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Abstract. In this work, we propose an efficient methodology for the assessment of noise trans-
mission through cables and hoses. An interactive simulation with a geometrically exact Cosserat
rod enables simple and fast modelling of various configurations. Subsequently, we linearise the
equations of motion at the static equilibrium for given boundary conditions and, using the re-
sulting system matrices, compute the mechanical impedance matrix. The computation result,
i.e. the impedance matrix, is available within seconds.

The impedance matrix either can be used to compute reaction forces for given excitation or,
if the excitation is unknown, allows to analyse the transmission of noise by looking at single
matrix elements. The latter is especially useful in early, purely virtual development phases.

1 INTRODUCTION

Modern vehicles are full of cables and hoses. Kilometres of wiring harness can be found e.g. in
doors, seats, the axle or on the engine. Also hoses perform important functions and are therefore
numerous in the vehicle. Apparently, the development of battery-electric vehicles requires new
assembly concepts, e.g. for cooling hoses, or even new components like high-voltage cables.
In both cases, well known assembly concepts typically are not applicable or simply unknown.
Therefore, an interactive assembly simulation of cables and hoses is very helpful and widely used
in vehicle development [1, 2]. The simulation utilizes a geometrically non-linear rod model as
presented in [3, 4].

In this work, we focus on the topic of noise transmission through cables and hoses. In
practice, cables and hoses may transmit undesired noise into the vehicle cabin. To assess this
noise transmission already in early design phases of the vehicle development, we suggest an
efficient and simple methodology: linearise a geometrically exact rod at its static equilibrium
and compute the mechanical impedance.

The interactive rod simulation as described in [3] allows an easy and comfortable generation
of configuration variants, e.g. a cable with different boundary conditions or a hose with an
alternative stress-free shape (see Figure 1). In general, an assembled cable or hose, i.e. the
static equilibrium of a rod under given boundary conditions, is pre-stressed and undergoes
large deformations, such that a geometrically non-linear rod model is essential. Nevertheless,
to compute the mechanical impedance matrix, a linearised version of the rod’s equations of
motion is required. This is achieved by applying algorithmic differentiation to the non-linear
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Figure 1: Interactive manipulation of the stress-free hose shape in IPS Cable Simulation [2].

equations of motion. Finally, the mechanical impedance matrix is computed from the linear
system matrices and one can investigate the noise transmission. The entire computation only
takes seconds, such that many variants can easily be analysed and compared.
If a concrete excitation vector is known, the impedance matrix allows to compute reaction forces
at the rod’s boundaries. However, often the excitation vector might be unknown, e.g., in early
development phases. In this case, one can analyse single elements of the impedance matrix, each
describing how vibrations are transmitted from a certain boundary degree of freedom to another
boundary degree of freedom.

The paper is structured as follows: In Section 2 we describe a geometrically exact Cosserat
rod and its non-linear equations of motion. After that, in Section 3, we discuss their linearised
version. Section 4 shows how to compute the mechanical impedance. Finally, an application
example is presented in Section 5, before we give some concluding remarks in Section 6.

2 GEOMETRICALLY EXACT COSSERAT ROD

Our starting point is the geometrically exact Cosserat rod as given in [3, 4]. It allows a
real-time capable user interaction and, thus, enables interactive modifications of the rod, either
by changing its preformed shape (i.e. its stress-free configuration) or by manipulating the rod
connectors (i.e. its boundary conditions).

We first will introduce the continuous Cosserat rod. After that, we focus on its discrete
counterpart and present the corresponding equations of motion.

2.1 Continuous Cosserat rod

The continuous version of the rod with length L and simulation time T is described with a
centreline

x : [0, L]× [0, T ] → R3, (s, t) 7→ x(s, t) (1)

and the orientation frame

R ◦ p : [0, L]× [0, T ] → SO(3), (s, t) 7→ R(p(s, t)). (2)
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Figure 2: Continuous Cosserat rod with centreline x(s) and moving frame R(p(s)).

