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SUMMARY

Numerical modelling of porous flow in a low-permeability matrix with high-permeability inclusions is
a challenging task, because the large ratio of permeabilities ill-conditions the finite element system of
equations. We propose a coupled model where Darcy flow is used for the porous matrix and potential
flow for the inclusions. We discuss appropriate interface conditions in detail and show that the head
drop in the inclusions can be prescribed in a very simple way. Algorithmic aspects are treated in full
detail. Numerical examples show that this coupled approach precludes ill-conditioning and is more

efficient than heterogeneous Darcy flow. Copyright © 2003 John Wiley & Sons, Ltd.
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2 A. RODRIGUEZ-FERRAN, J. SARRATE AND A. HUERTA

1. INTRODUCTION

Modelling flow in porous media is needed in many fields of civil and mechanical engineering,
such as geotechnics, subsurface hydrology, pollution emission control and water treatment. A
basic ingredient is Darcy theory, which establishes the proportionality, through a permeability
factor, between flow and gradient of piezometric head [1, 2].

In some applications, the porous domain contains voids (i.e. zones without the porous
skeleton) or “quasi-voids” (i.e. porous zones with a much higher permeability, several orders
of magnitude larger). This is the case, for instance, of binary media consisting of a low-
permeability matrix with high-permeability inclusions [3]. In saturated flow conditions, both
the voids and the pores in the porous skeleton are filled with the fluid under consideration.

One possible approach to model these inclusions is to use a very high permeability (the
real permeability for high-permeability inclusions or a fictitious value for voids). However, it
1s a well-known fact that the large variations in permeability lead to ill-conditioning of the
resulting linear system of equations arising from finite element discretization [4]. The large
condition number affects negatively the convergence properties of iterative solvers.

Because of this, a different approach is proposed here: to model inclusions with potential
flow instead of porous media theory. This approach has three clear advantages: (1) no large
permeability is assumed for the inclusions, so there is no ill-conditioning of the matrix and the
performance of the iterative solvers greatly improves; (2) the flow in the porous medium and
in the inclusions is computed separately so the computational efficiency increases (two smaller
systems of equations are solved instead of a single larger system); (3) localized head drops in
the inclusions can be prescribed in a very simple way.

The proposed approach only requires one additional physical hypothesis: head is uniform

Copyright (© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31
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NUMERICAL MODELLING OF VOID INCLUSIONS IN POROUS MEDIA 3

in the interface of the inclusion with the porous medium. This poses no restriction on the
applicability of the proposed approach, because it is equivalent to considering the inclusion
as an infinitely permeable porous medium. The two flow problems (i.e. in the porous medium
and in the inclusions)are connected simply by imposing the continuity of flow in the interface.

The outline of paper follows. The flow in the porous medium in the presence of inclusions
is covered in section 2. First, section 2.1 treats inclusions with no head drop; then section 2.2
describes how to prescribe the head drop in the inclusions. Section 3 deals with the flow in
the inclusions. The computational aspects are discussed in section 4. The proposed approach
is illustrated in section 5 by means of three numerical examples. The concluding remarks of

section 6 close the paper.

2. FLOW IN THE POROUS MEDIUM

Flow in porous media is modelled by means of Darcy equation [1, 2]

Vpor = —kVh (1)

where h is the piezometric head, k is the permeability, v, is the Darcy velocity and V is the
usual nabla operator. An isotropic permeability, represented by the scalar k, is assumed for
presentation purposes. The approach proposed here, however, can also be applied to the general
case of anisotropic permeability, represented by a symmetric positive-definite permeability
tensor.
Assuming there are no sinks or sources, replacing ecquation (1) into the continuity equation
results in
V- (kVh) =0 (2)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31
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Figure 1. Inclusions with (a) one, (b) two and (c) three interfaces with the porous medium

For simplicity, only two types of boundary conditions for equation (2) are considered:

prescribed head (non-homogeneous Dirichlet) and zero flux (homogeneous Neumann)

h = hPres in I'p (3)

Vpor *N =0 in I'y (4)

where AP is a given prescribed head and n is the outward unit normal. Other boundary
conditions, such as prescribed fluxes or mixed conditions, can be incorporated in a

straightforward manner.

2.1. Treatment of inclusions with no head drop

Let us consider a porous medium with an inclusion, see figure 1.

One possible approach to solve the problem is to treat the domain in figure 1 as an
heterogeneous porous medium, with a very large permeability in the inclusion (corresponding

Copyright (©) 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31
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NUMERICAL MODELLING OF VOID INCLUSIONS IN POROUS MEDIA 5

to the real permeability in the case of quasi-voids and to a fictitious porous material in the
case of voids). However, the large difference in permeabilities between {25, and {2yiq leads to
ill-conditioning in the finite element equations.

