. Ruthotto, J. B. Schroder, E. C. Cyr, and N. R. Gauger, “Layer-parallel
training of deep residual neural networks,” SIAM Journal on Mathematics of Data Science,
vol. 2, no. 1, pp. 1–23, 2020.

[5] A. Orvieto, J. Kohler, D. Pavllo, T. Hofmann, and A. Lucchi, “Vanishing curvature and
the power of adaptive methods in randomly initialized deep networks,” arXiv preprint
arXiv:2106.03763, 2021.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

[7] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proceedings of the thirteenth international conference on artificial intelligence
and statistics, pp. 249–256, JMLR Workshop and Conference Proceedings, 2010.

[8] Y. Fang, Z. Yu, and F. Chen, “Noise helps optimization escape from saddle points in the
synaptic plasticity,” Frontiers in neuroscience, vol. 14, p. 343, 2020.

[9] T. Liu, Y. Li, S. Wei, E. Zhou, and T. Zhao, “Noisy gradient descent converges to flat
minima for nonconvex matrix factorization,” in International Conference on Artificial In-
telligence and Statistics, pp. 1891–1899, PMLR, 2021.

[10] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceedings
of the fourteenth international conference on artificial intelligence and statistics, pp. 315–
323, JMLR Workshop and Conference Proceedings, 2011.

[11] “XBraid: Parallel multigrid in time.” http://llnl.gov/casc/xbraid.

[12] T. Bosse, N. R. Gauger, A. Griewank, S. Günther, and V. Schulz, “One-shot approaches to
design optimzation,” Trends in PDE Constrained Optimization, pp. 43–66, 2014.

[13] D. Chen, F. Hu, G. Nian, and T. Yang, “Deep residual learning for nonlinear regression,”
Entropy, vol. 22, no. 2, p. 193, 2020.

[14] H. Daneshmand, J. Kohler, A. Lucchi, and T. Hofmann, “Escaping saddles with stochastic
gradients,” in International Conference on Machine Learning, pp. 1155–1164, PMLR, 2018.

12