Here, the rotation is parametrized by unit quaternions (‖p‖ = 1)

p : [0, L]× [0, T ] → S3 ⊂ R4, (s, t) 7→ p(s, t) (3)

which can be written as

p = ps + pxi+ pyj + pzk (4)

with basis vectors given as the standard basis i = e1, j = e2 and k = e3. Every quaternion p has
a conjugate quaternion p̄ = ps − p̂, where we abbreviate the imaginary part of the quaternion
by p̂ := pxi+ pyj + pzk. For two quaternions p and q, the sum is simply given as

p+ q := (ps + qs) + (px + qx)i+ (py + qy)j + (pz + qz)k, (5)

while the quaternion product is defined as

pq := psqs − 〈p̂, q̂〉+ psq̂ + qsp̂+ p̂× q̂. (6)

The quaternion product can also be written as matrix vector multiplication. For that purpose,
we define the quaternion matrix

Q(p) :=


ps −px −py −pz
px ps −pz py
py pz ps −px
pz −py px ps

 , (7)

such that it holds pq = Q(p)q and p̄q = Q(p)Tq.
The Euler map R : S3 \ {±1} → SO(3), p 7→ R(p) maps unit quaternions on rotation matrices

R(p) =

p2
s + p2

x − p2
y − p2

z 2(pxpy − pspz) 2(pxpz + pspy)

2(pxpy + pspz) p2
s − p2

x + p2
y − p2

z 2(pypz − pspx)

2(pxpz − pspy) 2(pypz + pspx) p2
s − p2

x − p2
y + p2

z

 . (8)

It holds R(pq) = R(p)R(q), R(p̄) = R(p)T and R(−p) = R(p). Moreover, for a purely
imaginary quaternion, i.e. a vector z ∈ R3, we have R(p)z = pzp̄, where the multiplication has

to be understood as quaternion product with
[
0, zT

]T
.
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The curvature vector and shear-extensional strain vector, are given as

K = 2p̄∂sp and Γ = p̄∂sxp− e3. (9)

The preformed shape of the rod is given by a pre-curvature vector K0 and we define ∆K :=
K −K0. The elastic potential energy can be formulated as

V =
1

2

∫ L

0
ΓTCΓΓ︸ ︷︷ ︸

shearing & extension

+ ∆KTCK∆K︸ ︷︷ ︸
bending & torsion

ds (10)

with coefficient matrices containing the effective stiffness parameters

CΓ =

[GA1]
[GA2]

[EA]

 and CK =

[EI1]
[EI2]

[GJ ]

 . (11)

Those parameters combine material quantities (Young’s modulus E and shear modulus G) and
geometrical quantities (cross section area A, shear corrected cross section areas A1 and A2,
geometric cross section moments of inertia I1 and I2 and the polar moment J) and, thus,
formally depend on each other. However, for practical applications it is beneficial to consider
the effective stiffness parameters as independent compound parameters. The notation within
brackets [·] shall emphasize this fact.

Similar to the elastic potential energy, the dissipative energy D can be formulated with
curvature and strain rates K̇ and Γ̇

D =
1

2

∫ L

0
Γ̇
T

[ηGA1]
[ηGA2]

[ηEA]

 Γ̇ + K̇
T

[ηEI1]
[ηEI2]

[ηGJ ]

 K̇ ds. (12)

Again, the effective damping parameters are considered as independent compound parameters,
although depending on each other via ηE and ηG.

The above dissipative energy implies a Kelvin-Voigt type damping. Although coming with
some potential drawbacks, our approach has shown to be practically useful for transient dynamic
simulations (see [5] for more details). One main advantage is that one can adjust stiffness
parameters and damping parameters individually. If the Kelvin-Voigt type damping is also
beneficial for the assessment of noise transmission, is not yet qualified. However, it will an
optional damping approach, as we will see later in Section 4.

Finally, the kinetic energy is given as

T =
%A

2

∫ L

0
‖ẋ‖ds︸ ︷︷ ︸

translatory

+
%

2

∫ L

0
ωT Iωds︸ ︷︷ ︸

rotatory

, (13)

where % is the density. The inertia tensor I is diagonal and contains I1, I2 and J as diagonal
elements.