A different approach is proposed here. The porous and void domains are treated separately.
First, the flow in the porous medium 2, is computed. To do so, only one additional hypothesis

is required: the piezometric head h is assumed to be uniform in the interface I'y:
ho= e in Iy (5)

Note that A" is unknown and that I'; can be disjoint, see figures 1(b) and 1(c).

Hypothesis (5) is physically sound; it amounts to regarding the inclusion as a porous material
with an infinite permeability, as discussed in the appendix I and illustrated in section 5 with
some numerical examples.

Finite element discretization of equation (2) yields
Koorh =0 (6)
where h is the vector of nodal head values and K, is the permeability matrix. This matrix is

singular because the constraints on h are still not accounted for. These constraints are linear

and can be written in matrix format like
Cpm'h == bpm' (7)

where C,or is a rectangular matrix with numcon (number of constraints) rows and numnp
(number of nodal points) columns, and by, is a vector of numcon prescribed values.

There are two types of linear constraints in our problem:

1. Dirichlet boundary conditions. The discrete version of equation (3) is

hp=hy " for all I € D (8)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31
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6 A. RODRIGUEZ-FERRAN, J. SARRATE AND A. HUERTA

where D indexes the nodes in I'p. The entries in Cy,q, and by, are ;7 = 1 and by = AV

for I € D.

2. Uniform head at the interface. The discrete version of equation (5) is
hy = h'"™  forall TeZ (9)

where 7 indexes the nodes in I'1. Since h™*" is an unknown, this equation cannot be

directly used to define the entries in C,, and by,,,. First, it must be rewritten into
hy —hgr =0 for an arbitrary R € 7 and for all [ € 7 — {R} (10)

Equation (10) simply states that the value of h in all the nodes in I'y must be the same
than for an arbitrary, reference node R. The entries in C,,, and b, are ¢jy = 1,

¢cir =—1,b; =0.

Imposing the linear constraints (7) into the singular system (6) renders a regular system.
T'wo strategies may be used: the Lagrange-multiplier technique or an ad-hoc transformation

method. These techniques are discussed in detail in section 4.

Remark 1. For stmplicily, the case of a single inclusion has been assumed in this section, but
the extension lo multiple inclusions is straightforward. Consider for instance the case of two

inclusions, with interfaces I'y, and I'y,. The linear constraints are

hy — hgr, =0 for an arbitrary Ry € Iy and for all I € Ty — {R;}

hr —hg, =0 for an arbitrary Ry € Ty and for all I € Ty — {Ry}

where 11 and Iy index the nodes in I't, and I't, respectively.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31
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NUMERICAL MODELLING OF VOID INCLUSIONS IN POROUS MEDIA 7
2.2. Prescribing the head drop in the inclusions

Up to now, we have assumed there is no head drop in the inclusions, see equation (5). With
the proposed approach, however, it is very simple to prescribe a non-zero head drop in each
inclusion. This is needed in some applications to model the localized head drop in the inclusion
(related, for instance, to the shape and tortuosity of the inclusion, or to the use of fabrics of
low permeability to materialize the interface between the porous medium and the inclusion in

industrial devices).

Consider, for instance, the inclusion of figure 1(b), with a disjoint interface I'y = I'r, U I'y,,.

To prescribe the head drop in the inclusion, the constraints

h =h®=  in T
h =htem in I'r, (11)

Ah :hintm'h -~ hintcr“

are needed, where AiMters and A" are the unknown uniform piezometric heads at I'y, and

I'1, respectively and Ah is the prescribed head drop in the inclusion.

Following the same arguments of section 2.1, the constraints (11) can be recast as

3
hy —hg = for an arbitrary ReZ,and forall [ € 7, — {R}
> (12)

hy —hg = Ah for all I € ij

where Z, and 7, index the nodes in I't, and I'y, respectively. The non-zero entries in matrix
Cpor and vector byor, see equation (7), are ¢;r = 1 and ¢, = —1 for an arbitrary R e 7., and
forall I € 1, — {ﬁ} U7, and by = Ah for all I € Ty,

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31
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8 A. RODRIGUEZ-FERRAN, J. SARRATE AND A. HUERTA

3. FLOW IN THE VOID INCLUSIONS

Once the piezometric head h is obtained, the velocity field v, in the porous medium can
be computed from equation (1). In many applications, this information is enough. This is the
case, for instance, if the goal of the analysis is determining the input and output flows in the

Dirichlet boundaries.

