Computer methods
in applied
mechanics and
engineering

ELSEVIER Comput. Methods Appl. Mech. Engrg. 143 (1997) 49-67

A finite element formulation for incompressible flow problems
using a generalized streamline operator

Marcela A. Cruchaga*, Eugenio Onate
International Center for Numerical Methods in Engineering, E.T.S. d’Enginyers de Camins, Canals i Ports,

Received 23 May 1995; revised 21 February 1996

Abstract

A finite element formulation for solving incompressible flow problems is presented. In this paper, the generalized streamline
operator presented by Hughes et al. (Comput. Methods Appl. Mech. Engrg. (1986) 58 305-328) for compressible flows is
adapted to the incompressible Navier—Stokes equations. This new methodology allows the use of equal order interpolation for the
unknowns of the problem: velocity and pressure. In this context, the definition of the ‘upwinding tensor’ does not require
parameters defined outside this model. This formulation has been checked in classical tests with satisfactory results. Finally, a
moving surface problem (Cruchaga et al., Comput. Numer. Methods Engrg. (1986) 59: 85-99) is also presented.

1. Introduction

In the present work a numerical formulation able to deal with incompressible flow problems is
developed. The difficulties in the numerical solution of the Navier—Stokes equations are well known:
oscillations appear in the results when the convective term becomes relevant and mathematical
requirements impose restrictions on the choice of the discrete approximation functions although,
however, a recent formulations allow to overcome such restrictions [1-4]. In the context of the finite
element method, a Galerkin Least Squares type formulation using a generalized streamline operator [5]
applied to the incompressible flow case is presented. This technique enables the use of equal
interpolation function for the primitive variables of the problem: velocity and pressure. In this case, the
standard penalization methods necessary to fulfil the incompressibility equation are not required.

The choice of the upwinding parameters, crucial to obtain stable and convergent formulations,
involves several works and discussions [4,6-9]. In this paper, a new design of these parameters is
obtained in the framework of the generalized streamline operator (GSO) presented by Hughes et al. [5]
extending the methodology initially developed for compressible flows [9]. The GSO consists, basically,
in writing the Navier-Stokes equations in the advective eigenvector system. In this basis, the diffusivity
matrix is lumped leading to an uncoupled governing equations (considering a constant viscosity) and,
therefore, the computation of the upwinding coefficient at each direction can be performed in the
standard manner. Further, a diagonal upwinding tensor is obtained and, transforming this tensor back
to the original system, the weighting perturbation function can be defined.

The governing equations for the incompressible flow problem and the corresponding weak form are

* Corresponding author.

0045-7825/97/$17.00 © 1997 Elsevier Science S.A. All rights reserved
PII S0045-7825(96)001149-8



50 M.A. Cruchaga, E. Onate | Comput. Methods Appl. Mech. Engrg. 143 (1997) 49-67

described in Section 2. In Section 3, the methodology followed to compute the upwinding tensor is
presented. It is important to note that this tensor does not require tuning parameters defined outside
this model. Further, the resulting finite element formulation is briefly described in Section 4.

A brief description of the numerical strategy is performed in Section 5 where an incremental-iterative
solution strategy has been implemented such that the convergence criterion is written in terms of the
norm of the residual véctor.

In Section 6, the driven cavity flow problem is analysed at different Reynolds’ numbers and a
comparative analysis with other techniques is performed. The backward-facing step flow is also studied
in order to compare with experimental results. Finally, a two-liquid interface problem is solved using
the presented methodology.