In principle, now one can derive equations of motion by applying the Lagrangian formalism.
For more details, we refer to [4]. In this paper, we only present equations of motion for the
discrete rod.
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2.2 Discrete Cosserat rod

Figure 3: Discrete Cosserat rod with staggered grid: positions xn in the nodes, unit quaternions pn− 1
2

on the edges.

For the spatially discrete Cosserat rod, a staggered grid is used (see Figure 3) with translatory
degrees of freedom

x0, x1, . . . , xN ∈ R3 (14)

situated in the N + 1 nodes and rotatory degrees of freedom, here: unit quaternions,

p 1
2
, p1+ 1

2
, . . . , pN− 1

2
∈ S3 (15)

on the N edge midpoints. The edge length is defined as ∆sn− 1
2

:= sn−sn−1. Moreover, we define

δsn := 1
2

(
∆sn+ 1

2
+ ∆sn− 1

2

)
for n = 1, ..., N − 1 and δs0 := 1

2∆s 1
2

as well as δsN := 1
2∆sN− 1

2
.

The discrete versions of shear-extensional strain vectors Γn− 1
2
, situated on edges, and curva-

ture vectors Kn (and pre-curvatures K0
n, such that ∆Kn := Kn −K0

n), situated at the nodes,
allow to formulate the discrete elastic potential energy as

V =
1

2

N∑
n=1

∆sn− 1
2
ΓT
n− 1

2

CΓΓn− 1
2︸ ︷︷ ︸

shearing & extension

+
1

2

N∑
n=0

δsn∆KT
nC

K∆Kn︸ ︷︷ ︸
bending & torsion

, (16)

while strain and curvature rates are used to write the discrete dissipative energy

D =
1

2

N∑
n=1

∆sn− 1
2
Γ̇
T
n− 1

2
CΓ̇Γ̇n− 1

2
+

1

2

N∑
n=0

δsnK̇
T
nC

K̇K̇n. (17)

The discrete kinetic energy is given as

T =
%A

2

N∑
n=0

δsn‖ẋn‖2︸ ︷︷ ︸
translatory

+
%

2

N∑
n=1

∆sn− 1
2
ṗT
n− 1

2

(
4Q(pn− 1

2
)IQ(pn− 1

2
)T
)
ṗn− 1

2︸ ︷︷ ︸
rotatory

. (18)
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Here, we rewrite the material angular velocity in terms of quaternions as ωn− 1
2

= 2p̄n− 1
2
ṗn− 1

2

and used the quaternion matrix Q(p) to represent the quaternion multiplication.
Equations (16), (17) and (18) are discrete approximations of (10), (12) and (13), utilizing suitable
quadrature rules. A detailed presentation can be found in [4].

The corresponding semi-discrete equations of motion are given by the Euler-Lagrange equa-
tions with the Lagrangian L = T − V − D. For the translatory degrees of freedom, we get

mnẍn = − ∂V
∂xn

− ∂D
∂ẋn

+ F x
n(t) =: fx

n for n = 0, 1, . . . , N (19)

with scalar mass mn = %Aδsn and external force F x
n(t). For the rotatory degrees of freedom,

we end up with a system of differential-algebraic equations

M(pn− 1
2
)p̈n− 1

2
= fp

n− 1
2

− pn− 1
2
λn− 1

2

0 = 1
2(‖pn− 1

2
‖2 − 1)

for n = 1, 2, . . . , N (20)

with quaternion mass matrix M(pn− 1
2
) = 4%∆sn− 1

2
Q(pn− 1

2
)IQ(pn− 1

2
)T . On the right hand

side, it holds fp

n− 1
2

:= − ∂V
∂p

n− 1
2

− ∂D
∂ṗ

n− 1
2

+ ∂T
∂p

n− 1
2

− ∂
∂p

n− 1
2

(
M(pn− 1

2
)ṗn− 1

2

)
ṗn− 1

2
+F p

n− 1
2

(t) with

external quaternion moments F p

n− 1
2

(t). The gradient of the unit quaternion constraint is pT
n− 1

2

and leads to constraint forces −pn− 1
2
λn− 1

2
.