For other applications, on the contrary, the velocity field in the inclusions is also needed.
When dealing with transport phenomena, for instance, the velocity in the whole domain, not
only in the porous medium, is required to represent convective transport. This section describes

how to determine the velocity field in the inclusions.

Assuming a potential flow, the velocity in the void inclusion v.;iq is expressed as

Vvoid = — V¢ (13)

where ¢ is the potential. Replacement of equation (13) in the continuity equation results in

the Laplacian equation

Vi =0 (14)

The boundary condition for this equation is derived by prescribing the continuity of flux in

the interface I'y:

Vpor " Npor + Vvoid * Nvoid = 0 (15)

where ny, and nyeiq are the unit outward normals in the interface associated to the porous
medium and the void inclusion (nysq = —nper), see figure 2. This same equation is used in [5]
to couple Navier-Stokes and Darcy models.

By using the gradient relations (1) and (13), equation (15) can be written as a non-

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31
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NUMERICAL MODELLING OF VOID INCLUSIONS IN POROUS MEDIA 9

Figure 2. Unit outward normals at the interface

homogeneous Neumann boundary condition
—Vé - nyoid = kVh - 0o in Iy (16)

where the RHS is a known quantity because the flow in the void inclusions is computed, if
desired, after obtaining h in the porous medium.

An homogeneous Neumann condition is needed in the exterior boundary of the inclusion

Note that the solution of the Laplacian equation (14) is not unique if only Neumann
boundary conditions are prescribed. To avoid this indetermination, the potential ¢ must be

set to zero in an arbitrary point of the domain
b =0 in an arbitrary p € Qyoid (18)

Finite element discretization of the partial differential equation (14) and its boundary

conditions (16), (17) and (18) yields

Kvuiclqb —1void ( g)
1

Cvﬂicl¢’ =0

where Koq is the Laplacian matrix, ¢ is the vector of nodal potential values, fysiq is the vector
of nodal fluxes associated to the RHS of equation (16) and Cuiq is the constraint matrix. The

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31
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10 A. RODRIGUEZ-FERRAN, J. SARRATE AND A. HUERTA

discrete counterpart of equation (18) is simply ¢ = 0 for an arbitrary node R, so Cygiq is a

one-row matrix with e;jp = 1 and e¢;;7 = 0 for I # R.

The only open question is how to compute the vector fyuq of nodal fluxes. The way to
proceed depends on whether one chooses the Lagrange-multiplier technique or the ad-hoc
transformation method for the porous domain, see section 4. In both cases, however, it is

useful to rewrite equation (16) as

fvaicl Irl — _fpm‘lf‘l (20)

to emphasize the continuity of flux at the interface.

4. COMPUTATIONAL ASPECTS

4.1. The Lagrange-mulliplier technique

In the Lagrange-multiplier technique [6, 7, 8], the constraints are added to the original system
of equations. For the flow in the porous medium, for instance, the unconstrained system (6) of
order numnp is enlarged by adding the numcon constraints of equation (7) and numcon unknowns

(the Lagrange multipliers A, one per constraint):

B il 4 3
Koo G| |'B 0
pm = i > (21
Cpm' 0 A bpm' ]
Note that the first block-equation in (21) reads K ,,h = —C;’;rk. In fact, the Lagrange

multipliers represent the “reactions” associated to the linear constraints. Thus. the nodal
3

fluxes in the porous domain are simply

Foor =05 X (22)

Copyright (© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31
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NUMERICAL MODELLING OF VOID INCLUSIONS IN POROUS MEDIA 11

The flow in the inclusions is treated in a similar way. It follows directly from equations (20)

and (22) that the nodal fluxes at the interface I'f for the void problem are simply

fvnid | g Cgmﬁ)\ll"l (23)

The rest of the components of fyiq (i.e. for nodes not in I't) are zero.

The Lagrange-multiplier technique has two widely known drawbacks: (1) the dimension
of the original problem is increased and (2) the enlarged matrix is not positive definite. It
has, on the other hand, two clear advantages: (1) general linear constraints can be handled
in a straightforward manner and (2) it is a technique naturally adapted to object-oriented
programming [8, 9].

The Lagrange-multiplier approach is summarized in figure 3.

4.2. An ad-hoc transformation method

The basic idea of transformation methods is to employ the constraints associated to the
boundary conditions to transform the singular, unconstrained matrix into a regular matrix.
The order of the problem is either maintained [10, 11, 12] or reduced [13, 14].

This approach has two clear advantages: (1) the dimension of the original problem is not
increased, (2) the regular matrix is symmetric positive definite.