2. Governing equations and weak form
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where
e U is the unknown vector, U=[u,,u,, u;,u,] with u,=p. Now, i=1,...,n,, +1, m=
L...,ng,tl,n=1,.. ,ngpandj=1,... »n4..
® A=A, is the generalized advection tensor. For a fixed value of n=n, A; =[A, ] is defined as
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® K=K, is a generalized diffusion tensor. For a fixed value of n =7 and j = j, K;; = [Kj,,;] is defined
as
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® L is the spatial gradient tensor of the unknown defined as L, = du,,/dx,.
® V is the gradient operator V(-) = a(-)/ox;.
® M is the generalized mass tensor:
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where H is the prescribed deviatoric stress tensor, n is the outward unit vector normal to I3,. Besides,
I’ , I, are the parts of I' on which the velocity, the pressure and the deviatoric part of the stress

u’ p?

tensor are prescribed, respectively (I, U I, =1 and I, NI}, = 0); see Fig. 1.
In order to obtain the weak form of this initial boundary value problem, the perturbation function
added to the standard Galerkin weighting function is defined as [5]

P(W) =1 R(W)

(11)

where # defined in Eq. (9) is applied to the test function ¥ and 7 is the second-order ‘upwinding

Fig. 1. Arbitrary domain and its boundary.



52 M.A. Cruchaga, E. Ofiate | Comput. Methods Appl. Mech. Engrg. 143 (1997) 49-67

tensor’ that will be defined in Section 3 (1 =17, with i =1, Mg, +1and g=1, Mgm T 1. In
the present work, only the convective part of the perturbatlon function is used Therefore the
weighting function is time-independent, the effect of the diffusive term involving second derivatives of
the unknowns is neglected, and the source term does not depend on the variables of the problem.

Accordingly, the perturbation function is written as [5,10]
P(lp) =7 (A L(‘p)) = Tiq qmn mn(l'p) ﬂlmn mn('p) B L('p) (12)
Finally, the variational form of the problem defined by Eqs. (9) and (10) is assumed to be [5]

L'If-%(U)d.Q + L P(W)-R(U)d0,

+J lI’-[(K:L(U))-n—H]deLf v (U-U*ydl'=90 (13)
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where d; = pL u;.
In this context, the generalized diffusion term is
v K L VK]lm'leIl VYJ"]K]II”’ILMSJS'H - r ArimSl:m.S = v§ .KA :l: (19)
where s=1,...,ny,, V.()=a(-)/d¢,, and
K = krims ‘]r/Kjlmn sn —', 'K .JT (20)

As mentioned before, Eq. (14) is written in the local system § as

AL-V-K:L=0 (21)
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Moreover, the matrix-valued p-norm of A is defined as [5]
- a 1/p
Al = {214} (22)

such that p can be chosen in the integer interval [1,], and |A,|° are obtained solving the A
eigenproblem as

r

&, 17="T-|A; |7 T~ ="T,I'a,|" T, (23)

where A; is the diagonal tensor of the eigenvalues "A, of A, and 'T,, is the i component of the

eigenvector associated with the gth eigenvalue. Notice that this elgenproblem has only real solution due
to the symmetric form of A as it can be seen in Eq. (18). Therefore, the calculation of |A|
performed by Eq. (22) and 1ts eigenprobiem is solved as

], =Y Ay (24)
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if A, #0and A, #0 (27.2)

if A, #0and A, =0 (27.3)

where ¢ is the nondimensional numerical diffusivity optimal function defined by [13]

{(a;) = coth(e;) — ;! (27.4)
and o, is the elemental Péclet number
A
o= )‘k"_ (27.5)
The ‘upwinding tensor’ in system Y is written as
Ty =Ty, = 8yTidy (28)

where 8 is the Kronecker delta. Finally, the upwinding tensor used in Eqs. (11) and (12) is obtained
transforming back this last expression as

r=Y:7,:Y"' (29)
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It should be noted that this methodology obviously satisfies the three designs conditions proposed by
Hughes et al. [5]: (i) it reduces correctly to the optimal one-dimensional system case; (ii) it is equivalent
to SUPG for a scalar, multidimensional advection—diffusion equation; and (iii) it reduces to SUPG on
each uncoupled component of multidimensional simultaneously diagonalizable advection—diffusion
system (this implies that ‘T of Eq. (23) are the same for all r).

In particular, in the present work p =1 is adopted in the computation of the p-norm.