For a compact notation, we summarize all nodes xn, n = 0, ..., N , resp. all unit quaternions
pn− 1

2
, n = 1, ..., N , in state vectors x and p and write the equations of motion for the discrete

Cosserat rod as (
mI

M(p)

)(
ẍ
p̈

)
=

(
fx(x,p, ẋ, ṗ)
fp(x,p, ẋ, ṗ)

)
−
(

0
Gp(p)T

)
λ (21)

0 = g(p)

where M(p) should be understood as the block-diagonal collection of all quaternion mass ma-
trices, g(p) is the collection of all unit quaternion constraints and Gp(p) the corresponding
gradients. Moreover, fx(x,p, ẋ, ṗ) and fp(x,p, ẋ, ṗ) represent all node forces fx

n and quater-
nion moments fp

n− 1
2

.

3 LINEAR EQUATIONS OF MOTION

The above system of differential-algebraic equations is non-linear. Before we can compute the
mechanical impedance, we need to derive the linearised system, i.e. the corresponding system
matrices.

3.1 Linearisation

Let
(
x̃T , p̃T , λ̃

T
)T

be the static equilibrium state of the rod for given boundary conditions.

Consequently, it holds ˙̃x = 0 and ˙̃p = 0 as well as ¨̃x = 0 and ¨̃p = 0. With perturbations
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(
δxT , δpT , δλT

)T
we write the disturbed states as

x = x̃+ δx, p = p̃+ δp, λ = λ̃+ δλ, (22)

ẋ = δẋ, ṗ = δṗ, (23)

ẍ = δẍ, p̈ = δp̈. (24)

Plugging the disturbed state into the equations of motion (21), we find(
mI

M(p̃+ δp)

)(
δẍ
δp̈

)
=

(
fx(x̃+ δx, p̃+ δp, δẋ, δṗ)
fp(x̃+ δx, p̃+ δp, δẋ, δṗ)

)
−
(

0
Gp(p̃+ δp)T

)
(λ̃+ δλ)

0 = g(p̃+ δp)

and the linearisation leads to(
mI

M(p̃)

)(
δẍ
δp̈

)
=−

(
Kxx Kxp

Kpx Kpp

)(
δx
δp

)
−
(
Dxx Dxp

Dpx Dpp

)(
δẋ
δṗ

)
−
(

0
Gp(p̃)T

)
δλ (25)

0 = Gp(p̃)δp

with stiffness and damping matrices(
Kxx Kxp

Kpx Kpp

)
:= −

(
∂fx

∂x
∂fx

∂p
∂fp

∂x
∂fp

∂p

)∣∣∣∣∣
(x̃,p̃,0,0)

+

(
0 0

0
∂(Gp(p)Tλ)

∂p

∣∣∣
(p̃,λ̃)

)
(26a)

(
Dxx Dxp

Dpx Dpp

)
:= −

(
∂fx

∂ẋ
∂fx

∂ṗ
∂fp

∂ẋ
∂fp

∂ṗ

)∣∣∣∣∣
(x̃,p̃,0,0)

. (26b)

In principle, the linear system matrices can be computed analytically. However, in our imple-
mentation, the linear system matrices are derived by applying algorithmic differentiation. This
is done with the C++ library CoDiPack [6].

3.2 Transfer to Euclidean moments

Although quaternions are – from our perspective – very attractive to be used, at this particular
task the non-regular quaternion mass matrix, the constraint forces due to the unit quaternion
constraint and the less-intuitive interpretation is undesired and we prefer the formulation in
Euclidean moments. To this end, we use a suitable null space matrix

Tp(p) =
1

2


−px −py −pz
ps −pz py
pz ps −px
−py px ps

 (27)

which fulfils GpTp = 0 and allows to formulate the rotatory equations of motion in minimal
coordinates δφ. One may recognize, that the columns of Tp(p) are, up to the factor 1

2 , equal to
the last three columns in the quaternion matrix Q(p).
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We decompose the quaternion perturbations into δp = Tpδφ+Gp
T ξ, i.e. a tangential and a

perpendicular contribution. Next, from 0 = Gpδp = GpTpδφ +GpGp
T ξ = GpGp

T ξ, we find
ξ = 0 such that δp = Tpδφ. Moreover, it holds δṗ = Tpδφ̇ and δp̈ = Tpδφ̈. Plugging this into
(25) and left-multiplication with Tp