The main disadvantage of most transformation methods is that they are rather cambersome
to implement in presence of general, multi-point constraints. In a recent contribution [15],
Ainsworth presents a transformation method of the first type (order is maintained) which
handles, in a systematic way, general linear constraints.

It must be noted, however, that our linear constraints are rather simple. This has motivated
an ad-hoc, computationally efficient transformation method, illustrated here for the case of

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31
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12 A. RODRIGUEZ-FERRAN, J. SARRATE AND A. HUERTA

Flow in the porous medium

o Assemble permeability matrix Ko, from elementary matrices K,

e Build constraint matrix C,,, and constraint vector by associated to:

— Dirichlet boundary conditions [equation (8)]
— Inclusions with no head drop [equation (10)]

— Inclusions with prescribed head drop [equation (12)]

e Solve enlarged linear system (21):

i T f 3 i )
- cg;, h 0

¢ - = >
Cpm‘ U )t ! ! b]'JDl‘ )

e Compute Darcy velocity vpo, [equation (1))
Flow in the inclusions

e Assemble Laplacian matrix Kyiq from elementary matrices K¢ .,

e Build constraint matrix C,.iq associated to one node per inclusion prescribed to zero
lequation (18)]
e Build flux vector fysiq [equation (23)]

e Solve enlarged linear system:

B T £ Y ¢ 3

Kv{}i{l Cymd qf’ fvoid

CV{}id 0 A 0

L d N \ /

e Compute velocity vyeiq [equation (13)]

géue 3 'Ilm Lagrange-multiplier technique ‘
Copyright (© 2003 John Wiley &: ons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31
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NUMERICAL MODELLING OF VOID INCLUSIONS IN POROUS MEDIA 13

Flow in the porous medium

e Assemble reduced matrix K7 . from elementary matrices K,

e Assemble reduced flux vector £, associated to:

— Non-homogeneous Dirichlet boundary conditions

— Inclusions with preseribed head drop

o Solve reduced linear system K/, . h' = f,

e Build full vector of nodal head values h

e Compute Darcy velocity vpor
Flow in the inclusions

e Compute full vector of nodal fluxes f};

/

» * . | G
oiq [rom elementary matrices K

e Assemble reduced matrix K void

e Build reduced vector of nodal fluxes f| ., from £,
e Solve reduced linear system K/ . ,¢" = £/ .,
e Build full vector of nodal potential values ¢

e Compute velocity vyeid

Figure 4. The ad-hoc transformation method

two inclusions (with and without head drop). The basic steps are summarized in figure 4. A
more detailed algorithm in pseudo-code can be found in appendix II.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31
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14 A. RODRIGUEZ-FERRAN, J. SARRATE AND A. HUERTA

Dirichlet boundary conditions The one-point Dirichlet boundary conditions of equations (8)
and (18) are treated via the usual row-and-column adjustment. In the porous domain (non-
homogeneous conditions), the known term —k;;h';™ is added to the RHS of equation (6) for
all / € D (i.e. for all the nodes in the Dirichlet boundary I'p), and row and column J are
removed from the system. In the inclusions (homogeneous conditions), we simply remove rows

and columns R and R.

Uniform head atl the interface (porous domain) Only one unknown hp is required to describe
the head at the interface of an inclusion, see equation (10). This means that, for all J € Z, the
unknowns h; can be condensated into a single unknown hp simply by adding up all rows J
into row I and all columns J into column R.

This also holds for inclusions with a prescribed head drop, see equation (12): the head in
the interface Z, UZ,, is represented by the unknown hg. The known terms —kjyAh associated

to the head drop are assembled in the RHS for all the nodes of T'y_.

Reduced system (porous domain) The resulting regular system is

K' _h'=f (24)

por or

where h’ is the reduced vector of nodal head values (with known Dirichlet values excluded,

/

por 18 the reduced permeability matrix and £}, is the reduced

only one value per interface), K -

vector of nodal fluxes which contains the terms —k;;h')™ and —ky;Ah.

From a practical viewpoint, it is very important to remark that there is no need to assemble
the singular system (6) and then start suppressing and condensating rows and columns as
indicated; the reduced system (24) can be directly assembled with an adequate assignment
of equation numbers to nodes [16] (no equation assigned to Dirichlet nodes; same equation

Copyright (© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31
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NUMERICAL MODELLING OF VOID INCLUSIONS IN POROUS MEDIA 15

assigned to all nodes in the interface of each inclusion).