4. Finite element formulation

In the framework of the finite element method [13] the continuous field of unknowns U are locally
approximated by polinomial functions in the standard manner as

U=U,=®U (30)
hal of &
ypical sh:
1 tial domain
them is the original
Eq. (17
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5. Solution strategy

When the residual is differentiable, a Newton-type incremental-iterative formulation for solving the
nonlinear semidiscrete system (31) can be attempted. This means that [13]

1+AIJ]7]AU/':1+..\1R]*1 , (32)
Ay =Ny AU =1, ., (33)
I+Aon:1U . (34)

where the iteration index j denotes the jth approximation to the solution in ¢ + Ar (the solution at time f
is assumed to be known), and J is the tangent Jacobian matrix J = —dR/dU.
The convergence criterion is written in terms of the norm of the residual vector in the following form

IR][.,

T 35
F,. (3)

where ¢, is the admissible tolerance (taken as 10 " in this work), F* is a reference vector (the residual
in the prescribed degrees of freedom or the body force vector if it exists) and || - ||, is the standard L,

vector norm {13].
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6. Numerical examples
6.1. Driven cavity flow problem

This example is a classical test used by several authors in order to check the quality of the
methodology employed. In the present analysis, two different boundary conditions at the top corners
are considered (see Fig. 2). The velocity is fixed in the walls and the pressure is taken equal to zero in
the middle of the bottom. In the domain, the initial value of the unknowns are adopted equal to zero
for all the cases presented. The geometry of the problem, the boundary conditions, the characteristic
lengths and the meshes used in this work are shown in Figs. 2 and 3.

The stationary problem is considered for different Reynolds’ numbers. The numerical results are
compared with those obtained by

(a) Ghia et al. [14], no upwind F.D.M., 128 X 128 elements (Re = 1000), 256 X 256 elements

(Re = 5000, 10 000).
(b)Y Nallasamv and Pracad [151 unwind F. D M. 50 X 50 elements (Re = 5000 10 000)
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Fig. 2. Driven cavity flow. (a) Geometry; (b) boundary condition type 1 (BCT1); (c) boundary condition type 2 (BCT2); (d)
characteristic lengths.
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a) b) <) d)

Fig. 3. Driven cavity flow—Finite element meshes: (a) uniform, 400 four-noded elements; (b) uniform, 2500 four-noded
elements; (c) nonuniform, 2500 four-noded elements; (d) nonuniform, 5000 three-noded elements.
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Fig. 4. Horizontal velocity profile for cavity flow at different Reynolds’ numbers along the line x = 0.5 with BCT2: @, Ghia et al.
[14]; x, Nallasamy [15]; OJ. Fortin and Thomasset [16]; O, Bercovier and Engelman [17]; <, Kondo et al. [18]; +. Tanahashi et

al. {19]. Present work: ——-— mesh (a); —— - mesh (b); —— mesh (c¢): —~~~-— mesh (d).
Table 1
Re = 1000—Steady-state analysis
Tanahashi et al. [19] Ghiaetal. [14] Present work
X, 0.5335 0.5313 0.5409
Y. 0.5653 0.5625 0.5855
Xur 0.8672 0.8594 0.8684
Vor 0.1119 0.1094 0.1072
Xy 0.0822 0.0859 0.0760
Veu 0.0731 0.0781 0.0754
H,, 0.3091 0.3034 0.3099
Ve 0.3410 0.3536 0.3710
H,, 0.2045 0.2188 0.2076
Vo, 0.1523 0.1680 0.1826
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The characteristic lengths obtained with the present formulation are compared with the results of
other authors and are shown in Tables 1-3 for Re = 1000, Re = 5000 and Re = 10 000, respectively.