T yields(
mI

Tp
TM(p̃)Tp

)
︸ ︷︷ ︸

=:M

(
δẍ

δφ̈

)
=−

(
Kxx KxpTp

Tp
TKpx Tp

TKppTp

)
︸ ︷︷ ︸

=:K

(
δx
δφ

)

−
(

Dxx DxpTp
Tp

TDpx Tp
TDppTp

)
︸ ︷︷ ︸

=:D

(
δẋ

δφ̇

)
−
(

0

Tp
TGp

T

)
︸ ︷︷ ︸

=0

δλ (28)

0 = GpTpδφ ≡ 0

where constraint forces vanish and the constraint equation is fulfilled per definition. To ease the

notation, we introduce a generalized state vector y =
(
δxT , δpT

)T
and simply write

Mÿ + Ky + Dẏ = 0. (29)

4 MECHANICAL IMPEDANCE

The equations of motion in the frequency domain, with Fourier-transformed states ŷ(ω), are

−ω2Mŷ(ω) + Kŷ(ω) + iωDŷ(ω) = 0. (30)

Here, we introduce structural damping (cf. [7, Ch. 4.8]), we allow a frequency-dependent stiffness
matrix K(ω) and we assume the viscous damping matrix D to have several contributions

−ω2Mŷ(ω) + (1 + iγ)K(ω)ŷ(ω) + iω (DKV + Dmodal)︸ ︷︷ ︸
=D

ŷ(ω) = 0. (31)

The structural damping coefficient γ specifies an additional imaginary stiffness matrix and pro-
vides a frequency-independent damping. Supporting K(ω) is motivated by possible stiffening
effects for larger frequencies. Finally, the generalized viscous damping matrix D combines
DKV, which results from the linearisation and thus inherits the Kelvin-Voigt type damping,
and Dmodal. The latter may be constructed, e.g., by Rayleigh damping, modal damping or
augmented modal damping (see [7, Ch. 10.3]). All properties are optional and must be set
according to the specific application. A more thorough analysis of suitable property options is
future work.

To compute the mechanical impedance, we follow [8, Ch. 8.1]. According to the clamping
of the rod, we define nu boundary degrees of freedom u and nq internal degrees of freedom q.
Assuming the degrees of freedom are correspondingly rearranged, we can write the equations of
motion as[

−ω2

(
Muu

Mqq

)
+ (1 + iγ)

(
Kuu Kuq

Kqu Kqq

)
+ iω

(
Duu Duq

Dqu Dqq

)](
û
q̂

)
=

(
f̂u
0

)
(32)
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Figure 4: Rod with boundary degrees of freedom u and internal degrees of freedom q.

with reaction forces f̂u at the boundary degrees of freedom. For a shorter notation, we summa-
rized the viscous damping again in D and skipped the frequency-dependence in the state vector,
the force vector and the stiffness matrix. From (32) we get the two block equations

f̂u =
[
(1 + iγ)Kuu + iωDuu − ω2Muu

]
û+ [(1 + iγ)Kuq + iωDuq] q̂ (33a)

0 = [(1 + iγ)Kqu + iωDqu] û+
[
(1 + iγ)Kqq + iωDqq − ω2Mqq

]
q̂ (33b)

where the lower one can be solved for the internal degrees of freedom

q̂ = −
[
(1 + iγ)Kqq + iωDqq − ω2Mqq

]−1
[(1 + iγ)Kqu + iωDqu] û. (34)

If we plug this into the upper block equation, we get

f̂u(ω) = Z(ω)û(ω) (35)

with impedance matrix Z(ω) ∈ Cnu×nu given as

Z(ω) =
[
(1 + iγ)Kuu + iωDuu − ω2Muu

]
−
[
(1 + iγ)Kuq + iωDuq

]
·
[
(1 + iγ)Kqq + iωDqq − ω2Mqq

]−1[
(1 + iγ)Kqu + iωDqu

]
. (36)

Obviously, if the excitation vector û(ω) is known, one can compute the reaction forces f̂u(ω) =
Z(ω)û(ω) by applying the impedance matrix to the excitation vector. However, often – espe-
cially in early virtual development phases – the excitation vector is not available. In this case,
one simply investigates the elements of the impedance matrix. Each column of the impedance
matrix can be interpreted as the multiplication with the corresponding unit excitation vector.
Moreover, each element of the this column represents the transmission of the unit excitation to
the corresponding boundary degree of freedom.