Nodal fluzes in the interface With the transformation method, the fluxes in the interface
nodes are not obtained together with the vector of piezometric heads h. However, they can be

computed a posteriori by a simple matrix-vector product
f]}ur = Kpﬂrh (25)
and f,.;q can be constructed from here as commented in section 4.1.

Remark 2. Note that, in reality, only the components of f,0, in the interface are really needed.
The vector fuor|r, can be assembled, without the global matriz-vector product of equation (25),

by using only the relevant elementary matrices (i.e. associated to elements with nodes i 1'y ),

Reduced system (inclusions) The resulting regular system is
/ I el .
Kvnid‘;b — *void (26)

where rows and columns R and R have been removed.

5. NUMERICAL EXAMPLES

The proposed approach for the treatment of void inclusions in a porous medium is illustrated
here by means of three numerical examples. The ad-hoc transformation method of section
4.2 is used in all the computations to handle the boundary conditions. The resulting linear
systems are solved with the diagonally preconditioned conjugate gradient (DPCG) method
[17] with a convergence tolerance for the relative error of 0.5 x 10~7 in “displacements” and
0.5 x 106 in “forces”. For simplicity, dimensionless variables are used, although this is by no
means necessary.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31

Prepared using nmeauth.cls



16 A. RODRIGUEZ-FERRAN, J. SARRATE AND A. HUERTA

No flow
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Figure 5. 2D example with interior inclusion. Problem statement
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Figure 6. 2D example with interior inclusion. Fields of: (a) isolines of piezometric head; (b) velocity

a.1. Two-dimensional domain with one interior void inclusion

As a first example, consider the two-dimensional domain of figure 5. The rectangular porous
domain has an interior rectangular void inclusion. Piezometric head is preseribed in the two
edges of the rectangular domain. Zero flux is prescribed in the two lateral walls of the domain.
A structured mesh of 15 x 45 square finite elements is used in the analysis. A reference

permeability ko, = 1 is taken for the porous domain.

The proposed approach based on potential flow is used to treat the void inclusion. The
piezometric head is assumed to be uniform in the interface with the porous medium. Since

there is a single interface, no head drop can be prescribed.

The results are depicted in figure 6. The effect of the void inclusion is clear, both in the

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31
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Figure 7. 2D example with one exterior void inclusion. The void inclusion with two fins separates the

two porous zones. The finite element mesh has 701 elements and 409 nodes.

piezometric head and velocity fields. Since the piezometric head is uniform in the interface, the
isolines “wrap” the void inclusion, see figure 6(a). Note also that the flow across the inclusion

is larger than across the upper and bottom porous zones, see figure 6(b).

592 Two-dimensional domain with one exterior void inclusion

In the second example, two blocks of porous media are separated by a void inclusion with two
fins, see figure 7. As in the previous example, Dirichlet boundary conditions and homogeneous
Neumann boundary conditions are prescribed respectively in the two edges and the two lateral
walls of the domain. Figure 7 also shows the structured mesh of 701 triangular elements and

409 nodes (due to symmetry, the computational domain is half of the physical domain).

Again, a reference permeability kpor 1 is taken for the porous domain. In the first
analysis, no head drop is prescribed in the void inclusion. This inclusion is treated with the
two approaches discussed in this paper: (i) as a fictitious porous medium with permeability
kvoia = 10"kyer, with increasing values of n (classical approach); (ii) with potential flow
(approach proposed here).

The effect of power n on the simulation results is depicted in figure 8. Figure 8(a) shows the

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31

Prepared using nmeauth.cls



18 A. RODRIGUEZ-FERRAN, J. SARRATE AND A. HUERTA

velocity field for n = 0, n = 5 and the proposed approach. Taking n = 0 (i.e. kyoid = kpor), the
overall permeability of the domain, and hence the velocity, are underestimated. With n = 5
and the proposed approach, on the contrary, the same results are obtained. Figure 8(b) shows

the head profile along interfaces I';, and I'y, for n = 0,...,5 and the proposed approach.

Again, increasing n leads to the same solution than using potential flow for the inclusion. Note
also that the head is uniform in each interface for large values of n. This result corroborates
the validity of hypothesis (5), which is justified in Appendix I on physical terms. Since no

head drop is prescribed in the inclusion, the uniform head is the same for the two interfaces,

hintcrﬂ — hﬂinterhi

Table I summarizes the convergence results. Increasing the fictitious permeability kyoiq
clearly affects the conditioning of the permeability matrix: indeed, a tenfold increase in kyoiq
results in a tenfold increase in the condition number, see table I(a). This ill-conditioning has a
moderate impact in the required number of iterations for this simple 2D example. This is not

the case in larger, 3D problems, as illustrated in section 5.3.