Table 2
Re = 5000—Steady-state analysis
Tanahashi et al. [19] Ghia et al. [14] Present work

X, 0.5120 0.5117 0.5029
Y. 0.5337 0.5352 0.5420
Xpe 0.8134 0.8086 0.8012
Vor 0.0753 0.0742 0.0638
Xp, 0.0750 0.0703 0.0754
YaL 0.1318 0.1367 0.1345
Xop 0.0658 0.0625 0.0585
VoL 0.9045 0.9102 0.9130
Hg, 0.3496 0.3565 0.3623
Ve 0.4350 0.4180 0.4145
H,, 0.3159 0.3184 0.2923
V,, 0.2693 0.2643 0.2840

H,, 0.1208 0.1211 0.1101
v, 0.2555 0.2693 0.2923
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Table 3
Re = 10 000—Steady-state analysis
Tanahashi et al. [19] Ghiaet al. [14] Present work

X, 0.5125 0.5117 0.5000
¥, 0.5274 0.5333 0.5420
Xgn (1.7944 0.7656 0.7573
Yar 0.0640 0.0586 0.0551
Xp 0.0790 0.0586 0.0676
Var 0.1400 0.1641 0.1536
X, 0.0758 0.0703 0.0676
Yoo 0.9120 0.9141 0.9130
Hg, 0.3773 0.3906 0.3655
Vi 0.4529 ().4492 ().4522
H,, 0.3515 0.3438 0.3216
Vi, 0.2834 0.2891 0.2899
H,, 0.1683 0.1589 0.1491
1% 0 2463 0.37203 .3333
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b) y-component of the velocity along the line y = 0.5.

Fig. 6. Driven cavity flow problem—BCT1 (@) in comparison with BCT2 (—) at different Reynolds’ numbers with the
formulation presented in this work using mesh (c).
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Fig. 8. Cavity flow problem—Pressure contours and streamlines.

The effect of the top boundary condition at different Reynolds’ numbers is presented in Fig. 6.

The results obtained for Re = 1000, 5000 and 10 000 using a scalar upwinding GLS-type technique
[11,12] are similar to those computed using the present methodology with the same numerical strategy.

The pressure profile along the lines x = 0.5 and y = 0.5 are plotted for different Reynolds’ numbers in
Fig. 7. It is seen that there are not oscillations in these profiles. Fig. 8 shows the streamline and pressure
contours at different Reynolds’ numbers. Once more, the numerical response does not present
significant oscillations.

In addition, the values for the streamline function (¢) are presented in Tables 4-6 for the Reynolds’

Table 4
Re = 1000—Steady-state analysis. Streamvalues

Ghia et al. [14]

Present work

¥, —-0.117929 ~0.118
17 1.75102 10 ° 1.7510 °
Vg, 2.3112910°* 225101
Table 5

Re = 5000—Steady-state analysis. Streamvalues

Ghia et al. [14]

Present work

W, —0.118966 ~0.1215
(17 3.08358 10 °* 32710 °
War 1.36119 10 1.3107°
v 1.45641 10" 1.2910 *
Use ., —-1.4322610 * -1.610""
Table 6

Re = 10 000—Steady-state analysis. Streamvalues

Ghia et al. [14]

Present work

1 -0.119731 —0.1197
L/ 3.4183110 * 379107
1. 1.5182910°" 1.3810 °
by 2.4210310°° 2310
Yar, ., -1.3132110°* -2.310"°
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Table 7

Vorticity values

Re Ghia et al. [14] Present work
1000 2.04968 2.07
5000 1.86016 1.9

10 000 1.88082 1.8

numbers 1000, 5000 and 10000, respectively. The vorticity values in the main vortex at different
Reynolds’ numbers are presented in Table 7.