5 APPLICATION EXAMPLE

We consider a cooling hose with inner diameter 16mm, wall thickness 3.25 mm, length density
%A = 0.252 kg

m and effective stiffness parameters for bending [EI] = 0.043 Nm2, torsion [GJ ] =
0.037 Nm2 and tension [EA] = 904 N. The effective stiffness parameters are determined with the
MeSOMICS measurement system [9]. Moreover, we assume a structural damping with γ = 0.1,
viscous damping is omitted, i.e. D = 0, and the stiffness matrix is kept constant, i.e. independent
of the frequency.

The hose is clamped at both ends, and we are interested in how the noise transmission
from one end A to the other end B is affected by certain modifications. Figure 5 shows the

9
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Figure 5: Two hose configurations (config. 1 and config. 2) with different pre-formed shape (left) and
twice a hose (config. 2 and config. 3) with the same pre-formed shape but slightly tilted boundary condition
at A (right).

configuration variants we want to analyse. On the left, we show two different pre-formed hose
shapes, i.e. different stress-free configurations. On the right, we manipulate the hose at end A
by a rotation about 15◦.

In principle, excitations in all degrees of freedom (including rotations) can be regarded. Here,
we want to apply a longitudinal excitation (in local z-axis) at A and analyse the transmission
to B in all directions, i.e. in longitudinal direction (local z-axis) and transversal directions (local
x- and y-axis).

In Figure 6, we plot the absolute values of the corresponding entries of the impedance matrix.
In longitudinal direction (local z-axis), the first configuration (config. 1) shows the highest noise
transmission for approximately 150 Hz, as can be observed from the right plot in Figure 6. For
the second configuration (config. 2), the noise transmission at 150 Hz is significantly decreased.
However, for the frequency range from 200 Hz to 300 Hz, the impedance is increased. Which
configuration is more suitable, of course depends on the application case.

Also worth to mention is that for config. 1 the noise transmission in the local x-axis is larger
than in the local y-axis, while for config. 2, this is reversed (see left and middle plot in Figure 6).

Finally, comparing the results for config. 2 and config. 3, only small differences can be ob-
served. Even though config. 3 does not lead to an improved hose assembly, it provides valuable

Figure 6: Absolute values of impedance matrix entries for three hose configurations with longitudinal
excitation (local z-axis) at A. Plotted is the transmission to B in the local x-axis (”z to x”), the local
y-axis (”z to y”) and the local z-axis (”z to z”).
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insights: the applied manipulation of the boundary condition has no negative effect on noise
transmission.

6 CONCLUSIONS

We proposed a fast and comfortable methodology for the assessment of noise transmission
through highly flexible slender structures like cables and hoses. Starting from interactive simu-
lation with a geometrically exact Cosserat rod, we first derive the linearised equations of motion
and use the resulting system matrices to compute the mechanical impedance matrix.

Since the Cosserat rod model enables interactive simulation of cables and hoses and the
computation of the mechanical impedance for a static equilibrium of interest is achieved within
seconds, the presented approach is very efficient and perfectly suitable to find promising designs
for cables and hoses already in the virtual product development.

One open question is how to appropriately specify model parameters like the structural
damping coefficient γ or the frequency-dependent stiffness K(ω) for real cables or hoses. The
latter already arises when identifying the effective stiffness parameters [EI], [GJ ] and [EA].
Apart from complex measurements, this might be simply impossible due to missing specimens
in early development phases. As a consequence, a systematic sensitivity analysis, which helps
to understand the importance of the single input quantities, would be desirable.
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