With the proposed approach there is no ill-conditioning, because the void inclusion is not
modelled with a large fictitious permeability, see table I(b). Note also that the aggregate
number of iterations is similar to that of the fictitious-permeability approach. However, since
two smaller linear systems (one for the porous domain and one for the void inclusion) instead of
a single, larger linear system (for the whole domain) are solved, a similar number of iterations

translates into a significantly smaller computational cost.

The effect of n on convergence can also be seen in figure 9, where the relative residual
error ||r*||2/||b||2 (where r is the residual vector, b is the RHS vector and || - ||2 denotes the
Euclidean or 2-norm) and the approximate relative error in the solution, ||x* —x**1||o/|[x**1||2

Copyright (©) 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31
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Figure 8. 2D example with exterior void inclusion: (a) velocity field for two different values of the

fictitious permeability and for the proposed approach; (b) head profile along the interfaces I', and
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Table I. 2D example with exterior void inclusion. Condition number of linear systems and number
of iterations: (a) if the inclusion is treated as a porous medium, large values of permeability lead to

ill-conditioning; (b) with the proposed approach, there is no ill-conditioning.

Permeability of inclusion: kyoia = 10" kpor

Proposed approach

n cond(K') iter | n cond(K') iter
Material  cond(K') iter

0 238x10® 96 |3 1.99x10° 106
Porous  1.18 x 10®° 37
1 203x10* 100 |4 1.99x10" 110

Inclusion 3.87 x 10° 65
2 1.99x10° 103 |5 1.99x10® 112

(b)
(a)
'“jz x —— 1ﬂE T | T T
=¥ n=0 -3 N=(0)
-B- n=5 8- n=5
—¥— Porous medium ~¥= Porous medium
10° . -8~ Inclusion : 10° -~ Inclusion
_2 i 5 I s ), 4T s
10 L:Il_ - g 0 b it
a5 ! ~ k.
— il . 1]
——— :.:I
od ..ii 12 .1
_~¢= 10 | ‘Il.l
[ - in

=B ' i1
10 R .
u 4 ]
1078
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Iterations Iterations

Figure 9. 2D example with exterior void inclusion. Convergence of the DPCG solver for two
different values of the inclusion permeability and for the proposed approach: (a) relative residual;

(b) approximate relative error in the solution

are plotted versus the iteration counter k. Note that, for n = 5, and due to ill-conditioning,

both error measures consistently increase up to iteration 60, and then start decreasing.

Remark 3. The increase in the relative error in the solulion in some of the curves of figure
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Figure 10. 2D example with exterior void inclusion. Monotonic convergence is obtained for the energy

norm associated to preconditioner D of the relative error with respect to the solution *.

9(b) is not in contradiction with the convergence properties of the conjugate gradient method.
For the non-preconditioned CG method, monotonic convergence (i.e. error reduction at each
iteration) in 2-norm is guaranteed [18]. Note, however, that (1) this theoretical resull involves
the relative error of x* with respect to the exact solution x*, not the approximate relative
error with respect to x**1 and (2), for the DPCG method, monotonic convergence holds if the

energy norm associated to the diagonal preconditioner D is used. Indeed, ||x* —x*||p/||x*||p :=

V (x* = x*)TD(xF —x*)/ \/ (x*)TDx* decreases at each iteration (but very slowly in the ill-

conditioned case n = 5), see figure 10.

In a more detailed analysis, it could be necessary to account for the head loss associated to
the two fins in the void inclusion. As discussed in section 2.2, with the proposed approach it

is very simple to prescribe the head drop between the two interfaces.

For instance, a head drop of Ah = 1 can be added to the boundary conditions of figure 7.
[f the flow is reversed (i.e. h = 0 in the left edge, h = 10 in the right edge), on the other hand,
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10F

head h

(a) (b)
Figure 11. 2D example with exterior void inclusion. Head profile along the axis of symmetry CC’ for

two different values of the head drop in the inclusion: (a) Ah = 1, flow to the right; (b) Ah = 2, flow

to the left.

one would like to prescribe a larger head drop (of, say, Ah = 2), because now the flow in the
inclusion is “against” the fins.

Figure 11 shows, for these two cases, the head profile along the axis of symmetry of the
domain. The prescribed head drop is clearly visible in these plots. As expected, the convergence
results are the same previously obtained for Ah = 0 (that is, table I(b) and figure 9), because

Ah is assembled in the RHS vector and does not affect the condition number of the matrix.