6.2. Backward-facing step flow problem

The backward-facing step flow problem is a very interesting test in order to compare the numerical
results with the experimental ones obtained by Armaly et al. [20]. In the present analysis, the effect of
the gravity action (in the vertical direction) is taking into account in order to reproduce the
experimental test. The geometry and the characteristic lengths defined in this problem [20] are plotted
in Fig. 9. A regular (structured) mesh composed of nearly 9000 four-noded bilinear isoparametric
elements have been used in the computations. The velocity is prescribed to zero in the channel walls
and a parabolic profile with maximum velocity V,_,  is considered at the inlet face. The velocity field is
not restricted at the exit. The pressure is zero at the top corner in the outlet face. The air properties are
taken as p = 0.000018 for the dynamic viscosity and p = 1.2 for the density (all in consistent units). The
Reynolds’ numbers are computed from the maximum inlet velocities (V,,,,) and the hydraulic diameter
of the inlet channel (D) as Re = (2V,,,Dp)/(3n) [21]. The streamline and the velocity contours are
presented in Fig. 10. In Table 8 the numerical results obtained in the present work and the
experimental ones [20] are presented. It is possible to achieve convergence for high Reynolds’ numbers
but the disagreement between the experimental and numerical results, in particular for Re = 1600, can
be due to the laminar numerical model used. Other reasons for these differences is the effect of the
three dimensionality in the experimental results [20]. On the other hand, the numerical results are
similar to that obtained in [21] using a traditional SUPG method with penalization and applying a
continuation technique: 10.3, 10.8 and 17.2 for x;/s, i = 1, 2, 3 at Re = 800; and 12.8, 13.0 and 22.1 for
the same characteristic lengths at Re = 1000. Fig. 11 shows the pressure contours under the gravity
action. It should be noted that vertical isopressure lines near the inlet and the outlet would be obtained
if the gravity action is not considered [21]. Finally, the same analysis have been performed in [11,12]
using a scalar upwinding GLS technique leading to similar results in comparison with those obtained
using the present formulation.

6.3. Two-liquid interface problem

This problem has also been analysed in [22] and [10]. Two liquids with the same dynamic viscosity
and different densities equal to 1.0 and 2.0, respectively, occupy a closed tank with dimensions 0.8 x 0.6

49 5.2
o
E
y .
/
/

10 500
T~
a) b)

Fig. 9. Backward-facing step flow. (a) Geometry (out of scale) in mm and (b) characteristic lengths.
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Table 8
Backward-facing step flow at different Reynolds’ numbers

Re x,/s x,/s xs/s
Present work 100 3.0
Armaly et al. [20] 100 3.0
Present work 500 8.5 8.0 12.8
Armaly et al. [20] 500 10.0 8.0 13.5
Present work 830 11.5 10.5 19.4
Armaly et al. [20] 830 14.0 11.25 20.0
Present work 1000 12.93 11.22 22.79
Armaly et al. [20] 1000 16.25 13.5 21.8
Present work 1200 14.6 13.3 25.5
Armaly et al. [20] 1200 17.6 14.5 23.5
Present work 1600 17.0 14.6 34.0
Armaly et al. [20] 1600 13.9 9.5 22.0

_——— 0

a) R, = 100.

S —r—— =
b) R. = 500.

=037 ————— = —
c) R. = 830.

S ——————]
d) R, = 1000.

E— Y= )
e) R, = 1200.

S e Z 277 7 —
f) R, = 1600.

Fig. 11. Backward-facing step flow—Pressure contours.

(all in consistent units). The initial interface position is linear with a slope of 0.25 and average height of
0.3. The lighter liquid is on top of the heavier one and the gravity is 0.294. The analysis performed is
transient with a time step equal to 0.5. The geometry and the four-noded finite element mesh used are
shown in Fig. 12. The normal velocity is prescribed equal to zero in all sides of the tank while the
tangencial component is set to zero at the top and bottom sides (BCT1). The pressure is taken equal to
zero at the top right corner. The interface position is obtained using the methodology developed in [23],
consisting in following the interface by means of an arbitrary lagrangian mesh using the total velocity of
the fluid particles belonging to it. The vertical location of the interface along the sides of the tank are
plotted in Fig. 13. A very good agreement with the results obtained by Tezduyar et al. [22] can be
observed. The pressure at different time steps are shown in Fig. 14. Once more, these results are very
similar to those obtained in [22]. The results obtained prescribing only the normal velocity to zero on
the top and bottom sides of the tank (BCT2) are plotted in Fig. 15 and they are compared with the
results computed using the present methodology with BCT1. Fig. 16 shows the results obtained with the
methodology presented in this work and those computed with a scalar upwinding GLS-type techniques