5.3. Three-dimensional example with mulliple inclusions

The three-dimensional domain of figure 12 consists of nine porous blocks connected by eight
void inclusions (four in the top layer and four in the bottom layer). Boundary conditions and
the structured finite element mesh of 6576 elements and 9261 nodes are also shown.

Like in section 5.2, the problem is solved with the fictitious-permeability approach (with
n = 0,...,5) and with the proposed approach. Table II summarizes the convergence results.

Copyright (© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-31

Prepared using nmeauth.cls



NUMERICAL MODELLING OF VOID INCLUSIONS IN POROUS MEDIA 23

Void inclusions -
S \
\ — B
S
| S .}ﬂ# |
I I}fl B - 1 l
IR
| B S i "li 1
| ' “ HU(ERE N !
| I 1 | !
| I R - '
:| LT 'J': ! 1|"‘LI { }
Pordus zones : | T:'_J;LF";JI ‘l:‘* E:J\ : |
B : ’U\ "T‘J e :
g / | 4}—#1"- : +b-=".'t:)hh"‘-_‘l
[ N ; SN A | il
\\ L\«.r//r\w-"’f/ \ e B
\\/JH/ : -
/"f Void inclusions l,—-”/

Figure 12. 3D example. The cubic domain is divided into nine porous zones and eight intermediate

void inclusions. The finite element mesh has 6576 elements and 9261 nodes

The evolution of the condition number with n is similar to that of the two-dimensional case,
see table I. In this case, however, ill-conditioning significantly affects the required number of

iterations and thus the CPU time.

This can also be seen in figure 13, where the convergence history of three analyses (n = 0,
n = 5 and proposed approach) is plotted. Note the poor convergence behaviour for n = 5,

with eight peaks in the curve of relative error vs. iterations (one per void inclusion).

The results obtained with the proposed approach are depicted in figure 14. Figure 14(a)
shows the velocity field and figure 14(b) the head field in the porous blocks. Note the uniform
head at the interfaces and also the uniform velocity in the nine porous blocks (of equal cross-
section).
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Figure 13. 3D example. Convergence of the DPCG solver for two different values of the inclusion

permeability and for the proposed approach.

— — — — —
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(a) (b)
Figure 14. 3D example. (a) velocity field and (b) head field in porous blocks obtained with the proposed

approach. Vertical section across the mid-plane.
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Table II. 3D example. Condition number of linear systems and number of iterations for (a) different

values of the inclusion permeability and (b) the proposed approach. Ill-conditioning due to large

permeability has a significant impact in convergence behaviour

Permeability of inclusion: kyoia = 10" kpor

n cond(K’) iter CPUtime (s) | n cond(K’) iter CPU time (s)
0 4.00 x 10* 218 6.5 3 2.60x 107 286 7:1
1 2.78x10° 241 6.6 4 2.60 x 10® 319 8
2  2.62x10° 266 7.4 5 2.60 x 10° 337 8.5
(a)
Proposed approach
Material  cond(K’') iter CPU time (s)
Porous 2.43 x 10° 148 -
Inclusion  5.91 x 10® 35 —
Total - - 183 4.6

(b)

6. CONCLUDING REMARKS

The use of potential flow leads to an efficient treatment of void inclusions in a porous medium.

There is no need to use a large fictitious permeability to model the inclusion, so ill-conditioning

in the linear system is precluded. This clearly improves the convergence of iterative solvers,

especially in large 3D analyses.

The proposed approach can be regarded as a domain decomposition technique, in the sense

that two sub-problems (one for the porous domain and one for the inclusions) are solved.
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Continuity of flux is invoked to link the two sub-problems. The resulting boundary conditions
can be handled via either the Lagrange-multiplier technique or an ad-hoc transformation
method. With this transformation method, discussed in full algorithmic detail, it is very
straightforward to implement the proposed approach in a standard finite element code for
porous flow analysis.

Besides computational efficiency, another advantage of the decomposition approach
suggested here is that the head drop in the inclusions can be prescribed in a very simple
way, as an additional input. There is no need to translate the desired head drop into an

equivalent fictitious permeability for the inclusion.
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ky 3

Figure 15. Interface between two porous materials of different permeability

APPENDIX I: PHYSICAL MEANING OF UNIFORM HEAD AT THE INTERFACE

Figure 15 shows the interface between two porous materials of permeabilities k1 and k. It is a

well-known result in porous media theory that the change in slope of the streamlines is given

by [2]

tanay Ky
= — 27
tanag ko &)

where a1 and s are the angles of the streamlines with the normal to the interface, as indicated

in figure 15. On the other hand, continuity of flux, equation (15), can be recast as

cosay _||vil|

28
cosag  ||val| 28]

Assume now that permeability k; is finite but kg is (i.e. tends to) infinity. According to
equation (27), this implies that tan ay / tan oy is zero, so either i) a; = 0 or i) ag = 7/2. This
second option can be discarded because, according to equation (28), it would imply a physically
unrealistic infinite ratio of velocities. This means that oy = 0: the streamlines are orthogonal
to the interface in the porous medium with finite permeability k;. Since the equipotential lines
(i.e. lines with equal piezometric head) and the streamlines are orthogonal, we conclude that

the interface is indeed an equipotential line.
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APPENDIX II: PSEUDO-CODE FOR THE AD-HOC TRANSFORMATION METHOD

Figure 16 contains a detailed pseudo-code version of the proposed ad-hoc transformation
method. Following the notation introduced by Hughes [6], we use letters A and B to denote
global node numbers, @ and b for local node numbers, P and Q for equation numbers and e

for element numbers. The relation between these four numberings is given by arrays IEN, ID

and LM:

[EN: elements node array; [EN(a,e) = A
[D: destination array; ID(A) = P

LM: location matrix; LM(a,e) = P

Since two linear systems are solved (one for the porous domain and one for the inclusions),
two different destination arrays (IDpo, and IDyiq) and location matrices (LMo, and LMypiq)
are needed.

The key issue in this algorithm is the proper assignment of equation numbers to nodes, steps
1 and 7. The rest is very standard in finite element codes. As a consequence, implementing

this algorithm into an existing finite element code is a straightforward task.

% FLOW IN THE POROUS MEDIUM
% 1. Assign equation numbers PP to nodes [

P=0
forall nodes I in §2,0,
IeD = IDpor(I) =0
I=R = P=P+1;1Dpor(I) = P
IeZ-—{R} = IDpor(1) = IDpor (R)
I=R = P=P+L1Dsall)= P
I €T, —{R}UTy=> IDpor(I) = IDpor(R)
otherwise =% P =P+1;:1Dsa{l) =P

end % forall 1
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Y
% 2. Compute reduced matrix K, and reduced vector f;,,
forall elements e in Q0
forall nodes a in element
A = LMpor(a,e)
A=0—=—= next a
forall nodes b in element
B = LMpor(b, €)
[ =1EN(b, e)
Compute K, (a, b)
I &D = KA B)= K;m,.{A, B) + Kjor(a, b)
I e DUT, = £0:(A) = fpor(A) — Kpor(a, b)bpor(T)
end % forall b
end % forall a
end % forall e
%
% 3. Solve the linear system K, h' = f/,
%
% 4. Build vector of nodal head values h from h' and b,
forall nodes [ in Q0
P=1Dp0o: 1)
I1e€D = h{J) = bguyll)
I € Ih = 1‘1(1‘.) = hF(P) . b]mr(f)
otherwise = h(I) = h'(P)
end % forall I
%
% 5. Compute the Darcy velocity vor

70
% FLOW IN THE INCLUSIONS

% 6. Compute vector of nodal fluxes fjo,
forall elements e in {6,
forall nodes a in element
I =1EN(a,e)
I¢7TUl, Uy = next a
forall nodes b in element
J = IEN(b, e)
Compute K5, (a,b)
foor(I) = foor (1) + Kior(a, b)h(J)
end % forall b
end % forall a
end % forall e
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%
% 7. Assign equation numbers P to nodes [
P'=0
forall nodes I in Qyoid
Te{R, R} == IDisia(l) =D
otherwise = P = P+ 1;1Dya(I) = P
end % forall /
%

% 8. Compute reduced matrix K. ;; and reduced vector f._,,

forall elements e in 2,44
forall nodes a in element
A = LMy.id(a,e)
A=0= next a
forall nodes b in element
B = LMyoia(b, e)
I =1EN(b, e)
Compute K¢ ;q4(a,b)
I ¢ {Ri R} — K:-“Did (ALB) == Lnid ("'4! B) -+ Kiﬂid (ﬂ'} b)
Ie(ZT—-{RHDUZa—{RHUT, = £l ;y(B) = —Fpor(I)
end % forall b
end % forall a
end % forall e
%
% 9. Solve the linear system K ¢' = f. .
%
% 10.Build vector of nodal potential values ¢ from ¢’
forall nodes I in $2void
o= IDvnid (I)
Ie{R,R} = ¢(I) =0
otherwise =—> ¢(I) = ¢'(P)
end % forall /
%
% 11. Compute the velocity veid

Figure 16. Pseudo-code of the ad-hoc transformation method
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